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1 Introduction and summary

The analysis of N = 2 gauge theories has led to numerous advances in our understanding

of the dynamics of quantum field theories at strong coupling. Moreover, it has proven to be

a fruitful arena to develop interesting connections between physics and mathematics. Two

broad classes of developments in the study of N = 2 gauge theories, namely the equivariant
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topological twisting and Pestun’s supersymmetric localization on the four-sphere, were

unified in a single framework in [1]. That analysis only applied to N = 2 super Yang-Mills

theories; hence, here we consider its extension to theories that include both vector and

hypermultiplets.

The first class of developments mentioned above, revolves around the topological twist-

ing of N = 2 gauge theories. Witten showed in [2] that a certain twisting of N = 2 super

Yang-Mills theory results in a four dimensional topological field theory whose correlators

are the Donaldson invariants [3]. This work was later generalized by [4–12], who constructed

twisted versions of N = 2 gauge theories with vector and hypermultiplets. In particular,

for the purposes of our work, we are interested in the equivariant version of the topological

theory of Witten, which can be defined on manifolds admitting a torus T 2 action, and

was studied in [13–16]. When specifying to the omega background, its partition function

was calculated in the seminal work of Nekrasov [17, 18]. For more general non-compact

toric manifolds M, the partition function is a product of Nekrasov partition functions for

each of the fixed points of the torus action on M [19], see also [20–22]. The extension of

this analysis to compact toric manifolds has been considered both recently [23, 24] and in

earlier works [25–27].

The second class of developments is related to [28], where Pestun placed an N = 2

gauge theory on a round four-sphere preserving all eight supercharges. He was able to

show that the partition function of this theory and certain supersymmetric Wilson loop

observables, can be computed exactly using localization techniques. His work was later

generalized to squashed four-spheres in [29, 30]. These advances led to the realization that

localization techniques are a powerful tool to derive exact results in supersymmetric field

theories in different dimensions (for a summary of these developments see for instance the

review [31]).

The localization result for the partition function of Pestun’s theory on the four-sphere

is fairly simple. It consists of an integral over a real parameter of the product of two factors,

each of which can be associated by equivariant localization to one of the poles of the sphere.

These are the fixed points of a U(1) action generated by squaring the supercharge used for

localization. One factor includes a Nekrasov partition function for instantons, the other a

partition function for anti-instantons. Hence, the final result is structurally similar to the

form of the partition functions stemming from equivariant topological twisting, which only

involve Nekrasov partition functions for instantons. This relation was explained in [1] via

the construction of a general class of N = 2 supersymmetric Yang-Mills theories, on any

four-manifold that possesses a Killing vector field with isolated fixed points. Following [1],

we call plus fixed points those where instantons contribute to the partition function, while

we call minus fixed points those where anti-instantons contribute. Thus, Pestun’s theory

on the four-sphere and the equivariant topological twist are both examples of this general

construction. All the theories considered in [1] can be written in terms of cohomological

(twisted) fields which helps elucidating what data, of geometrical or other origin, their

supersymmetric observables can depend on. These results were formulated in a more

rigorous mathematical framework in [32].

– 2 –
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Summary of results. In the present work we extend the results of [1, 32] to theo-

ries involving hypermultiplets. The inclusion of hypermultiplets generically requires the

manifold to admit a spin structure. Nevertheless, this substantially enlarges the set of

supersymmetric field theories which can be analyzed using localization techniques. We

reformulate the theories we construct in terms of cohomological (twisted) fields. A gener-

alization of the notion of self-duality for two-forms was found necessary in [1] to define the

cohomological SYM theory. Similarly here we find that a generalization of a Weyl spinor is

necessary to define cohomological variables for the hypermultiplets. The use of such spinors

is forced upon us by supersymmetry, thus establishing an interesting relation between su-

persymmetry and the geometry of the manifolds where our theories live. Furthermore,

we employ localization techniques to compute the partition function of the cohomological

theories we constructed. Computations of path integrals via a purely cohomological formu-

lation of supersymmetry appeared for theories defined on specific manifolds in 3d [33–35],

4d [25, 32, 36–39], 5d [40–44], and 7d [45–47]. We refer to [31] and to references therein for

an exhaustive bibliography. In this paper we aim to present a general formula for the par-

tition function of N = 2 gauge theories with matter on any simply connected Riemannian

spin manifold admitting an isometry with isolated fixed points as well as non-trivial fluxes.

Technically, the computation of the relevant one-loop contributions descends from the in-

dex of a transversally elliptic differential operator of Dirac-type. Combining the result of

this paper with those of [1], we find

ZN=2
~ε1,~ε2

(q, q) =
∑

ki discrete

∫
h
da0 e

−Scl

p∏
i=1

Z inst

ε
(i)
1 ,ε

(i)
2

(a0, ki, q)Z
VM

ε
(i)
1 ,ε

(i)
2

(a0, ki)Z
HM

ε
(i)
1 ,ε

(i)
2

(a0, ki)

×
l∏

i=p+1

Zanti-inst

ε
(i)
1 ,ε

(i)
2

(a0, ki, q)Z̃
VM

ε
(i)
1 ,ε

(i)
2

(a0, ki)Z̃
HM

ε
(i)
1 ,ε

(i)
2

(a0, ki) , (1.1)

where the formula above holds for a manifold with p plus points and (l − p) minus fixed

points. In (1.1), Z inst, ZVM and ZHM respectively are the instantons contribution, the

vector multiplet 1-loop determinant and the hypermultiplet 1-loop determinant at a plus

fixed point. Analogously, Zanti−inst, Z̃VM and Z̃HM respectively are the anti-instantons

contribution, the vector multiplet 1-loop determinant and the hypermultiplet 1-loop deter-

minant at a minus fixed point. The integral is taken over the Cartan gauge subalgebra h,

while q, q are counting parameters labeling (anti-)instantons. The constants ε
(i)
1,2 are real

equivariant parameters. The 1-loop contributions ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+) and Z̃HM

ε
(i)
1 ,ε

(i)
2

(a0, ki) are

Barnes double gamma functions [48]. With a specific choice of regularization (other choices

are considered in section 5) we get for instance:

ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+) =
∏
ρ∈R

Γ2(i ρ(Φ0) + ((ε
(+)
1 + ε

(+)
2 )/2)|ε(+)

1 , ε
(+)
2 ) , (1.2)

where we have a product over hypermultiplet representations R, while the fugacity Φ0 at

a plus point is a combination of the Coulomb branch parameter a0 and the function k+

encoding the flux contribution:

Φ0 = a0 + k+(ε
(+)
1 , ε

(+)
2 ) . (1.3)
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As we spell out in the main text, the expression for Z̃HM

ε
(−)
1 ,ε

(−)
2

(a0, k−) and for Φ′0 valid at

a minus fixed point are analogous. Hypermultiplet masses enter the partition function as

a constant shift of a0. At the level of the Lagrangian, a massless hypermultiplet is made

massive by weakly gauging a U(1) flavour symmetry, where the mass coincides with the

real part of a scalar from a background vector multiplet. It is important to stress that the

integral in (1.1) is a formal expression. To concretely evaluate it several additional data

need to be provided. Firstly, an integration contour has to be specified. One also needs

to determine the precise form of the sum over flux sectors and the corresponding shifts

in (1.3). These issues are interdependent and highly nontrivial. We do not investigate

them in this work (for specific examples in the context of the equivariant topological twist

on compact toric manifolds see [23, 24]).

Outline of the paper. In section 2, we review how to place an N = 2 field theory on

Euclidean four-manifolds preserving some supersymmetry. This can be accomplished by

coupling the theory to a supersymmetric rigid supergravity background, whose properties

we review. In particular, we show that the usual hypermultiplet action, quadratic in

derivatives, when coupled to rigid supergravity, is δ-exact up to total derivatives.

In section 3, we consider a Riemannian spin four-manifold M that admits a Killing

vector field with isolated fixed points. We review the arguments in [1] showing that M
admits globally well defined Killing spinors that depend on a choice of a plus/minus label

for each fixed point. In order to deal with off-shell hypermultiplets, we also need to show

the existence of auxiliary Killing spinors satisfying certain properties. We prove that a

smooth, globally well-defined choice for these auxiliary Killing spinors exists.

In section 4, we move to reformulate the gauged hypermultiplet in terms of coho-

mological fields. For this we first define novel splits of the Dirac spinor bundle into two

subbundles. These splits require the existence of a vector field with isolated fixed points

and depend on the choice of ± at each fixed point. We also study the relation between

these spinor bundles and the “flipping” sub-bundles of the bundle of two-forms studied

in [1]. The appropriate cohomological fields for the hypermultiplet are elements of the

novel spinor bundles we introduced. We explicitly prove that there is a smooth invertible

map between cohomological variables and the usual hypermultiplet component fields. We

also show how supersymmetry organizes the cohomological fields in different multiplets.

Finally we rewrite the action for a gauged hypermultiplet in terms of the cohomological

fields. In the reformulation of the theory in terms of cohomological variables, there is an

important difference with [1], where only vector multiplets were considered. In the case of

the hypermultiplet the twisted fields are spinors so that generically the four-manifold has

to be spin. This is however too restrictive. For instance, depending on the flavor symmetry

of the theory, it may be enough for the manifold to be spinc.

Finally in section 5, having constructed the cohomological theory, we use it to set up

the localization computation of the partition function. As an application, we apply our

formula to the specific case of the squashed four-sphere. We find perfect agreement with

the localization result for N = 2 matter multiplets found in [29].

– 4 –
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Outlook. A compelling direction to be explored in a future work would be applying the

technology developed in this paper to study the consequences of S-duality invariance of

N = 4 super Yang-Mills theory. Indeed, it should be possible to generalize the analysis

of [49], valid for pure topological twisting, to the case of equivariant topological twisting

by rearranging the twisted fields of vector and hypermultiplets in different cohomological

complexes.

Another intriguing line of investigation would be deriving the cohomological complex

for N = 4 theories in three dimensions. Although this can simply be achieved by means

of dimensional reduction, the outcome would be non-trivial as several fields of the three-

dimensional cohomological complex would become charged under an SU(2) (Coulomb)

R-symmetry. This would open up the possibility of more elaborate topological twisting, as

well as of exploring three-dimensional mirror symmetry from a cohomological viewpoint.

2 N = 2 theories on four-manifolds

In this section we review the construction of rigid N = 2 supersymmetric fields theories on

a curved four-manifold by coupling to background supergravity. Assuming the existence

of appropriate Killing spinors, we write down the supersymmetry variations for fields in

vector multiplets and hypermultiplets. We also present a δ-exact Lagrangian for a gauged

hypermultiplet.

2.1 Review of N = 2 rigid supergravity

In order to couple a supersymmetric field theory defined in flat space to off-shell supergrav-

ity, we have to set the fermionic fields in the supergravity multiplet to zero and freeze the

bosonic supergravity fields to fixed values. If this background is invariant under some su-

pergravity variation, the resulting theory is supersymmetric [50]. Here we consider N = 2

theories with a conserved SU(2) R-current. Their supercurrent multiplet was studied by

Sohnius [51] and the N = 2 Poincaré supergravity to which they couple is described

in [52–55]. Rigid N = 2 supergravity backgrounds and the conditions they have to satisfy

to preserve supersymmetry have been considered in [30, 56, 57].

In order to specify the supergravity background we need the following data:

• A Riemannian manifold M equipped with a metric g and a spin structure.1

• An SU(2)R connection Vµ
i
j . (Here and in the following i, j . . . are SU(2)R indices.)

• Various other auxiliary fields: a one-form Gµ, a two-form Wµν , a scalar N , a closed

two-form Fµν , and a scalar Sij transforming as an SU(2)R triplet.

The supergravity variations are parametrized by a left-handed spinor ζiα and a right-handed

spinor χ̄α̇i , both transforming in the fundamental representation of the SU(2)R R-symmetry.

Here i is the SU(2)R index and α, α̇ are spinor indices. For a brief review of the conventions

1We are going to comment on non-spin manifolds in section 4.2.2.
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we use, see appendix A . Unless otherwise noted, we take these spinors to obey symplectic-

Majorana reality conditions:

(ζiα)∗ = ζiα , (χ̄α̇i )∗ = χ̄iα̇ . (2.1)

Requiring the background to be invariant under the supergravity variation parametrized

by ζiα and χ̄α̇i , one obtains two sets of Killing spinor equations. The first set is

(Dµ − iGµ)ζi −
i

2
W+
µρσ

ρχ̄i −
i

2
σµη̄i = 0 ,

(Dµ + iGµ)χ̄i +
i

2
W−µρσ̄

ρζi − i

2
σ̄µη

i = 0 ,

(2.2)

where Dµ is a covariant derivative that incorporates the SU(2)R connection Vµ
i
j . The

second set is(
N − 1

6
R

)
χ̄i = 4i∂µGν σ̄

µν χ̄i + i
(
∇µ + 2iGµ

)
W−µν σ̄

νζi + iσ̄µ
(
Dµ + iGµ

)
ηi ,(

N − 1

6
R

)
ζi = −4i∂µGν σ̄

µνζi − i
(
∇µ − 2iGµ

)
W+
µνσ

νχ̄i + iσµ
(
Dµ − iGµ

)
η̄i ,

(2.3)

where R is the Ricci scalar and the spinors ηi and η̄i are defined as:

ηi = (F+ −W+)ζi − 2Gµσ
µχ̄i − Sijζj ,

η̄i = −(F− −W−)χ̄i + 2Gµσ̄
µζi − Sijχ̄j .

(2.4)

Here we use the notation W+ = 1
2Wµνσ

µν and W− = 1
2Wµν σ̄

µν (similarly for F).

The spinors ζi and χ̄i can be used to construct various bilinears. Restricting our

attention to singlets of the SU(2) R-symmetry, we have the scalars

s = 2ζiζi , s̃ = 2χ̄iχ̄i , (2.5)

and the vector field

vµ = 2χ̄iσ̄µζi . (2.6)

The reality conditions (2.1) imply that vµ, s and s̃ are real and that s and s̃ are

nowhere negative. The vector v and the scalars s, s̃ satisfy ||v||2 = ss̃, hence they are not

independent. Using the Killing spinor equations we can show that vµ is a Killing vector

and that s, s̃ are constant along the orbits of v. We assume that both
√
s and

√
s̃ are

smooth in a neighborhood of the fixed points.

2.2 Supersymmetric multiplets

Here we assume that the Killing spinor equations introduced in the previous subsection are

satisfied in some supergravity background. We present the structure of the supersymmetry

variations for vector multiplets and hypermultiplets coupled to this background.

– 6 –
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2.2.1 Vector multiplet

The N = 2 vector multiplet contains a complex scalar field X, a gauge field Aµ, two

gauginos λiα and λ̃iα̇ that transform in the fundamental of SU(2)R and an auxiliary scalar

field Dij transforming as a triplet of SU(2)R. All these fields (except Aµ) transform in the

adjoint representation of the gauge group. The supersymmetry variations are given by:

δX̄ = χ̄iλ̄i , δX = −ζiλi ,

δAµ = iζiσµλ̄
i + iχ̄iσ̄µλi ,

δDij = iζiσ
µ
(
Dµ+ iGµ

)
λ̄j − iχ̄iσ̄µ

(
Dµ− iGµ

)
λj + 2i[X, χ̄iλ̄j ] + 2i[X̄, ζiλj ] + (i↔ j) ,

δλi = −2i(Dµ − 2iGµ)Xσµχ̄i+ 2
(
F+− X̄ W+

)
ζi +Dijζ

j + 2i[X, X̄]ζi − 2Xηi ,

δλ̄i = 2i(Dµ + 2iGµ)X̄σ̄µζi+2
(
F−−XW−

)
χ̄i −Dijχ̄j − 2i[X, X̄]χ̄i + 2X̄η̄i . (2.7)

We used the shorthand notation F+ = 1
2Fµνσ

µν and F− = 1
2Fµν σ̄

µν where Fµν is the field

strength for the gauge field Aµ.

The square supersymmetry variation of a field Ψ in the vector multiplet results in a

translation along the vector field v defined in (2.6), together with a gauge transformation

and an SU(2)R transformation

δ2Ψ = iLvΨ + ivµVµ ◦Ψ + iΛ(R)◦Ψ− i[Φ,Ψ] . (2.8)

Here Lv is the Lie derivative along v, and ◦ denotes that Ψ is acted upon according to

which SU(2)R representation it belongs. The gauge transformation parameter is

Φ = ivµAµ + sX̄ + s̃X , (2.9)

and Λ(R) is a SU(2)R transformation parameter given by:

Λ
(R)
ij = χ̄iσ̄

µ(Dµ − iGµ)ζj − ζiσµ(Dµ + iGµ)χ̄j + (i↔ j) . (2.10)

2.2.2 Hypermultiplet

For the following we will embed the gauge group in Sp(k) and consider a hypermultiplet

in the fundamental of this Sp(k). The hypermultiplet contains a scalar qni (where the

index n transforms under Sp(k) and runs over n = 1, . . . , 2k, while the index i transforms

under the fundamental of SU(2)R), and a pair of spinors ψαn and ψ̄α̇n. Additionally there

are auxiliary fields Fnı̌ that are necessary for the off-shell closure of the supersymmetry

algebra. The Fnı̌ transform in the fundamental of an SU(2)Ř symmetry that is generically

distinct from the SU(2) R-symmetry.

We take the Grassmann-even fields in the hypermultiplet to satisfy the following reality

conditions:

(qni)
∗ = qni , (Fnı̌)

∗ = Fnı̌ . (2.11)

– 7 –
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The supersymmetry variations of the hypermultiplet components are:

δqni = ζiψn + χ̄iψ̄n ,

δψn = 2i(Dµqni)σ
µχ̄i + iqniσ

µ (Dµ + iGµ) χ̄i + 4iX̄n
mqmiζ

i + 2iFnı̌ζ̌
ı̌ ,

δψ̄n = 2i(Dµq
ni)σ̄µζi + iqniσ̄µ (Dµ − iGµ) ζi + 4iXn

mq
miχ̄i + 2iFnı̌ ˇ̄χı̌ ,

δFnı̌ = ζ̌ı̌
[
σµ (Dµ − iGµ) ψ̄n − 2Xn

mψm + 2(λj)n
mqmj − iW+ψn

]
+ ˇ̄χı̌

[
σ̄µ (Dµ + iGµ)ψn + 2X̄n

mψ̄m − 2(λ̄j)n
mqmj + iW−ψ̄n

]
,

(2.12)

where Xn
m = Xαtαn

m (and similarly for other vector multiplet components) and the

derivative Dµ is covariant with respect both to the gauge symmetry and the R-symmetry.

Finally, we introduced the checked spinors ζ̌ı̌ and ˇ̄χı̌, which need to satisfy the constraints:

ζiζ̌̌ − χ̄i ˇ̄χ̌ = 0 , ζ̌ı̌ζ̌
ı̌ = χ̄iχ̄i ,

ˇ̄χı̌σ̄µζ̌ı̌ + χ̄iσ̄µζi = 0 , ˇ̄χı̌ ˇ̄χ
ı̌ = ζiζi ,

(2.13)

for the off-shell closure of the supersymmetry algebra. Unless otherwise noted, we assume

that ζ̌ı̌ and ˇ̄χı̌ satisfy symplectic-Majorana reality conditions:

(ζ̌ ı̌α)∗ = ζ̌αı̌ , ( ˇ̄χı̌α̇)∗ = ˇ̄χı̌α̇ . (2.14)

Except when acting on the auxiliary fields Fnı̌, the square supersymmetry variation of

a field Ψ of the hypermultiplet, is given by:

δ2Ψ = iLvΨ + ivµVµ ◦Ψ + iΛ(R)◦Ψ + GΦ �Ψ . (2.15)

This includes a translation along vµ = 2χ̄iσ̄µζi, an SU(2)R transformation and a gauge

transformation. The gauge transformation parameter Φ and the SU(2)R transformation

parameter Λ(R) are as in (2.9) and (2.10). The squared supersymmetry variation of the

auxiliary fields similarly includes SU(2)Ř transformations:

δ2Ψ = iLvΨ + ivµV̌µ ◦Ψ + iΛ(Ř)◦Ψ + GΦ �Ψ . (2.16)

Here V̌µ is a background connection for SU(2)Ř and the SU(2)Ř transformation parameter

Λ(Ř) is given by:

Λ
(Ř)
ı̌̌ = 2ζ̌ı̌σ

µ
(
Ďµ − iGµ

)
ˇ̄χ̌ + 2iζ̌ı̌W

+ζ̌̌

− 2 ˇ̄χı̌σ̄
µ
(
Ďµ + iGµ

)
ζ̌̌ + 2i ˇ̄χı̌W

− ˇ̄χ̌ +
(
ı̌↔ ̌

)
. (2.17)

The derivative Ďµ is covariant with respect to the background SU(2)Ř connection V̌µ .

Note that in (2.16), the connection V̌µ cancels between the terms ivµV̌µ ◦Ψ and iΛ(Ř)◦Ψ .

– 8 –
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2.3 Hypermultiplet Lagrangian

Having completed the coupling to rigid supergravity, we can write a supersymmetric La-

grangian L = LB + LF for the hypermultiplet:

LB = +
1

2
(Dµqni)(Dµqni)−

i

2
qni(D

ij)n
mqmj +

1

2
Fnı̌Fnı̌

−
(
R

12
+
N

4

)
qniqni + qni{X̄,X}nmqmi , (2.18a)

LF = − i
2
ψnσµ (Dµ − iGµ) ψ̄n +

i

2
ψnXn

mψm +
i

2
ψ̄nX̄n

mψ̄m

− iψn(λi)n
mqmi − iψ̄n(λ̄i)n

mqmi −
1

4

(
ψnW+ψn + ψ̄nW−ψ̄n

)
. (2.18b)

It turns out that (up to total derivatives) this Lagrangian is itself the supersymmetry

variation of some Grassmann-odd VG:

L = LB + LF = δVG , (2.19)

where VG is given by the following expression:

VG =
1

2(s+ s̃)

[
2i(Dµ + iGµ)(qniζ

i)σµψ̄n − 2i(Dµ − iGµ)(qniχ̄
i)σ̄µψn

+ 2iFnı̌( ˇ̄χı̌ψ̄n − ζ̌ ı̌ψn)− 4iqmi(X
m
nχ̄

iψ̄n + X̄m
nζ

iψn)

− 2qni(χ̄
iW−ψ̄n + ζiW+ψn)− 2

s+ s̃
vνFµνqni(χ̄iσ̄µψn − ζiσµψ̄n)

− 4iqni
[
(λi)n

mζj + (λ̄i)n
mχ̄j

]
qm

j
]
. (2.20)

The expression for VG in (2.20) is in agreement with and generalizes a similar one found

in [29], to which it reduces if we assume that s+ s̃ is a constant (in that case Fµν = 0).

3 Construction of Killing spinors

In the last section we have considered gauged hypermultiplets coupled to a rigid N = 2

supergravity background. We assumed that this background preserves supersymmetry, i.e.

that there are nonzero solutions to the Killing spinor equations (2.2) and (2.3). A general

class of backgrounds allowing solutions to these equations was studied in [1]. Here we will

briefly review their main properties.

Consider a Euclidean orientable four-manifold M with metric g and a spin structure.

It was shown in [1] that the Killing equations can be satisfied by spinors ζi and χ̄i that are

both non-vanishing provided that the metric admits a Killing vector v whose fixed points

are isolated. In addition to v, the supergravity background is specified by a choice of a

real, nowhere-negative scalar s onM that is constant along orbits of v. Moreover s has to

approach a positive constant K at a subset of the fixed points of v and needs to go to zero

as ||v||2/K at the remaining fixed points. At these fixed points of v, the scalar s̃ = ||v||2/s
approaches K. Hence, the fixed points of v are separated into a set where s̃ = 0 with s = K

and a second set where s = 0 and s̃ = K. The fixed points satisfying s̃ = 0 are plus fixed

points, whereas those satisfying s = 0 are minus fixed points. This is consistent with [1].
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3.1 Killing spinors

In this subsection, we employ the Killing vector v and the scalar s to construct spinors ζiα
and χ̄iα̇ that satisfy the reality conditions (ζiα)∗ = ζiα and (χ̄α̇i )∗ = χ̄iα̇ and such that

ζiζi =
s

2
, χ̄iχ̄i =

s̃

2
, χ̄iσ̄µζi =

1

2
vµ . (3.1)

We cover the manifold with charts Uk, such that every fixed point of v belongs to

a single distinct chart and we make a choice of vielbein eak in each chart. We can also

assume that there are no overlaps between charts containing different fixed points of v. We

consider the spinors ζi and χ̄i given by the following expressions in every chart:

ζiα =

√
s

2
δiα , χ̄i =

1

s
vµσ̄µζi . (3.2)

These spinors satisfy the reality conditions and the constraints (3.1).

In going from chart to chart, ζ transforms under SU(2)l ×Z2 SU(2)R. For the form

of ζ above to be valid in each chart, we have to undo the SU(2)l transformation by an

appropriate SU(2)R transformation. The expression for χ̄ will then also be valid in each

chart because it is directly related to ζ.

Unfortunately (3.2) is singular in the charts containing a fixed point of v where s = 0.

To fix this problem, in going from a chart where s 6= 0 everywhere to a chart where there

is a fixed point of v with s = 0, we can act with a further SU(2)R transformation:

Ui
j = i

vµ

||v||
σµi

j . (3.3)

As a consequence, in charts containing a fixed point where s = 0, the spinors are:

χ̄α̇i = −i
√
s̃

2
δα̇i , ζi = −1

s̃
vµσµχ̄i . (3.4)

This specifies regular spinors ζ and χ̄ onM that satisfy the reality conditions and for

which the relations (3.1) are satisfied. Moreover there is a choice of smooth background

supergravity fields for which the spinors ζ and χ, that we just constructed, satisfy the

Killing spinor equations (2.2)(2.3) (see [1]). The resulting expressions for the background

fields are presented in appendix B.

3.2 Auxiliary Killing spinors

An additional element we need to consider is the construction of smooth auxiliary spinors ζ̌ ı̌α
and ˇ̄χα̇ı̌ , since they are used for the off-shell extension of the supersymmetry transformations

for the N = 2 hypermultiplet. These spinors satisfy the reality conditions:

(ζ̌αı̌ )∗ = ζ̌ ı̌α , ( ˇ̄χı̌α̇)∗ = ˇ̄χı̌α̇ , (3.5)

as well as the following constraints:

ζiζ̌̌ − χ̄i ˇ̄χ̌ = 0 , ζ̌ı̌ζ̌
ı̌ =

s̃

2
,

ˇ̄χı̌σ̄µζ̌ı̌ = −1

2
vµ , ˇ̄χı̌ ˇ̄χ

ı̌ =
s

2
.

(3.6)
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These spinors transform under SU(2)l×Z2 SU(2)Ř and SU(2)r×Z2 SU(2)Ř respectively. The

SU(2)Ř bundle is not generally identified with the SU(2)R bundle. The constraints in (3.6)

determine ζ̌ and ˇ̄χ uniquely up to local SU(2)Ř transformations.

The construction of these spinors parallels that of ζ and χ. On patches Uk that do not

contain fixed points where s = 0, we define the spinors as follows:

ˇ̄χα̇ı̌ =

√
s

2
δα̇ı̌ , ζ̌ı̌ α = −1

s
vµ (σµ ˇ̄χı̌)α . (3.7)

It can be checked using the expressions for ζi and χ̄i in (3.2), that these satisfy the con-

straints (3.6). In this case in going from patch to patch, we have to undo SU(2)r transfor-

mations by appropriate SU(2)Ř transformations.

On a patch Ul that includes a fixed point of v with s = 0, we take instead:

ζ̌ ı̌α = i

√
s̃

2
δ ı̌α , ˇ̄χα̇ı̌ =

1

s̃
vµ
(
σ̄µζ̌ı̌

)α̇
, (3.8)

which also satisfy the constraints (3.6) with ζi and χ̄i in (3.4). As before, when transitioning

to one of these patches, there is an extra SU(2)Ř transformation given by:

Uı̌
̌ = i

vµ

||v||
(σµ)ı̌

̌ . (3.9)

Hence, we have found smooth solutions to the constraints (3.6). There is a different con-

struction of solutions to these constraints that is often used in the literature. This is

given by:

ζ̌ ı̌α = i

√
s̃

s
δ ı̌i ζ

i
α , ˇ̄χα̇ı̌ = i

√
s

s̃
δiı̌ χ̄

α̇
i . (3.10)

In this case SU(2)Ř is identified with SU(2)R; however the resulting spinors are singular at

the fixed points of v.

4 Twisted supersymmetry

In this section we rewrite the component fields for the vector multiplet and hypermultiplet

in terms of twisted variables. The case of the vector multiplet was considered in [1]. The

construction of these twisted variables is intimately connected with the geometry of M. In

particular, for the vector multiplet it relies on a novel decomposition of the bundle of two-

forms on M which we review. For the hypermultiplet we will introduce a corresponding

decomposition of spinors on M.

4.1 Flipping projectors

Consider the bundle of two-forms Λ2(M). On an orientable Euclidean manifold with metric

g, we can split Λ2(M) in two orthogonal sub-bundles, consisting of self-dual and anti self-

dual two-forms. Self-dual two-forms play an essential role in Donaldson-Witten theory and

its equivariant extension [2, 13]. As shown in [1], on a manifold equipped with a vector

field v with isolated fixed points, one can introduce a different splitting of the bundle of
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two-forms. This splitting arises naturally in the study of the N = 2 theories on M we

presented in section 2.

Let v be a real vector field on M (with isolated fixed points) and for what follows we

will take it to be the Killing vector. The s and s̃ , which are the spinor bilinears in (2.5),

determine the ± fixed points. We can define projectors P± on the bundle of two-forms

as follows:

P+ =
1

2(s2 + s̃2)

(
(s+ s̃)2

1 + (s2 − s̃2) ?−4κ ∧ ιv
)
, P− = 1− P+ , (4.1)

where we use 1 to indicate the identity operator throughout the paper. Here, κ = g(v)

is the one-form dual to the Killing vector v. The objects P± are well defined projectors

as they satisfy (P±)2 = P±, P+P− = 0 and P+ + P− = 1. Especially, P+ induces a split

of the bundle of two-forms into two orthogonal subbundles. The image of P+ consists of

two-forms that are self dual at the fixed points of v where s̃ = 0, and anti-self dual at those

fixed points where s = 0. We refer to P+ as a flipping projector.

Projectors Z±, Z̃± analogous to P± can be defined for spinors on M. Consider a

Dirac spinor Ψ on M (see appendix A for a summary of our conventions). Its left-handed

and right-handed components are ψα and ψ̄α̇. Given two such spinors Ψ1,2 we can define

the SO(4) invariant product Ψ̄2Ψ1 = ψ2ψ1 + ψ̄2ψ̄1. The projectors L = 1
2(1 + γ5) and

R = 1
2(1 − γ5) on the left- and right-handed components of Ψ are compatible with the

product of two spinors, that is:

Ψ̄2LΨ1 = LΨ2 Ψ1 , Ψ̄2RΨ1 = RΨ2 Ψ1 . (4.2)

If a vector field v with isolated fixed points related to s and s̃ exists on M, we can define

a new projector acting on Dirac spinors

Z+ =
1

2

(
1 +

s− s̃
s+ s̃

γ5 −
2

s+ s̃
vµγ5γµ

)
. (4.3)

We have Z2
+ = Z+ and Ψ̄2Z+Ψ1 = Z+Ψ2 Ψ1, the projector Z+ is then compatible with the

inner product. Starting from Z+ we can find more projectors

Z− = 1− Z+ , Z̃+ = γ5Z+γ5 , Z̃− = 1− Z̃+ . (4.4)

The image of Z+ (or Z̃+) comprises spinors that are left-handed at the plus fixed points

of v and right-handed at the minus fixed points. There is a direct relation between the

Killing spinors ζi and χ̄i and the projectors we introduced. Indeed we can construct a

Dirac spinor zi

zi =

(
ζi
χ̄i

)
, (4.5)

which satisfies Z+zi = zi as a consequence of (3.2) or (3.4). This is a first indication of the

strict relation between supersymmetry and the flipping bundles constructed here. Similarly

we construct a Dirac spinor žı̌ out of the auxiliary spinors ζ̌ı̌, ˇ̄χı̌:

žı̌ =

(
ζ̌ı̌
ˇ̄χı̌

)
, (4.6)
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which, using (3.7), is seen to satisfy Z̃− žı̌ = žı̌. Let Ψ1,2 be spinors such that Z+Ψ1,2 = Ψ1,2.

We can construct the two-form

ωµν = Ψ̄2γµνΨ1 = ψ2σµνψ1 + ψ̄2σ̄µνψ̄1 , (4.7)

which satisfies P+ω = ω with P+ defined above in (4.1). This establishes a relation between

the bundle of two-forms in the image of P+ and the spinor bundle in the image of Z+ . In

the same way, starting from two spinors such that Z̃−Ψ1,2 = Ψ1,2 the two-form Ψ̄2γµνΨ1

is in the image of P− = 1− P+ (similar relations can be found using Z− or Z̃+).

4.2 Cohomological fields

Here we briefly review the rewriting of the vector multiplet in terms of cohomological (or

twisted) fields introduced in [1]. We then proceed to constructing the appropriate twisted

fields for the case of the hypermultiplet.

4.2.1 Vector multiplet

The vector multiplet comprises a complex scalar X, the gauge field A, an auxiliary scalar

Dij and gauginos λi, λ̄i. There is an invertible map between these component fields and

cohomological (twisted) fields. We present the details of the map in appendix C. The

twisted fields arrange themselves into various multiplets. There is one long multiplet made

of the gauge field A, a scalar φ, and a Grassmann one-form Ψ both in the adjoint of the

gauge group. Supersymmetry acts on these fields as follows:

δφ = ιvΨ , δΨ = ιvF + idAφ , δA = iΨ . (4.8)

Here F is the field strength of A and ιv denotes contraction with the vector field v.

The rest of the twisted fields arrange in two short multiplets. One is formed by a

scalar ϕ and a Grassmann scalar η and the second is formed by a Grassmann two-form χ

satisfying P+χ = χ and a second two-form H also satisfying P+H = H. All these fields

are in the adjoint of the gauge group. Supersymmetry acts as follows:

δϕ = iη , δη = ιvdAϕ− [φ, ϕ] ,

δχ = H , δH = iLAv χ− i[φ, χ] .
(4.9)

By construction, the twisted fields above do not transform under SU(2)R. The forms

χ and H are well defined only on orientable manifolds, while the latter does not need to

be spin as the vector multiplet cohomological complex does not contain spinors.

With canonical reality conditions on the scalars X∗ = X̄, the field ϕ is real. On the

other hand, the reality properties of φ involve a non-trivial shift depending on (s, s̃, ϕ):

φ∗ = φ+ i(s− s̃)ϕ . (4.10)

4.2.2 Hypermultiplet

The hypermultiplet cohomological fields are fermions q, b, c, h transforming in the funda-

mental of Sp(k). The fields q and h are Grassmann-even, while b and c are Grassmann-odd.
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Moreover q and c are in the image of the projector Z+ defined in (4.3), while b and h are

in the image of Z̃− defined in (4.4):

Z+q = q , Z+c = c , Z̃−b = b , Z̃−h = h . (4.11)

The fields q and c are related to the component fields of section 2.3 by the follow-

ing map:

qn = ziqni =

(
ζiqni
χ̄iqni

)
and cn = −s+ s̃

4
Z+

(
ψn
ψ̄n

)
= −1

4

(
sψn − vµσµψ̄n
s̃ψ̄n + vµσ̄µψn

)
, (4.12)

where we show explicitly their left- and right-handed components. The index n transforms

in the fundamental of Sp(k).

There are two remaining cohomological fields. The first bn is given by:

bn =
s+ s̃

4
Z̃−γ5

(
ψn
ψ̄n

)
=

1

4

(
s̃ψn + vµσµψ̄n
−sψ̄n + vµσ̄µψn

)
. (4.13)

The last field h is related to the variation of b under supersymmetry h = −i δb:

hn =
s+ s̃

2
žı̌Fnı̌ + Z̃−

(
s+ s̃

2
γµ(Dµ + iTµ)qn + ivµGµqn − i

(s+ s̃)

2
ϕn

mqm

)
. (4.14)

In this formula T is a combination of supergravity background fields and derivatives of

Killing spinor bilinears,

Tµ =
s− s̃

(s+ s̃)
Gµ +

ss̃

(s+ s̃)2
bµ + i

∂µ(s2 + s̃2)

2(s+ s̃)2
, (4.15)

where b is a one-form satisfying ιvb = 0, which parametrizes remaining freedom in choosing

the supergravity background (see appendix B).

The map from the hypermultiplet components to the cohomological variables has a

smooth inverse. For the scalar qni, this is

qni = − 4

s+ s̃
z̄i qn , (4.16)

where z is the Dirac spinor built out of the Killing spinors defined in (4.5). The map from

b, c to the ordinary component fields ψ, ψ̄ is(
ψn
ψ̄n

)
=

4

s+ s̃
(γ5bn − cn) , (4.17)

and the one for the ordinary auxiliary field is

Fnı̌ =
8

(s+ s̃)2

[
¯̌zı̌hn −

s+ s̃

2
¯̌zı̌γ

µ(Dµ + iTµ)qn − ivµGµ(¯̌zı̌qn) + i
(s+ s̃)

2
ϕn

m(¯̌zı̌qm)

]
.

(4.18)

– 14 –



J
H
E
P
0
9
(
2
0
2
0
)
1
3
3

Equations (2.11) and (B.1) imply the following reality conditions on Grassmann-

even spinors:

(hn)∗ = −h̄n − [(s+ s̃)(Dµ + iTµ)q̄nγµ − 2ivµGµq̄
n − i(s+ s̃)q̄mϕm

n] Z̃− ,

(qn)∗ = q̄n.
(4.19)

The twisted fields for the hypermultiplet we defined above are spinors; consequently, a

spin structure is necessary in order to define them. This is different from the case of the

vector multiplet whose twisted fields can be defined provided the manifold is orientable and

admits a U(1) action. However, there are cases where the requirement of the manifold to

be spin may be relaxed. For instance, if the theory under consideration has a U(1) flavor

symmetry, the twisted fields are sections of the product of the spin bundle and powers of a

unitary line bundle L. If the manifold admits a spinc structure, such products can be well

defined even if L and the spin bundle do not exist. Depending on the charges under the

flavor symmetry, it may be then possible to define the twisted theory on a spinc manifold

(in four dimensions any closed orientable four manifold is spinc). The requirement that the

manifold be spin may be relaxed in other circumstances and is therefore dependent on the

specific theory under consideration.

The cohomological fields we introduced split into two separate multiplets under super-

symmetry:

δq = c , δc = (iLv − GΦ)q ,

δb = ih , δh = (Lv + iGΦ)b ,
(4.20)

where, just like in (28) of [1], the supersymmetry algebra encodes gauge transformations

GΦ with respect to the field Φ = (iιvA+ φ). Here A and φ are fields in the twisted vector

multiplet (see appendix C). As in section 2.3, the object GΦ acts on fields according to

their representation, e.g.

(GΦ q)n = iΦn
mqm = i [i(ιvA)n

m + φn
m] qm . (4.21)

Few comments are in order:

• It follows from (4.8) that GΦ is δ-closed, which ensures the closure of the alge-

bra (4.20). Indeed, δ acts on the cohomological fields as an equivariant differen-

tial, namely:

δ2 = iLv − GΦ . (4.22)

• The action of supersymmetry commutes with the projectors Z±, Z̃±. This is because

the vector field that enters in their definition is the same as the Killing vector that

appears in the supersymmetry variations (in general it is sufficient for the two vector

fields to commute).

• The gauge field A and the scalar field φ always appear in the combination Φ. When

discussing localization we will see that, after gauge fixing, Φ will be a Coulomb

branch modulus appearing in one-loop determinants. If Φ is part of a dynamical
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vector multiplet, it will be integrated over. Φ could also arise from a background

vector multiplet, in which case it will remain as a free parameter in supersymmetric

observables. For instance it can be identified with a flavour fugacity.

4.3 Hypermultiplet Lagrangian in cohomological fields

We have shown in section 2.3 that the usual quadratic Lagrangian for a hypermultiplet

coupled to a rigid N = 2 supergravity background is the δ variation of VG in (2.20). In

terms of the cohomological fields (q, b, c, h), the deformation term VG reads as follows:

VG =
8

(s+ s̃)3

{
īcLvq + iq̄ [φ+ i(s− s̃)ϕ] c− i(∂µvν)c̄ γµνq

− (s+ s̃)

(
Gµ −

s2 − s̃2

64
bµ

)
c̄γµq + i(s+ s̃)b̄γµ(Dµ + iTµ)q

− (s+ s̃)b̄ϕ q− 2ιvGb̄q−
i

4
(s+ s̃)2q̄χq− ih̄b

}
, (4.23)

where, in the expression above, Sp(k) gauge/flavor indices are contracted as Ψ1Ψ2 =

(Ψ1)mΨm
2 . Here we used the short-hand notation:

χ =
1

2
χµνγ

µν . (4.24)

By taking a δ variation of VG, we obtain the Lagrangian for the hypermultiplet L =

LB + LF :

LB =
8

(s+ s̃)3

{
− Lvq̄Lvq−Dµvν q̄γ

µνLvq− i(s− s̃)q̄ϕLvq

+ i(s+ s̃)

(
Gµ −

s2 − s̃2

64
bµ

)
(q̄γµLvq + q̄γµφ q)

− ∂µvν q̄γµνφ q−
1

2
q̄

[
i

2
(s+ s̃)2H+ + {φ, φ}+ i(s− s̃){ϕ, φ}

]
q

− (s+ s̃)h̄γµ(Dµ + iTµ)q− 2iιvGh̄q + i(s+ s̃)q̄ϕ h + h̄h

}
, (4.25)

and

LF =
8

(s+ s̃)3

{
− ib̄Lvb + ib̄φb− īcLvc− i(s+ s̃)b̄γµ(Dµ + iTµ)c + 2ιvGb̄c

+ (s+ s̃)

(
Gµ −

s2 − s̃2

64
bµ

)
c̄σµc + īc [φ+ i(s− s̃)ϕ] c + i∂µvν c̄σ

µνc

+ (s+ s̃)c̄ϕ b + i(s+ s̃)q̄γµΨµb + i(s+ s̃)q̄ η b

+ iq̄

[
2ιvΨ− (s− s̃)η +

1

2
(s+ s̃)2χ

]
c

}
. (4.26)
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4.4 Non-equivariant topological twist

In our setup, pure topological twisting is recovered by turning off either (χ̄iα̇, ζ̌iα) or

(ζiα, ˇ̄χiα̇). In terms of Killing spinor bilinears, this corresponds to respectively setting

either s̃ = 0 and s = constant or s̃ = constant and s = 0. The Killing vector v vanishes

in both cases, yielding a non-equivariant differential δ satisfying δ2 = 0. In turn, the hy-

permultiplet cohomological complex fulfills δh = δc = 0, while Dirac spinors become pure

Weyl spinors:

(q, b, c, h)s̃=0 = (L q, R b, L c, R h) , (q, b, c, h)s=0 = (R q, L b, R c, L h) . (4.27)

Consequently, the deformation term VG becomes

VG = VG|s̃=0 =
8

s2

[
b̄(iγµDµ − ϕ)q− i s

4
q̄χq− ih̄b

]
,

ṼG = VG|s=0 =
8

s̃2

[
b̄(iγµDµ − ϕ)q− i s̃

4
q̄χq− ih̄b

]
.

(4.28)

The objects VG and ṼG are deformation terms reproducing the features of topologically

twisted hypermultiplets, see for instance [58] and references therein.

5 Cohomological localization

In this section we perform supersymmetric localization in the cohomological language de-

scribed previously. The localization argument is the standard one: let Zhyper be the hyper-

multiplet partition function, which is a path integral with functional weights e−Shyper . We

then make the replacement Shyper → Shyper+t Sloc, with t being a real parameter and Sloc a

δ-exact positive definite deformation action. The resulting partition function Z(t) naively

depends on t and is such that Z(0) = Zhyper. In fact, Z(t) is independent of t because

both the path integral measure and the integrand are invariant under δ. This implies that

Z(∞) = Zhyper, meaning that the latter can be computed exactly via saddle point method

by using the integrand e−Sloc . Consequently, Zhyper is given by e−Sloc evaluated on the

locus of BPS field configurations, times the corresponding 1-loop determinant. Actually,

Zhyper can elegantly be obtained from the index of a transversally elliptic operator, as we

shall see. After gauge fixing, the supersymmetry transformation δ becomes an equivari-

ant differential squaring to δ2 = iLv − Ga0 , where a0 is a constant valued in the Cartan

subalgebra of the gauge group G. A priori, then, Zhyper will be a function of a0. If the

manifold admits non-trivial fluxes with magnetic charges mi, the value of the Coulomb

branch parameter a0 is suitably shifted by mi, as in the case of S2 × S2 [25].

5.1 BPS locus

On the BPS locus, the fermionic fields b, c and their supersymmetric variations are vanish-

ing. In particular, this yields h = 0 and

(iLv − GΦ) q = 0 . (5.1)

Since the field Φ is complex and the Killing vector v is real, by imposing reality conditions

on the above equations we end up with a trivial BPS locus: q = 0.
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5.2 One-loop determinant from index theorem

The deformation term we employ is

Vloc =
1

4 zizi
(δΨn)∗Ψn =

8

(s+ s̃)3
[(δbn)∗bn + (δcn)∗cn] . (5.2)

By construction, Vloc leads to a positive definite deformation Lagrangian Lloc = δVloc.

Explicitly,

Vloc =
8

(s+ s̃)3

{
− bδb + b [i(s+ s̃)γµ(Dµ + iTµ)− 2ιvG− g(s+ s̃)ϕ] q

+ (δq) [iLv − iΦ− i(2φ+ i(s− s̃)ϕ)] q
}
. (5.3)

The deformation term Vloc can be recast in the quadratic form

Vloc =
8

(s+ s̃)3

(
δq, b

)(D00 D01

D10 D11

)(
q

δb

)
, (5.4)

with entries

D00 = iLv − iΦ− i[2φ+ i(s− s̃)ϕ] ,

D10 = i(s+ s̃)γµ(Dµ + iTµ)− 2ιvG− g(s+ s̃)ϕ ,

D01 = 0 ,

D11 = −1 .
(5.5)

The operator D10 implicitly fulfills D10 = Z̃−D10Z+ because it acts on q and b, which are

Dirac spinors satisfying the projection conditions Z+q = q and Z̃−b = b. Furthermore,

D10 is a transversally elliptic operator. Ellipticity of a differential operator D amounts to

the invertibility of the corresponding symbol σ[D ], where the latter is obtained by keeping

only the highest derivative terms in D and making the substitution ∂µ → ipµ. If σ[D ] is

invertible for any pµ 6= 0, then D is elliptic. For instance, the Dirac operator D = −iγµ∂µ
has symbol σ[D ] = γµpµ, which is everywhere invertible in flat Euclidean space. As for

D10, its symbol is

σ [D10] =
8 pµ

(s+ s̃)2
Z̃−γ

µZ+ . (5.6)

At plus fixed points we have

σ [D10]|s̃=0,v=0 =
8 pµ
s2

RγµL→ 8 pµ
s2

σµ = σ

[
−8i

s2
σµ∂µ

]
, (5.7)

while at minus fixed points we find

σ [D10]|s=0,v=0 =
8 pµ
s̃2

LγµR→ 8 pµ
s̃2

σµ = σ

[
−8i

s̃2
σµ∂µ

]
. (5.8)

Consequently, the symbol σ [D10] coincides with that of a chiral Dirac operator whenever

s̃ = 0 or s = 0, ensuring ellipticity of D10. On the other hand,

σ [D10]|s=s̃ =
pµ
2s2

(
1− vν

s
γ5γ

ν

)
γµ
(

1− vρ
s
γ5γ

ρ

)
=

4

s2
Z̃−γ5γ

µνpµvν , (5.9)

– 18 –



J
H
E
P
0
9
(
2
0
2
0
)
1
3
3

implying that D10 is not elliptic in the patch where s = s̃, because σ [D10]|s=s̃ = 0 for

pµ = vµ 6= 0. The operator D10 is then transversally elliptic with respect to the Killing

vector v, as the symbol σ [D10] is everywhere invertible for any pµ 6= 0 such that p · v = 0.

The hypermultiplet contribution to the partition function is encoded into the index of

the transversally elliptic operator D10 [28, 29]:

ind(D10)(t) =
∑
x : x̃=x

Trqe
−i tH − Trbe

−i tH

det(1− ∂x̃/∂x)
, H = δ2 = iLv − GΦ , (5.10)

where t ∈ R, while x̃ is the image of the coordinates x under the torus action induced by

H and the sum is over the fixed points x̃ = x. In a neighborhood of a plus fixed point, the

metric becomes flat and the manifold can be parametrized by a pair of complex coordinates

(z1, z2). In (5.10), bosons q contributes to ind(D10)(t) with a plus sign, whereas fermions

b contributes with a minus sign.

The Killing vector v in a neighborhood of s̃ = 0 reads

v = iε
(+)
1 (z1∂z1 − z̄1∂z̄1) + iε

(+)
2 (z2∂z2 − z̄2∂z̄2) , (5.11)

with ε
(+)
1 and ε

(+)
2 being real parameters. Hence, e−i tH is a U(1)× U(1) action attaching

to (z1, z2) phases qi with i = 1, 2:

zi → z̃i = qizi , qi = exp(i ε
(+)
i t) , i = 1, 2 . (5.12)

In a neighborhood of a plus point, the denominator entering the index formula (5.10) is

det

(
1− ∂z̃i

∂zj

)
= (1− q1)(1− q1)(1− q2)(1− q2) , (5.13)

where qi = q−1
i is the complex conjugate/inverse of the phase qi. We now need the action of

H upon the spinors q and b. We then embed U(1)×U(1) into SU(2)+×SU(2)− ∼ Spin(4)

to see how spinors transform under H. We define

z = xµγ
µ =


0 0 z2 z1

0 0 z1 −z2

−z2 −z1 0 0

−z1 z2 0 0

 . (5.14)

Then, coordinates z and spinors Ψ = {q, b} transform as

z→ g z g−1 , Ψ→ g−1Ψ , g = diag
(√

q1q2,
√
q1q2,

√
q1q2,

√
q1q2

)
, (5.15)

with g ∈ SU(2)+ × SU(2)− being the spinor representation of the torus action Lv. At a

plus point, q is left-handed and b is right-handed: q = L q and b = R b. Then, the action

of Lv upon q, b is

q+ →
√
q1q2 q+ , q− →

√
q1q2 q− , b̃+̇ →

√
q1q2 b̃

+̇ , b̃−̇ →
√
q1q2 b̃

−̇ .

(5.16)
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The operator H also contains GΦ, which acts non-trivially on q, b. Thus, for a hypermulti-

plet in the representation R of the gauge group, the index formula (5.10) yields

ind(D10)|plus point =

√
q1q2

(1− q1)(1− q2)

∑
ρ∈R

e−t ρ(Φ0) . (5.17)

This index translates into a functional determinant by expanding ind(D10)|plus point in

powers of q1, q2 and converting the corresponding series into an infinite product. The

latter requires regularization, which is a delicate matter. For instance, in cases linked to

five-dimensional manifolds, the regularization was established in [37, 42–44, 59]. Here, we

will examine diverse regularizations.

We define:[
1

1− qi

]
+

=
∑
n≥0

qni ,

[
1

1− qi

]
−

= −
∑
n≤−1

qni = −
∑
n≥0

q−n−1
i . (5.18)

The difference between the two regularizations is[
1

1− qi

]
+

−
[

1

1− qi

]
−

=
∑
n∈Z

qni , (5.19)

which becomes a periodic Dirac delta supported at t = 0 if qi = eit. Whenever both q1 and

q2 appear, we write [. . . ]±±, where the first (respectively, the second) subscript refers to

the regularization of q1 (q2). Indeed, the index ind(D10)|plus point depends on both q1 and

q2, and we have four possible series expansions:[
ind(D10)|plus point

]
++

= +
∑
ρ∈R

∑
n1,n2∈N

q
n1+ 1

2
1 q

n2+ 1
2

2 e−t ρ(Φ0) ,

[
ind(D10)|plus point

]
+−

= −
∑
ρ∈R

∑
n1,n2∈N

q
n1+ 1

2
1 q

−n2− 1
2

2 e−t ρ(Φ0) ,

[
ind(D10)|plus point

]
−+

= −
∑
ρ∈R

∑
n1,n2∈N

q
−n1− 1

2
1 q

n2+ 1
2

2 e−t ρ(Φ0) ,

[
ind(D10)|plus point

]
−−

= +
∑
ρ∈R

∑
n1,n2∈N

q
−n1− 1

2
1 q

−n2− 1
2

2 e−t ρ(Φ0) .

(5.20)

Here, ρ is a sum over weights in the representation R and Φ0 is

Φ0 = a0 + k+(ε
(+)
1 , ε

(+)
2 ) , (5.21)

with a0 being a Coulomb branch moduli and k+(ε
(+)
1 , ε

(+)
2 ) parametrizing the flux contri-

bution at the plus fixed point. As in [1, 29], the index ind(D10)|plus point translates into a

1-loop determinant given by an infinite product. For each regularization, we have[
ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+)

]
++

=
∏
ρ∈R

∏
n1,n2∈N

[
ε
(+)
1

(
n1 +

1

2

)
+ ε

(+)
2

(
n2 +

1

2

)
+ i ρ(Φ0)

]−1

,

=
∏
ρ∈R

Γ2(i ρ(Φ0) + ((ε
(+)
1 + ε

(+)
2 )/2)|ε(+)

1 , ε
(+)
2 ) , (5.22)
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as well as[
ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+)

]
+−

=
∏
ρ∈R

∏
n1,n2∈N

[
ε
(+)
1

(
n1 +

1

2

)
− ε(+)

2

(
n2 +

1

2

)
+ i ρ(Φ0)

]
,

=
∏
ρ∈R

[
Γ2(i ρ(Φ0) + ((ε

(+)
1 − ε(+)

2 )/2)|ε(+)
1 ,−ε(+)

2 )
]−1

,[
ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+)

]
−+

=
∏
ρ∈R

∏
n1,n2∈N

[
−ε(+)

1

(
n1 +

1

2

)
+ ε

(+)
2

(
n2 +

1

2

)
+ i ρ(Φ0)

]
,

=
∏
ρ∈R

[
Γ2(i ρ(Φ0) + ((−ε(+)

1 + ε
(+)
2 )/2)| − ε(+)

1 , ε
(+)
2 )

]−1
,

[
ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+)

]
−−

=
∏
ρ∈R

∏
n1,n2∈N

[
−ε(+)

1

(
n1 +

1

2

)
− ε(+)

2

(
n2 +

1

2

)
+ i ρ(Φ0)

]−1

,

=
∏
ρ∈R

[
Γ2(i ρ(Φ0)− ((ε

(+)
1 + ε

(+)
2 )/2)| − ε(+)

1 ,−ε(+)
2 )

]
. (5.23)

These are 1-loop contributions to the hypermultiplet partition function at a plus fixed

point. We used Barnes multiple zeta and gamma functions [48, 60],

ζN (s, ω|~a) =
∑
~n∈NN

(ω + ~a · ~m)−s ,

ΓN (ω|~a) =
∏
~n∈NN

(ω + ~a · ~m)−1 = e∂sζN (s,ω|~a)|s=0 . (5.24)

to regularize the infinite product that gives ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+). For instance, in the case of

squashed S4 worked out in [29], the regularization chosen for the plus point contribution

is ++:

ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+) ≡
[
ZHM

ε
(+)
1 ,ε

(+)
2

(a0, k+)

]
++

. (5.25)

Similarly, in a neighborhood of a minus fixed point the manifold can be parametrized by a

pair of complex coordinates (z′1, z
′
2) and the Killing vector v in a neighborhood of s = 0 is

v = iε
(−)
1 (z′1∂z′1 − z̄

′
1∂z̄′1) + iε

(−)
2 (z′2∂z′2 − z̄

′
2∂z̄′2) , (5.26)

with ε
(−)
1 and ε

(−)
2 being real parameters. The U(1) ×U(1) action of v upon (z′1, z

′
2) reads

z′i → z̃′i = q′iz
′
i , q′i = exp(i ε

(−)
i t) , i = 1, 2 . (5.27)

In a neighborhood of a minus point, the denominator entering the index formula (5.10) is

formally the same as the one computed at the plus point:

det

(
1− ∂z̃′i

∂z′j

)
= (1− q′1)(1− q′1)(1− q′2)(1− q′2) , (5.28)
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At s = 0, there is a chirality flip with respect to the plus fixed point at s̃ = 0. Indeed, q is

right-handed and b is left-handed: q = R q and b = L b. Therefore,

b+ →
√
q′1q
′
2 b+ , b− →

√
q′1q
′
2 b− , q̃+̇ →

√
q′1q
′
2 q̃

+̇ , q̃−̇ →
√
q′1q
′
2 q̃
−̇ . (5.29)

By taking into account the action of GΦ′ at a minus fixed point, the index formula (5.10)

provides

ind(D10)|minus point = −
√
q′1q
′
2

(1− q′1)(1− q′2)

∑
ρ∈R

e−t ρ(Φ′0) . (5.30)

Again, we have four possible series expansions:[
ind(D10)|minus point

]
++

= −
∑
ρ∈R

∑
n1,n2∈N

(q′1)n1+ 1
2 (q′2)n2+ 1

2 e−t ρ(Φ′0) ,

[
ind(D10)|minus point

]
+−

= +
∑
ρ∈R

∑
n1,n2∈N

(q′1)n1+ 1
2 (q′2)−n2− 1

2 e−t ρ(Φ′0) ,

[
ind(D10)|minus point

]
−+

= +
∑
ρ∈R

∑
n1,n2∈N

(q′1)−n1− 1
2 (q′2)n2+ 1

2 e−t ρ(Φ′0) ,

[
ind(D10)|minus point

]
−−

= −
∑
ρ∈R

∑
n1,n2∈N

(q′1)−n1− 1
2 (q′2)−n2− 1

2 e−t ρ(Φ′0) ,

(5.31)

where Φ′0 is

Φ′0 = a′0 + k−(ε
(−)
1 , ε

(−)
2 ) , (5.32)

with k−(ε
(−)
1 , ε

(−)
2 ) encoding the flux contribution at the minus fixed point. We now trans-

late the index ind(D10)|minus point into 1-loop determinants:[
ZHM

ε
(−)
1 ,ε

(−)
2

(a′0, k−)

]
++

=
∏
ρ∈R

∏
n1,n2∈N

[
ε
(−)
1

(
n1 +

1

2

)
+ ε

(−)
2

(
n2 +

1

2

)
+ i ρ(Φ′0)

]
,

=
∏
ρ∈R

[
Γ2(i ρ(Φ′0) + ((ε

(−)
1 + ε

(−)
2 )/2)|ε(−)

1 , ε
(−)
2 )

]−1
,

[
ZHM

ε
(−)
1 ,ε

(−)
2

(a′0, k−)

]
+−

=
∏
ρ∈R

∏
n1,n2∈N

[
ε
(−)
1

(
n1 +

1

2

)
− ε(−)

2

(
n2 +

1

2

)
+ i ρ(Φ′0)

]−1

,

=
∏
ρ∈R

[
Γ2(i ρ(Φ′0) + ((ε

(−)
1 − ε(−)

2 )/2)|ε(−)
1 ,−ε(−)

2 )
]
,

[
ZHM

ε
(−)
1 ,ε

(−)
2

(a′0, k−)

]
−+

=
∏
ρ∈R

∏
n1,n2∈N

[
−ε(−)

1

(
n1 +

1

2

)
+ ε

(−)
2

(
n2 +

1

2

)
+ i ρ(Φ′0)

]−1

,

=
∏
ρ∈R

[
Γ2(i ρ(Φ′0) + ((−ε(−)

1 + ε
(−)
2 )/2)| − ε(−)

1 , ε
(−)
2 )

]
,[

ZHM

ε
(−)
1 ,ε

(−)
2

(a′0, k−)

]
−−

=
∏
ρ∈R

∏
n1,n2∈N

[
−ε(−)

1

(
n1 +

1

2

)
− ε(−)

2

(
n2 +

1

2

)
+ i ρ(Φ′0)

]
,

=
∏
ρ∈R

[
Γ2(i ρ(Φ′0)− ((ε

(−)
1 + ε

(−)
2 )/2)| − ε(−)

1 ,−ε(−)
2 )

]−1
. (5.33)
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These are 1-loop contribution to the hypermultiplet partition function at a minus fixed

point. For example, in the case of the squashed four-sphere studied in [29], the regulariza-

tion chosen for the minus point contribution is2 −+:

Z̃HM

ε
(−)
1 ,ε

(−)
2

(a′0, k−) ≡
[
ZHM

ε
(−)
1 ,ε

(−)
2

(a′0, k−)

]
−+

. (5.34)

Using the results of [1], we can write down the complete partition function for an equiv-

ariantly twisted N = 2 gauge theory coupled to matter with p (respectively (l − p)) plus

(minus) fixed points, giving formula (1.1).

5.3 Example: hypermultiplets on squashed S4

As an example, let us apply (1.1) to the specific case of hypermultiplets on a squashed

four-sphere S4
`,˜̀

studied in [29]. This manifold possesses a plus and a minus fixed point,

respectively dubbed north and south pole. In fact, S4
`,˜̀

is a four-dimensional ellipsoid

embedded in R5 according to

x2
1 + x2

2

`2
+
x2

3 + x2
4˜̀2 +

x2
5

r2
= 1 , (5.35)

where `, ˜̀ are the lengths of the ellipsoid axis, while r is its radius. If ` = ˜̀ = r, one

recovers the round four-sphere S4, whose isometry group is SO(5). For arbitrary `, ˜̀, the

group SO(5) is broken to SO(2)× SO(2), which is a real torus action rotating (x1, x2) and

(x3, x4). At the fixed points, the equivariant parameters ε
(i)
1 and ε

(i)
2 are related to the

lengths of the ellipsoid axis as follows:

N S

ε
(i)
1 `−1 `−1

ε
(i)
2

˜̀−1 −˜̀−1

Indeed, we can make contact with the previous subsection by setting z1 = x1 + ix2 and

z2 = x3 + ix4, so that at the north pole of S4
`,˜̀

the torus action becomes a complex torus

action U(1) × U(1) generated by a Killing vector (5.11) with ε
(+)
1 = `−1 and ε

(+)
2 = ˜̀−1.

On S4
`,˜̀

we have vanishing fluxes, then k+ = k− = 0, and for a hypermultiplet in the

representation R of the gauge group we find

ZHM
S4
`,˜̀

(a0)|north pole =
[
ZHM
`−1,˜̀−1(a0, 0)

]
++

=
∏
ρ∈R

Γ2(i ρ(a0) +
`−1 + ˜̀−1

2
|`−1, ˜̀−1) . (5.36)

Analogously, at the south pole we have a U(1)×U(1) generated by a Killing vector (5.26)

with ε
(−)
1 = `−1 and ε

(−)
2 = −˜̀−1. Consequently,

ZHM
S4
`,˜̀

(a0)|south pole =
[
ZHM
`−1,−˜̀−1(a0, 0)

]
−+

=
∏
ρ∈R

Γ2(i ρ(a0)− `−1 + ˜̀−1

2
| − `−1,−˜̀−1) .

(5.37)

2In the notation of [29], the regularization appears to be −−, while in ours is −+, as reported in the

main text.
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Combining the two contributions we obtain a Υ-function depending on the Coulomb branch

parameter a0 and on the lengths of the ellipsoid axis `, ˜̀:

ZHM
S4
`,˜̀

(a0) = ZHM
S4
`,˜̀

(a0)|north pole × ZHM
S4
`,˜̀

(a0)|south pole ,

=
∏
ρ∈R

Υβ

(
i
√
`˜̀ρ(a0) +

1

2
(β + β−1)

)−1

, β =

√
`/˜̀ , (5.38)

which matches [29]. We recall that the definition of the Υ-function is

Υβ(x) =
∏

m,n∈N

(
mβ + nβ−1 + x

) (
mβ + nβ−1 + β + β−1 − x

)
. (5.39)

5.4 Example: hypermultiplets on S2 × S2

As another example, we apply (1.1) to hypermultiplets defined on the product of two

spheres of radii ε−1
1 , ε−1

2 , which we denote by S2
ε1 × S2

ε2 . Gauge theories on manifolds

with such a topology were studied e.g. in [25], as well as in [37] by dimensional reduction

from five-dimensional toric Sasaki-Einstein manifolds. There are four fixed points on the

manifold S2
ε1 × S

2
ε2 , corresponding to the four combinations NN, NS, SN, SS of north (N)

and south (S) poles of the two spheres. Here, we consider NN and NS being plus fixed

points, while SN and SS being minus fixed points. At the fixed points, the local equivariant

parameters ε
(i)
1 and ε

(i)
2 are related to ε1 and ε2 as follows:

NN NS SN SS

ε
(i)
1 ε1 ε1 −ε1 −ε1

ε
(i)
2 ε2 −ε2 ε2 −ε2

Using a regularization consistent with [37], the hypermultiplet contribution at plus fixed

points is

ZHM
S2
ε1
×S2

ε2
(Φ0)|NN, NS =

[
ZHM
ε1,ε2(Φ0|NN)

]
++
×
[
ZHM
ε1,−ε2(Φ0|NS)

]
+− ,

=
∏
ρ∈R

Γ2(i ρ(Φ0|NN) + ε1+ε2
2 |ε1, ε2)

Γ2(i ρ(Φ0|SS) + ε1+ε2
2 |ε1, ε2)

, (5.40)

while the hypermultiplet contribution at minus fixed points reads

Z̃HM
S2
ε1
×S2

ε2
(Φ′0)|SN, SS =

[
ZHM
−ε1,ε2(Φ′0|SN)

]
++
×
[
ZHM
−ε1,−ε2(Φ′0|SS)

]
+− ,

=
∏
ρ∈R

Γ2(i ρ(Φ′0|SS) + −ε1+ε2
2 )| − ε1, ε2)

Γ2(i ρ(Φ′0|SN) + −ε1+ε2
2 | − ε1, ε2)

. (5.41)

In absence of fluxes, Φ0 = Φ′0 = a0 at any fixed point and the partition function trivializes:

ZHM
S2
ε1
×S2

ε2
(a0) = 1 . (5.42)
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A Notation and conventions

Here we collect the relevant formulas used in the main text and a summary of our conven-

tions. These are based on those of [61], adapted to Euclidean signature.

A.1 Flat Euclidean space and Dirac spinors

We define the Levi-Civita symbol as ε1234 = 1. The rotation group is SO(4) ∼ Spin(4) =

SU(2)+ × SU(2)−. Left-handed spinors are SU(2)+ doublets and are denoted by undotted

indices ζα. Right-handed spinors ζ̄α̇ are doublets under SU(2)− and carry a bar as well as

dotted indices. In Euclidean signature, SU(2)+ and SU(2)− are not related by complex con-

jugation, hence ζ and ζ̄ are independent spinors. We raise and lower dotted and undotted

indices by acting on the left with the tensors εαβ and εα̇β̇ , where ε12 = ε21 = ε1̇2̇ = ε2̇1̇ = +1.

For instance, ζα = εαβζβ and ζ̄α̇ = εα̇β̇ ζ̄β̇ . The SU(2)+ invariant inner product of ζ and η

is ζη = ζαηα. The SU(2)− invariant inner product of ζ̄ and η̄ is given by ζ̄ η̄ = ζ̄α̇η̄
α̇. We

introduce the sigma matrices

σµαα̇ = (~σ,−i1) , σ̄µα̇α = (−~σ,−i1) , (A.1)

where ~σ = (σ1, σ2, σ3) is a vector whose components are Pauli matrices. Four-dimensional

sigma matrices satisfy the reality conditions (σµ)† = −σ̄µ. Furthermore,

σµσ̄ν + σν σ̄µ = −2δµν , σ̄µσν + σ̄νσµ = −2δµν . (A.2)

We also define the matrices

σµν =
1

4
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

4
(σ̄µσν − σ̄νσµ) . (A.3)

The latter fulfill self-duality (or anti self-duality) properties:

1

2
εµνρλσ

ρλ = σµν ,
1

2
εµνρλσ̄

ρλ = −σ̄µν . (A.4)

We can use these matrices to separate the (2, 0) and (0, 2) components of a two-form ω as

follows:

ω+
αβ =

1

2
ωµνσ

µν
αβ , ω−

α̇β̇
=

1

2
ωµν σ̄

µν

α̇β̇
. (A.5)
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A Dirac spinor Ψ contains a left-handed Weyl spinor ψα and a right-handed one ψ̃α̇.

They are arranged as

Ψ =

(
ψα
ψ̃α̇

)
. (A.6)

Correspondingly, the adjoint spinor Ψ is

Ψ =
(
ψα ψ̃α̇

)
= (CΨ)T = −ΨTC , (A.7)

where T denotes transposition and C is the (skew-symmetric) charge-conjugation matrix

C =

(
εαβ 0

0 εα̇β̇

)
, C−1 =

(
εαβ 0

0 εα̇β̇

)
. (A.8)

In general, the adjoint Ψ of a spinor Ψ, is not related to the conjugate spinor Ψ∗. The

Spin(4)-invariant product between two Grassmann-odd Dirac spinors Ψ1,Ψ2 reads

Ψ1Ψ2 = −ΨT
1 CΨ2 = ψα1ψ2α + ψ̃1α̇ψ̃

α̇
2 . (A.9)

The Clifford algebra is generated by Dirac matrices γµ in chiral representation, namely

γµ =

(
0 σµ
σ̄µ 0

)
, {γµ, γν} = −2gµν , CγµC

−1 = −(γµ)T , (A.10)

where gµν is the spacetime metric. The chirality matrix γ5 and the Spin(4) generators

γµν are

γ5 = −γ1γ2γ3γ4 =

(
1 0

0 −1

)
, γµν =

1

4
(γµγν − γνγµ) =

(
σµν 0

0 σ̄µν

)
. (A.11)

In particular, Cγ5C
−1 = (γ5)T , while σµν and σ̄µν generate SU(2)+ and SU(2)− respec-

tively. The matrix γ5 is used to construct the standard chiral projectors

L =
1

2
(1 + γ5) , R =

1

2
(1− γ5) . (A.12)

Bilinears of Grassmann-odd spinors satisfy

Ψ1Ψ2 = Ψ2Ψ1 , Ψ1γµΨ2 = −Ψ2γµΨ1 , Ψ1γ5Ψ2 = Ψ2γ5Ψ1 . (A.13)

Bilinears of Grassmann-even spinors fulfill the same identities with an additional minus

sign on the right-hand side.

A.2 Differential geometry

Greek letters µ, ν, . . . are used to denote curved indices and Latin letters a, b, . . . to denote

frame indices. Let eaµ be the orthonormal vielbein corresponding to the metric gµν . We

denote the Levi-Civita connection by ∇µ. The corresponding spin connection is

ωµa
b = ebν∇µeaν . (A.14)
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The Riemann tensor is

Rµνa
b = ∂µωνa

b − ∂νωµab + ωνa
cωµc

b − ωµacωνcb . (A.15)

The Ricci tensor is Rµν = Rµρν
ρ, and R = Rµ

µ is the Ricci scalar. In these conventions a

round sphere has negative Ricci scalar.

The covariant derivative acts on spinors ζ and ζ̄ as

∇µζ = ∂µζ +
1

2
ωµabσ

abζ , ∇µζ̄ = ∂µζ̄ +
1

2
ωµabσ̄

abζ̄ . (A.16)

The Lie derivative of spinors along a Killing vector v is given by [62]

Lvζ = vµ∇µζ −
1

2
(∂µvν)σµνζ , Lv ζ̄ = vµ∇µζ̄ −

1

2
(∂µvν)σ̄µν ζ̄ . (A.17)

B Supergravity background solutions

In this appendix, we write down explicitly the supergravity background on which the

Killing spinor equations are solved by the Killing spinor constructed in section 3.1. This

is a summary of the results of [1].

The background supergravity fields are the metric gµν , a SU(2)R connection Vµ
i
j , a one

form Gµ, a two-form Wµν , a scalar N , a closed two-form Fµν , and a scalar Sij transforming

as an SU(2)R triplet. The Killing spinors do not determine the supergravity background

completely. In the formulas below, this freedom is parametrized by two one-forms. One is

Gµ and is arbitrary, the other is denoted bµ and satisfies ıvb = 0. The reality conditions

for the Killing spinors (2.1) are compatible with the following behavior of the background

supergravity fields under complex conjugation:

(Vµ
i
j)
∗ = Vµ

j
i , N∗ = N , G∗µ = −Gµ , W ∗µν = −Wµν , F∗µν = −Fµν , S∗ij = Sij .

(B.1)

We will make use of various spinor bilinears. Besides the SU(2)R singlets s, s̃ and v

defined in (2.5) and (2.6) and used extensively throughout the paper, we introduce

v(ij)
µ = ζiσµχ̄

j + ζjσµχ̄
i , Θ(ij)

µν = ζiσµνζ
j , Θ̃(ij)

µν = χ̄iσ̄µνχ̄j . (B.2)

We also define the combination

Θ̂ij
µν = 2

s+ s̃

s2 + s̃2

(
Θij
µν + Θ̃ij

µν

)
. (B.3)

The two-form Wµν and the SU(2)R connection (Vµ)ij are given by:

Wµν =
i

s+ s̃
(∂µvν − ∂νvµ)− 2i

(s+ s̃)2
εµνρ

λvρ∂λ(s− s̃)− 4

s+ s̃
εµνρ

λvρGλ

+
s− s̃

(s+ s̃)2
εµνρ

λvρbλ +
1

s+ s̃
(vµbν − vνbµ) , (B.4)

(Vµ)ij =
4

s+ s̃

(
ζ(i∇µζj) + χ̄(i∇µχ̄j)

)
+

4

s+ s̃

(
2iGν −

∂ν(s− s̃)
(s+ s̃)

)
(Θij − Θ̃ij)

ν
µ

+
4i

(s+ s̃)2
bν(s̃Θij + s Θ̃ij)

ν
µ . (B.5)
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The graviphoton field strength Fµν is:

Fµν = i∂µ

(
s+ s̃−K

ss̃
vν

)
− i∂ν

(
s+ s̃−K

ss̃
vµ

)
. (B.6)

Here K is the constant defined in section 3 and such that (s+ s̃−K)/(s2s̃2) is smooth at

the fixed points of v. The scalars Sij are:

Sij = 4i
s2 + s̃2

(s+ s̃)3
Θ̂µν
ij ∂µvν − 2i

s+ s̃−K
(s s̃)2

(s̃Θij + s Θ̃ij)
µν∂µvν

+
2

s+ s̃

(
4Gµ −

s− s̃
s+ s̃

bµ −
i

2

s− s̃
ss̃

∂µ(s+ s̃)

)
vµij . (B.7)

Finally, the combination R/6−N (where R is the Ricci scalar) is given by:(
R

6
−N

)
=

s− s̃
(s+ s̃)2

�(s− s̃) +
∂[µvν]∂

[µvν]

(s+ s̃)2
− 1

2

s− s̃
(s+ s̃)3

εµνρλ(∂µvν)(∂ρvλ)

− 4εµνρλ

(s+ s̃)3
vµ(∂νvρ)∂λ(s− s̃) +

2ss̃

(s+ s̃)4
∂µ(s− s̃)∂µ(s− s̃)

− 2
s− s̃

(s+ s̃)3
∂µ(s− s̃)∂µ(s+ s̃)− 2iss̃

(s+ s̃)2
∇µbµ +

2(ss̃)2

(s+ s̃)4
bµb

µ

− i s− s̃
(s+ s̃)3

εµνρλ(∂µvν)vρbλ + 3i
s− s̃

(s+ s̃)3
bµ(s̃∂µs− s∂µs̃)

+ 2i
s2 + s̃2

(s+ s̃)4
bµ∂µ(ss̃)− 2i

s− s̃
s+ s̃

∇µGµ + 4
s2 + s̃2

(s+ s̃)2
GµGµ +

8(vµGµ)2

(s+ s̃)2

+ 4ss̃
s− s̃

(s+ s̃)3
Gµb

µ +
4iεµνρλ

(s+ s̃)2
(∂µvν)vρGλ + 4i

s− s̃
(s+ s̃)3

Gµ∂µ(ss̃) . (B.8)

C Cohomological variables for vector multiplet

The component fields in the N = 2 vector multiplet are the complex scalar X, a gauge

field Aµ, two gauginos λiα and λ̃iα̇ and an auxiliary scalar field Dij . These can be recast in

the following twisted fields (see [1]):

η = ζiλ
i + χ̄iλ̄i ,

ϕ = − i(X − X̄) ,

Ψµ = ζiσµλ̄
i + χ̄iσ̄µλi ,

φ = s̃X + sX̄ ,

χµν = 2
s+ s̃

s2 + s̃2

[
χ̄iσ̄µν λ̄i − ζiσµνλi +

1

s+ s̃
(vµΨν − vνΨµ)

]
, (C.1)

Hµν = (P+)ρλµν

[
Θ̂ij
ρλDij − Fρλ + i

X + X̄

s+ s̃
(∂ρvλ − ∂λvρ)+

− 2i

s+ s̃
ερλγ

δvγ
((

Dδ − 2iGδ − i
s̃

s+ s̃
bδ

)
X −

(
Dδ + 2iGδ − i

s

s+ s̃
bδ

)
X̄

)]
.

Here we used Θ̂ij
ρλ defined in (B.3) and the projector P+ defined in (4.1).
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All the fields (C.1) are differential forms in the adjoint of the gauge group. They are

all singlets under the SU(2)R symmetry. It follows from the definitions above that the

two-forms χµν and Hµν are in the image of the projector P+ .

The change of variables (C.1) has a smooth inverse,

X =
1

s+ s̃
(φ+ i s ϕ) , X̄ =

1

s+ s̃
(φ− i s̃ ϕ) ,

λ̄i =
1

s+ s̃

[
s2 + s̃2

s+ s̃
χ̄j Θ̂µν

ij χµν + σ̄µζiΨµ + χ̄iη

]
,

λi =
1

s+ s̃

[
s2 + s̃2

s+ s̃
ζj Θ̂µν

ij χµν − σ
µχ̄iΨµ − ζiη

]
,

Dij = 4
s2 + s̃2

(s+ s̃)2
Θ̂µν
ij (Hµν − . . .) ,

(C.2)

where in the last formula the ellipsis stand for terms in Hµν that are not proportional to

Dij (see (C.1)).
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[5] D. Anselmi and P. Fré, Topological twist in four-dimensions, R duality and hyperinstantons,

Nucl. Phys. B 404 (1993) 288 [hep-th/9211121] [INSPIRE].
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