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Donaldson-Witten theory and Pestun’s theory on S* as two particular cases. This is
achieved by expressing fields in cohomological variables, whose features are dictated by su-
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for spinors. Finally, we implement localization techniques to compute the exact partition
function of the cohomological theories we built up and write the explicit result for manifolds
with diverse topologies.
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1 Introduction and summary

The analysis of N’ = 2 gauge theories has led to numerous advances in our understanding

of the dynamics of quantum field theories at strong coupling. Moreover, it has proven to be

a fruitful arena to develop interesting connections between physics and mathematics. Two

broad classes of developments in the study of N” = 2 gauge theories, namely the equivariant



topological twisting and Pestun’s supersymmetric localization on the four-sphere, were
unified in a single framework in [1]. That analysis only applied to N' = 2 super Yang-Mills
theories; hence, here we consider its extension to theories that include both vector and
hypermultiplets.

The first class of developments mentioned above, revolves around the topological twist-
ing of N' = 2 gauge theories. Witten showed in [2] that a certain twisting of NV = 2 super
Yang-Mills theory results in a four dimensional topological field theory whose correlators
are the Donaldson invariants [3]. This work was later generalized by [4-12], who constructed
twisted versions of N’ = 2 gauge theories with vector and hypermultiplets. In particular,
for the purposes of our work, we are interested in the equivariant version of the topological
theory of Witten, which can be defined on manifolds admitting a torus T2 action, and
was studied in [13-16]. When specifying to the omega background, its partition function
was calculated in the seminal work of Nekrasov [17, 18]. For more general non-compact
toric manifolds M, the partition function is a product of Nekrasov partition functions for
each of the fixed points of the torus action on M [19], see also [20-22]. The extension of
this analysis to compact toric manifolds has been considered both recently [23, 24] and in
earlier works [25-27].

The second class of developments is related to [28], where Pestun placed an N' = 2
gauge theory on a round four-sphere preserving all eight supercharges. He was able to
show that the partition function of this theory and certain supersymmetric Wilson loop
observables, can be computed exactly using localization techniques. His work was later
generalized to squashed four-spheres in [29, 30]. These advances led to the realization that
localization techniques are a powerful tool to derive exact results in supersymmetric field
theories in different dimensions (for a summary of these developments see for instance the
review [31]).

The localization result for the partition function of Pestun’s theory on the four-sphere
is fairly simple. It consists of an integral over a real parameter of the product of two factors,
each of which can be associated by equivariant localization to one of the poles of the sphere.
These are the fixed points of a U(1) action generated by squaring the supercharge used for
localization. One factor includes a Nekrasov partition function for instantons, the other a
partition function for anti-instantons. Hence, the final result is structurally similar to the
form of the partition functions stemming from equivariant topological twisting, which only
involve Nekrasov partition functions for instantons. This relation was explained in [1] via
the construction of a general class of N/ = 2 supersymmetric Yang-Mills theories, on any
four-manifold that possesses a Killing vector field with isolated fixed points. Following [1],
we call plus fized points those where instantons contribute to the partition function, while
we call minus fized points those where anti-instantons contribute. Thus, Pestun’s theory
on the four-sphere and the equivariant topological twist are both examples of this general
construction. All the theories considered in [1] can be written in terms of cohomological
(twisted) fields which helps elucidating what data, of geometrical or other origin, their
supersymmetric observables can depend on. These results were formulated in a more
rigorous mathematical framework in [32].



Summary of results. In the present work we extend the results of [1, 32] to theo-
ries involving hypermultiplets. The inclusion of hypermultiplets generically requires the
manifold to admit a spin structure. Nevertheless, this substantially enlarges the set of
supersymmetric field theories which can be analyzed using localization techniques. We
reformulate the theories we construct in terms of cohomological (twisted) fields. A gener-
alization of the notion of self-duality for two-forms was found necessary in [1] to define the
cohomological SYM theory. Similarly here we find that a generalization of a Weyl spinor is
necessary to define cohomological variables for the hypermultiplets. The use of such spinors
is forced upon us by supersymmetry, thus establishing an interesting relation between su-
persymmetry and the geometry of the manifolds where our theories live. Furthermore,
we employ localization techniques to compute the partition function of the cohomological
theories we constructed. Computations of path integrals via a purely cohomological formu-
lation of supersymmetry appeared for theories defined on specific manifolds in 3d [33-35],
4d [25, 32, 36-39], 5d [40-44], and 7d [45-47]. We refer to [31] and to references therein for
an exhaustive bibliography. In this paper we aim to present a general formula for the par-
tition function of N' = 2 gauge theories with matter on any simply connected Riemannian
spin manifold admitting an isometry with isolated fixed points as well as non-trivial fluxes.
Technically, the computation of the relevant one-loop contributions descends from the in-
dex of a transversally elliptic differential operator of Dirac-type. Combining the result of
this paper with those of [1], we find

N=2, _ S. VM .\ 7HM )
22D = Y / dage™* [T 235" o (a0, ki, ) 235 g (a0, k) 23 g (a0, ki)
k; discrete 1=1
% H Zantl-mst ao’ k. ’q)Ze\@/feé” (Go, k; )Z ( (QO; k; ) , (1.1)
i=p+1

where the formula above holds for a manifold with p plus points and (I — p) minus fixed
points. In (1.1), Zmst ZVM and ZHM respectively are the instantons contribution, the
vector multiplet 1-loop determinant and the hypermultiplet 1-loop determinant at a plus
fixed point. Analogously, Zanti=inst  ZVM anq ZHM pegpectively are the anti-instantons
contribution, the vector multiplet 1-loop determinant and the hypermultiplet 1-loop deter-
minant at a minus fixed point. The integral is taken over the Cartan gauge subalgebra h,
while @, ¢ are counting parameters labeling (anti-)instantons. The constants 651)2 are real

equivariant parameters. The 1-loop contributions Z}&/{ 4 (a0, k1) and ZI%}\)/I @ (a0, ki) are
€€y € ,€

Barnes double gamma functions [48]. With a specific choice of regularization (other choices
are considered in section 5) we get for instance:

21 (a0 k) = ] Talin(®o) + (67 + &™)/2)l . 67) | (1.2)
PER

where we have a product over hypermultiplet representations R, while the fugacity ®q at
a plus point is a combination of the Coulomb branch parameter ag and the function k.
encoding the flux contribution:

By = ao + ki ({7, e5P) . (1.3)



As we spell out in the main text, the expression for Z}(H,V{ () (ao, k) and for ®f valid at
61 ,62

a minus fixed point are analogous. Hypermultiplet masses enter the partition function as
a constant shift of ag. At the level of the Lagrangian, a massless hypermultiplet is made
massive by weakly gauging a U(1) flavour symmetry, where the mass coincides with the
real part of a scalar from a background vector multiplet. It is important to stress that the
integral in (1.1) is a formal expression. To concretely evaluate it several additional data
need to be provided. Firstly, an integration contour has to be specified. One also needs
to determine the precise form of the sum over flux sectors and the corresponding shifts
in (1.3). These issues are interdependent and highly nontrivial. We do not investigate
them in this work (for specific examples in the context of the equivariant topological twist
on compact toric manifolds see [23, 24]).

Outline of the paper. In section 2, we review how to place an AN/ = 2 field theory on
Euclidean four-manifolds preserving some supersymmetry. This can be accomplished by
coupling the theory to a supersymmetric rigid supergravity background, whose properties
we review. In particular, we show that the usual hypermultiplet action, quadratic in
derivatives, when coupled to rigid supergravity, is d-exact up to total derivatives.

In section 3, we consider a Riemannian spin four-manifold M that admits a Killing
vector field with isolated fixed points. We review the arguments in [1] showing that M
admits globally well defined Killing spinors that depend on a choice of a plus/minus label
for each fixed point. In order to deal with off-shell hypermultiplets, we also need to show
the existence of auxiliary Killing spinors satisfying certain properties. We prove that a
smooth, globally well-defined choice for these auxiliary Killing spinors exists.

In section 4, we move to reformulate the gauged hypermultiplet in terms of coho-
mological fields. For this we first define novel splits of the Dirac spinor bundle into two
subbundles. These splits require the existence of a vector field with isolated fixed points
and depend on the choice of + at each fixed point. We also study the relation between
these spinor bundles and the “flipping” sub-bundles of the bundle of two-forms studied
in [1]. The appropriate cohomological fields for the hypermultiplet are elements of the
novel spinor bundles we introduced. We explicitly prove that there is a smooth invertible
map between cohomological variables and the usual hypermultiplet component fields. We
also show how supersymmetry organizes the cohomological fields in different multiplets.
Finally we rewrite the action for a gauged hypermultiplet in terms of the cohomological
fields. In the reformulation of the theory in terms of cohomological variables, there is an
important difference with [1], where only vector multiplets were considered. In the case of
the hypermultiplet the twisted fields are spinors so that generically the four-manifold has
to be spin. This is however too restrictive. For instance, depending on the flavor symmetry
of the theory, it may be enough for the manifold to be spin®.

Finally in section 5, having constructed the cohomological theory, we use it to set up
the localization computation of the partition function. As an application, we apply our
formula to the specific case of the squashed four-sphere. We find perfect agreement with
the localization result for N/ = 2 matter multiplets found in [29].



Outlook. A compelling direction to be explored in a future work would be applying the
technology developed in this paper to study the consequences of S-duality invariance of
N = 4 super Yang-Mills theory. Indeed, it should be possible to generalize the analysis
of [49], valid for pure topological twisting, to the case of equivariant topological twisting
by rearranging the twisted fields of vector and hypermultiplets in different cohomological
complexes.

Another intriguing line of investigation would be deriving the cohomological complex
for N/ = 4 theories in three dimensions. Although this can simply be achieved by means
of dimensional reduction, the outcome would be non-trivial as several fields of the three-
dimensional cohomological complex would become charged under an SU(2) (Coulomb)
R-symmetry. This would open up the possibility of more elaborate topological twisting, as
well as of exploring three-dimensional mirror symmetry from a cohomological viewpoint.

2 N = 2 theories on four-manifolds

In this section we review the construction of rigid N' = 2 supersymmetric fields theories on
a curved four-manifold by coupling to background supergravity. Assuming the existence
of appropriate Killing spinors, we write down the supersymmetry variations for fields in
vector multiplets and hypermultiplets. We also present a d-exact Lagrangian for a gauged
hypermultiplet.

2.1 Review of N = 2 rigid supergravity

In order to couple a supersymmetric field theory defined in flat space to off-shell supergrav-
ity, we have to set the fermionic fields in the supergravity multiplet to zero and freeze the
bosonic supergravity fields to fixed values. If this background is invariant under some su-
pergravity variation, the resulting theory is supersymmetric [50]. Here we consider N = 2
theories with a conserved SU(2) R-current. Their supercurrent multiplet was studied by
Sohnius [51] and the A/ = 2 Poincaré supergravity to which they couple is described
in [52-55]. Rigid N/ = 2 supergravity backgrounds and the conditions they have to satisfy
to preserve supersymmetry have been considered in [30, 56, 57].
In order to specify the supergravity background we need the following data:

e A Riemannian manifold M equipped with a metric g and a spin structure.’

e An SU(2)g connection Vuij. (Here and in the following 4, j ... are SU(2)g indices.)

e Various other auxiliary fields: a one-form G, a two-form W,,,, a scalar N, a closed
two-form F),,, and a scalar S;; transforming as an SU(2)p triplet.

The supergravity variations are parametrized by a left-handed spinor ¢! and a right-handed
spinor )2?‘, both transforming in the fundamental representation of the SU(2) p R-symmetry.
Here i is the SU(2) g index and «, & are spinor indices. For a brief review of the conventions

'We are going to comment on non-spin manifolds in section 4.2.2.



we use, see appendix A . Unless otherwise noted, we take these spinors to obey symplectic-
Majorana reality conditions:

Ga)* =" () =x4 - (2.1)

Requiring the background to be invariant under the supergravity variation parametrized

by ¢!, and Y€, one obtains two sets of Killing spinor equations. The first set is

i

2
. I P A

(D, +1iGu)X" + §WM)0PC1 - 5‘7#772 =0,

(D — iG)Gi — =W oy —

2 wp O—}Lﬁi = 07

(2.2)

where D,, is a covariant derivative that incorporates the SU(2)g connection V,%;. The
second set is

1 j - i ~ — i i - i
(N— 6R>)‘<Z = 4i0,G,a""'x +1(V“+21G“)Wwa ¢ +ZU“(DH+ZGM)77 ,

(2.3)
1
(N — 6R> i = —4i0, G, ¢ — i(VH = 2iG" )W 10" X; + io" (D — iG )i
where R is the Ricci scalar and the spinors 7' and 7’ are defined as:
ni = (F" = WG —2G0"x; — Sy,
( ) ! j (2.4)

N =—(F —W7)X'+2G,e"¢" — S7x; .

Here we use the notation W+ = IW,,0"” and W~ = W, 6" (similarly for F).
The spinors ¢* and ¥; can be used to construct various bilinears. Restricting our
attention to singlets of the SU(2) R-symmetry, we have the scalars

s =20, §=2¢"v, (2.5)

and the vector field
! = 2% GH G (2.6)

The reality conditions (2.1) imply that v#, s and § are real and that s and § are
nowhere negative. The vector v and the scalars s, § satisfy ||v||> = s, hence they are not
independent. Using the Killing spinor equations we can show that v* is a Killing vector
and that s, § are constant along the orbits of v. We assume that both /s and /3 are

smooth in a neighborhood of the fixed points.

2.2 Supersymmetric multiplets

Here we assume that the Killing spinor equations introduced in the previous subsection are
satisfied in some supergravity background. We present the structure of the supersymmetry
variations for vector multiplets and hypermultiplets coupled to this background.



2.2.1 Vector multiplet

The N' = 2 vector multiplet contains a complex scalar field X, a gauge field A,, two
gauginos \;, and 5\2 that transform in the fundamental of SU(2)g and an auxiliary scalar
field D;; transforming as a triplet of SU(2)g. All these fields (except A,) transform in the
adjoint representation of the gauge group. The supersymmetry variations are given by:

X = X"\, 6X = =GN,

§A, = iGio N i TN,

6Dy; = iGio" (Dy+iGu)Nj — ix:o" (D — iGu) Aj + 2i[X, xidj] + 2i[X, G ] + (i < J),
SN = —2i(D,, — 2iG ) X" x;+ 2(FT = X W) ¢ + Dy¢? + 2i[X, X]G — 2Xn;
SN = 2i(Dy, + 2iG,) X ¢ +2(F~ - X W)X' — Dy, — 2i[X, X|X' + 2X77" . (2.7)

We used the shorthand notation '+ = % wot” and F'~ = %F ot where F),, is the field
strength for the gauge field A,,.

The square supersymmetry variation of a field ¥ in the vector multiplet results in a
translation along the vector field v defined in (2.6), together with a gauge transformation

and an SU(2)pr transformation
80 =il + iv'V, 0 U + iAo T — 4[®, 0] . (2.8)

Here L, is the Lie derivative along v, and o denotes that ¥ is acted upon according to
which SU(2)g representation it belongs. The gauge transformation parameter is

® =iv'A, +sX + 35X, (2.9)
and AU is a SU(2) g transformation parameter given by:
R R . . _ . .
A(Z-j) = xi0" (D, —iG L) — G (D, +1iG L) x5 + (1 < ) . (2.10)

2.2.2 Hypermultiplet

For the following we will embed the gauge group in Sp(k) and consider a hypermultiplet
in the fundamental of this Sp(k). The hypermultiplet contains a scalar g,; (where the
index n transforms under Sp(k) and runs over n = 1,..., 2k, while the index i transforms
under the fundamental of SU(2)z), and a pair of spinors 94, and ¥s,. Additionally there
are auxiliary fields Fj,; that are necessary for the off-shell closure of the supersymmetry
algebra. The F),; transform in the fundamental of an SU(2) ; symmetry that is generically
distinct from the SU(2) R-symmetry.

We take the Grassmann-even fields in the hypermultiplet to satisfy the following reality
conditions:

(@) =4,  (Fu)"=F". (2.11)



The supersymmetry variations of the hypermultiplet components are:
8Gni = Cithn + Xithn ,
5 = 2i(Dpqni) 0" Xi + ignio™ (Dy + iGp) Xi + 4iX0 " qmiC" + 21 Fpi’
5" = 2i(D,qg™)G" ¢ + igMe* (D) — iGy) G + 4iX " g™ X + 20F™M s (2.12)
§Fp; = G [0 (D — iGu) U — 2X3 ™ + 2(N )™ gy — iW ey ]
+ X3 [6" (D + G ) n + 2X0 ™ Y — 2(V)0 " g + iW "]

where X, = X%t*,™ (and similarly for other vector multiplet components) and the
derivative D, is covariant with respect both to the gauge symmetry and the R-symmetry.
Finally, we introduced the checked spinors {; and ¥;, which need to satisfy the constraints:

Gé—xix; =0, GC = X'
o S (2.13)
X'o'G+x'ol¢G =0, XiX' = ("G s

for the off-shell closure of the supersymmetry algebra. Unless otherwise noted, we assume
that ¢; and ¥; satisfy symplectic-Majorana reality conditions:

)=, =X - (2.14)

Except when acting on the auxiliary fields F),;, the square supersymmetry variation of
a field ¥ of the hypermultiplet, is given by:

820 = iL, U + 'V, 0 U + iAo U 4 Gy o T . (2.15)

This includes a translation along v* = 2y'6/(;, an SU(2)r transformation and a gauge
transformation. The gauge transformation parameter ® and the SU(2)p transformation
parameter AU®) are as in (2.9) and (2.10). The squared supersymmetry variation of the
auxiliary fields similarly includes SU(2)j transformations:

820 = iL,T + iv"V, 0 U + iARo U 4+ Gg o U | (2.16)

Here V), is a background connection for SU(2) 5 and the SU(2) 5 transformation parameter
AP is given by:

Agz) = 2&0“ <DH — ZG“> )?j + 2265W+€j
_2%,5" (DM + iGu> G+ 2+ (14 )) - (2.17)

The derivative Du is covariant with respect to the background SU(2)j; connection Vu .
Note that in (2.16), the connection V,, cancels between the terms iv*V,, o ¥ and iAlDo ¥ .



2.3 Hypermultiplet Lagrangian

Having completed the coupling to rigid supergravity, we can write a supersymmetric La-
grangian £ = Lp + L for the hypermultiplet:

1 . i 3 1
Lp= +§<Duqm)(Duqm) - iqni(DU)nMQmj + iFani

R N ni ni f v m,
—<12+4>q ni + ¢ {X, X" i (2.18a)
i v e m R
Lp= _§¢n0u (Du _ZGu) P + 51/1 Xn " m + §¢ X",
R YN ANEL M YT\ M 1 n URAT VaN
— " (N )0 mi = " (N )" Gms = 5 (V"W b + "W ) (2.18b)

It turns out that (up to total derivatives) this Lagrangian is itself the supersymmetry
variation of some Grassmann-odd Vi:

L=Lg+ Lr =0V, (2.19)
where Vi is given by the following expression:
1 . . i n . . AT n
Vo = m [2Z(Du +1G ) (qniC") ot Y™ — 2i(Dy, — 1G L) (qnix") oty

+ QZFm(iiqzn _ Cvi,(?bn) _ 4iQmi(an _i@Z_Jn + angzwn)

. _ . 2 . . _
_ 2qm,(>—(zw—wn + CZW+¢7L) _ p—e gUVIHVQni(XZ&M¢n _ Cza,uwn)
— 4iqm [()\Z)nm@ + (j\z)nm)zj] qmj:| . (2.20)

The expression for Vi in (2.20) is in agreement with and generalizes a similar one found
in [29], to which it reduces if we assume that s 4 5 is a constant (in that case F,, = 0).

3 Construction of Killing spinors

In the last section we have considered gauged hypermultiplets coupled to a rigid N = 2
supergravity background. We assumed that this background preserves supersymmetry, i.e.
that there are nonzero solutions to the Killing spinor equations (2.2) and (2.3). A general
class of backgrounds allowing solutions to these equations was studied in [1]. Here we will
briefly review their main properties.

Consider a Euclidean orientable four-manifold M with metric g and a spin structure.
It was shown in [1] that the Killing equations can be satisfied by spinors ¢? and y; that are
both non-vanishing provided that the metric admits a Killing vector v whose fixed points
are isolated. In addition to v, the supergravity background is specified by a choice of a
real, nowhere-negative scalar s on M that is constant along orbits of v. Moreover s has to
approach a positive constant K at a subset of the fixed points of v and needs to go to zero
as ||[v[|?/K at the remaining fixed points. At these fixed points of v, the scalar § = ||v||?/s
approaches K. Hence, the fixed points of v are separated into a set where s = 0 with s = K
and a second set where s = 0 and 5 = K. The fixed points satisfying s = 0 are plus fixed
points, whereas those satisfying s = 0 are minus fixed points. This is consistent with [1].



3.1 Killing spinors
In this subsection, we employ the Killing vector v and the scalar s to construct spinors ¢/,
and Y%, that satisfy the reality conditions ((;n)* = ¢*® and (¥¥)* = ¥ and such that

, 1
, X' ol = 5v“ . (3.1)

NNV

("G = g . XN =

We cover the manifold with charts U, such that every fixed point of v belongs to

a single distinct chart and we make a choice of vielbein e%; in each chart. We can also

assume that there are no overlaps between charts containing different fixed points of v. We
consider the spinors ¢’ and y; given by the following expressions in every chart:

i_\/gi
Ca_ 26(17

These spinors satisfy the reality conditions and the constraints (3.1).

1
Xi = EU“UNQ . (3.2)

In going from chart to chart, ¢ transforms under SU(2); xz, SU(2)g. For the form
of ¢ above to be valid in each chart, we have to undo the SU(2); transformation by an
appropriate SU(2) g transformation. The expression for x will then also be valid in each
chart because it is directly related to (.

Unfortunately (3.2) is singular in the charts containing a fixed point of v where s = 0.
To fix this problem, in going from a chart where s # 0 everywhere to a chart where there
is a fixed point of v with s = 0, we can act with a further SU(2) g transformation:

v

As a consequence, in charts containing a fixed point where s = 0, the spinors are:

V&
2
This specifies regular spinors ¢ and y on M that satisfy the reality conditions and for

1

XS =i, = —3VouXi - (3.4)

which the relations (3.1) are satisfied. Moreover there is a choice of smooth background
supergravity fields for which the spinors ¢ and y, that we just constructed, satisfy the
Killing spinor equations (2.2)(2.3) (see [1]). The resulting expressions for the background
fields are presented in appendix B.

3.2 Auxiliary Killing spinors

An additional element we need to consider is the construction of smooth auxiliary spinors Cvfx
and Y¢, since they are used for the off-shell extension of the supersymmetry transformations
for the N' = 2 hypermultiplet. These spinors satisfy the reality conditions:

E) =G, K =xXa, (3.5)

as well as the following constraints:

IN¢
&
Il

DO | wn

Gé—Xix; =0, i
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These spinors transform under SU(2); Xz, SU(2) 3 and SU(2), x7z, SU(2) ;; respectively. The
SU(2)  bundle is not generally identified with the SU(2) g bundle. The constraints in (3.6)
determine ¢ and ¥ uniquely up to local SU(2) p transformations.

The construction of these spinors parallels that of ¢ and x. On patches Uy that do not
contain fixed points where s = 0, we define the spinors as follows:

=L = (o), (5.)

It can be checked using the expressions for ¢* and y; in (3.2), that these satisfy the con-
straints (3.6). In this case in going from patch to patch, we have to undo SU(2), transfor-
mations by appropriate SU(2) 5 transformations.

On a patch U; that includes a fixed point of v with s = 0, we take instead:

w o VG P SNt
Ca = 276017 Xi = gvﬂ (chi) ’ (38)

which also satisfy the constraints (3.6) with ¢* and y; in (3.4). As before, when transitioning
to one of these patches, there is an extra SU(2) 5 transformation given by:

—H(a#)ﬁ . (3.9)

Hence, we have found smooth solutions to the constraints (3.6). There is a different con-
struction of solutions to these constraints that is often used in the literature. This is

a=fioa,  wonflaw .10
S S

In this case SU(2) ; is identified with SU(2) g; however the resulting spinors are singular at

given by:

the fixed points of v.

4 Twisted supersymmetry

In this section we rewrite the component fields for the vector multiplet and hypermultiplet
in terms of twisted variables. The case of the vector multiplet was considered in [1]. The
construction of these twisted variables is intimately connected with the geometry of M. In
particular, for the vector multiplet it relies on a novel decomposition of the bundle of two-
forms on M which we review. For the hypermultiplet we will introduce a corresponding
decomposition of spinors on M.

4.1 Flipping projectors

Consider the bundle of two-forms A%2(M). On an orientable Euclidean manifold with metric
g, we can split A?2(M) in two orthogonal sub-bundles, consisting of self-dual and anti self-
dual two-forms. Self-dual two-forms play an essential role in Donaldson-Witten theory and
its equivariant extension [2, 13]. As shown in [1], on a manifold equipped with a vector
field v with isolated fixed points, one can introduce a different splitting of the bundle of
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two-forms. This splitting arises naturally in the study of the N’ = 2 theories on M we
presented in section 2.

Let v be a real vector field on M (with isolated fixed points) and for what follows we
will take it to be the Killing vector. The s and § , which are the spinor bilinears in (2.5),
determine the + fixed points. We can define projectors Py on the bundle of two-forms
as follows:

1

Pi=—
T2+ )

((s+ 3L+ (s* — ) *—4r A ) | P =1-P, (4.1)
where we use 1 to indicate the identity operator throughout the paper. Here, k = g(v)
is the one-form dual to the Killing vector v. The objects P+ are well defined projectors
as they satisfy (Py)? = Py, P,P_ =0 and P, + P_ = 1. Especially, Py induces a split
of the bundle of two-forms into two orthogonal subbundles. The image of P, consists of
two-forms that are self dual at the fixed points of v where 5 = 0, and anti-self dual at those
fixed points where s = 0. We refer to Py as a flipping projector.

Projectors Z4, Z4 analogous to Pi can be defined for spinors on M. Consider a
Dirac spinor ¥ on M (see appendix A for a summary of our conventions). Its left-handed
and right-handed components are v, and 1%. Given two such spinors ¥y o we can define
the SO(4) invariant product WoW; = w91/ + oth;. The projectors L = %(]l + v5) and
R = %(]1 — 75) on the left- and right-handed components of ¥ are compatible with the
product of two spinors, that is:

ULy = LU, Uy,  UyRU; = RU, Uy . (4.2)

If a vector field v with isolated fixed points related to s and 5 exists on M, we can define
a new projector acting on Dirac spinors

1 s— 3§ 2
Z. . =-(1 — p . 4.3
+ 2( o T Y %w) (4.3)

We have Z_% = Z, and Uy Z, ¥y = Z, W, ¥y, the projector Z, is then compatible with the
inner product. Starting from Z, we can find more projectors

Z_=1-— Z+ s Z+ = ’)/5Z_|_’)’5, Z_ =1- Z+ . (44)

The image of Z, (or Z+) comprises spinors that are left-handed at the plus fixed points
of v and right-handed at the minus fixed points. There is a direct relation between the
Killing spinors (; and ¥; and the projectors we introduced. Indeed we can construct a

4 = <§> 7 (4.5)
Xi

which satisfies Z;3; = 3; as a consequence of (3.2) or (3.4). This is a first indication of the

Dirac spinor 3;

strict relation between supersymmetry and the flipping bundles constructed here. Similarly
we construct a Dirac spinor j; out of the auxiliary spinors ¢;, x;:

5 = (C) , (4.6)
Xi
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which, using (3.7), is seen to satisfy Z_ 31 = §i- Let Wy o be spinors such that Z{ ¥y o = ¥y 5.
We can construct the two-form

wur = VoY V1 = o011 + Y2b i1 (4.7)

which satisfies Pyw = w with Py defined above in (4.1). This establishes a relation between
the bundle of two-forms in the image of Py and the spinor bundle in the image of Z; . In
the same way, starting from two spinors such that Z_\I/Lg = Wy 5 the two-form \Tlgfyw\lfl
is in the image of P_ = 1 — P, (similar relations can be found using Z_ or Z+).

4.2 Cohomological fields

Here we briefly review the rewriting of the vector multiplet in terms of cohomological (or
twisted) fields introduced in [1]. We then proceed to constructing the appropriate twisted
fields for the case of the hypermultiplet.

4.2.1 Vector multiplet

The vector multiplet comprises a complex scalar X, the gauge field A, an auxiliary scalar
D;; and gauginos A;, Ai. There is an invertible map between these component fields and
cohomological (twisted) fields. We present the details of the map in appendix C. The
twisted fields arrange themselves into various multiplets. There is one long multiplet made
of the gauge field A, a scalar ¢, and a Grassmann one-form ¥ both in the adjoint of the
gauge group. Supersymmetry acts on these fields as follows:

8¢ = 1,0, 6V =1, F +idad, O0A=iV . (4.8)

Here F' is the field strength of A and ¢, denotes contraction with the vector field v.

The rest of the twisted fields arrange in two short multiplets. One is formed by a
scalar ¢ and a Grassmann scalar n and the second is formed by a Grassmann two-form y
satisfying Py x = x and a second two-form H also satisfying Py H = H. All these fields
are in the adjoint of the gauge group. Supersymmetry acts as follows:

dp =in, on = tdap — (¢, ],
(4.9)
Sx=H, OH =iLllx —il¢,x] -

By construction, the twisted fields above do not transform under SU(2)r. The forms
x and H are well defined only on orientable manifolds, while the latter does not need to
be spin as the vector multiplet cohomological complex does not contain spinors.

With canonical reality conditions on the scalars X* = X, the field ¢ is real. On the
other hand, the reality properties of ¢ involve a non-trivial shift depending on (s, 3, ¢):

P =9¢+i(s—3)p. (4.10)

4.2.2 Hypermultiplet

The hypermultiplet cohomological fields are fermions ¢, b, ¢, h transforming in the funda-
mental of Sp(k). The fields q and h are Grassmann-even, while b and ¢ are Grassmann-odd.
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Moreover q and ¢ are in the image of the projector Z defined in (4.3), while b and b are
in the image of Z_ defined in (4.4):

Z.q=q, Zic=c¢, Z.b=b, Z.h=§. (4.11)

The fields q and ¢ are related to the component fields of section 2.3 by the follow-
ing map:

A ig 5 1 —vlop
qTL = 3an7,' = glqnl and cn = _S + SZ+ %TL _ — f’llz_)n v ?—Hd)n 5 (412)
X Ani 4 Un 4\ 8¢, + ’U“O‘lﬂﬁn
where we show explicitly their left- and right-handed components. The index n transforms

in the fundamental of Sp(k).
There are two remaining cohomological fields. The first b,, is given by:

s+ s g Yo 1 §¢n+v“alﬂﬁn
bn = 4 2= (qpn> 4 <—s¢n —i—v#aMz/Jn) ' (4.13)

The last field § is related to the variation of b under supersymmetry h = —i db:

s+ 8, s+s

n — Fr; Z—
=2

V(Dy + T, gn + 10" G g — i ;L 5)<pnmqm> . (4.14)

In this formula T is a combination of supergravity background fields and derivatives of
Killing spinor bilinears,

s—3 53 Ou(s* + 52)

T, = L AC )
Cut raee Vi o e

o (4.15)

where b is a one-form satisfying ¢,b = 0, which parametrizes remaining freedom in choosing
the supergravity background (see appendix B).

The map from the hypermultiplet components to the cohomological variables has a
smooth inverse. For the scalar ¢,;, this is

4
Gni = =73 (4.16)

where 3 is the Dirac spinor built out of the Killing spinors defined in (4.5). The map from
b, ¢ to the ordinary component fields 1, 1) is

n 4
(3@) = s+ 5(75[’71 — ), (4.17)

and the one for the ordinary auxiliary field is

_8
(s +35)2

s+ 52 ) ) - .
?Zﬂu(D# +iT)qn — 10" G(3:an) +

(s +3)
2

ni =

‘an(?;zqm)]
(4.18)

|:§ihn -
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Equations (2.11) and (B.1) imply the following reality conditions on Grassmann-
even spinors:

(ha)" = 0" — [(s + 8)(Dy +iT)q"y" — 200" Guq” —i(s + 3)d" o] 2
(an)" = 3",

The twisted fields for the hypermultiplet we defined above are spinors; consequently, a

(4.19)

spin structure is necessary in order to define them. This is different from the case of the
vector multiplet whose twisted fields can be defined provided the manifold is orientable and
admits a U(1) action. However, there are cases where the requirement of the manifold to
be spin may be relaxed. For instance, if the theory under consideration has a U(1) flavor
symmetry, the twisted fields are sections of the product of the spin bundle and powers of a
unitary line bundle L. If the manifold admits a spin® structure, such products can be well
defined even if L and the spin bundle do not exist. Depending on the charges under the
flavor symmetry, it may be then possible to define the twisted theory on a spin® manifold
(in four dimensions any closed orientable four manifold is spin®). The requirement that the
manifold be spin may be relaxed in other circumstances and is therefore dependent on the
specific theory under consideration.
The cohomological fields we introduced split into two separate multiplets under super-

symmetry:

dg=rc, oc= (ily — Ga)q ,

5b =i , §h = (Ly +iGa)b ,
where, just like in (28) of [1], the supersymmetry algebra encodes gauge transformations

Go with respect to the field ® = (it, A + ¢). Here A and ¢ are fields in the twisted vector
multiplet (see appendix C). As in section 2.3, the object Gg acts on fields according to

(4.20)

their representation, e.g.
(Goq),, = 1Pn" G =7 [i(tbA)," + &0 ] qm - (4.21)
Few comments are in order:

e It follows from (4.8) that Gg is d-closed, which ensures the closure of the alge-
bra (4.20). Indeed, § acts on the cohomological fields as an equivariant differen-
tial, namely:

62 =il, — G . (4.22)

e The action of supersymmetry commutes with the projectors Z, Z4. This is because
the vector field that enters in their definition is the same as the Killing vector that
appears in the supersymmetry variations (in general it is sufficient for the two vector
fields to commute).

e The gauge field A and the scalar field ¢ always appear in the combination ®. When
discussing localization we will see that, after gauge fixing, ® will be a Coulomb
branch modulus appearing in one-loop determinants. If ® is part of a dynamical
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vector multiplet, it will be integrated over. ® could also arise from a background
vector multiplet, in which case it will remain as a free parameter in supersymmetric
observables. For instance it can be identified with a flavour fugacity.

4.3 Hypermultiplet Lagrangian in cohomological fields

We have shown in section 2.3 that the usual quadratic Lagrangian for a hypermultiplet
coupled to a rigid N' = 2 supergravity background is the ¢ variation of Vi in (2.20). In
terms of the cohomological fields (q, b, ¢, h), the deformation term Vi reads as follows:

Vo = icLyq +iq (¢ + i(s — 5)p] ¢ —i(yvy )y g

el
2

N s? -5\ D :
—(s+9) (Gu - 646“> cyiq +i(s+ 5)by"(Dy +iT,)q

— (s +3)byq—2t,Gbq — i(s + 5)%qxq — if)b} , (4.23)

where, in the expression above, Sp(k) gauge/flavor indices are contracted as WiWy =
(U1),, U2, Here we used the short-hand notation:

1
X = 5Xw"™ (4.24)

By taking a ¢ variation of Vg, we obtain the Lagrangian for the hypermultiplet £ =
L+ Lp:

8 _ o L
Lp= G 5)3{ — L43Lyq — Dypvydy* Loq — (s — 5)q 0 Loq
) By 52— 32 _ _
+i(s +3) (Gu i bu) (@ Log + a7 q)
L 1 i, L
~ B 60— 5 |5+ IPHT + (6.0} +i(s - {0}
— (s +3)by"(D,, + iT,)q — 2it,Ghq + i(s + 3)ge b + hf)} , (4.25)
and
Lp= o g)g{ —ibLyb + ibgb — itLyc — i(s + 5)by* (D, + iT),)c + 2, Gbe

$2— 32

bu) cot'ctic[p+i(s — 5)p] c +i0vcoMc

+(s+§)(aﬂ— =

+ (s+38)cpb+i(s+38)gy" Vb +i(s+ 35)qgnb

+iq {2%\1/ — (s — &)+ %(s + 5)2x] c} : (4.26)
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4.4 Non-equivariant topological twist

In our setup, pure topological twisting is recovered by turning off either ()‘(m,&a) or
(Cias Xic:)- In terms of Killing spinor bilinears, this corresponds to respectively setting
either s = 0 and s = constant or § = constant and s = 0. The Killing vector v vanishes
in both cases, yielding a non-equivariant differential § satisfying 62 = 0. In turn, the hy-
permultiplet cohomological complex fulfills 4 = d¢ = 0, while Dirac spinors become pure
Weyl spinors:

(q,b,¢,h)5=0 = (Lq,Rb,Lc,RY) , (q,6,¢,h)s=0 = (Rq,Lb,Rc,Lb) . (4.27)

Consequently, the deformation term Vg becomes

8 |- . 1S_ -
Va = Valz=o = 2 [b(Z’YMDu —¢)q— VLGS be] ,
< . (4.28)
~ — 1,87 -
Vo = Vals=0 = 2 [b(w“DM —)q— quq - zbb} .

The objects Vg and Vg are deformation terms reproducing the features of topologically
twisted hypermultiplets, see for instance [58] and references therein.

5 Cohomological localization

In this section we perform supersymmetric localization in the cohomological language de-
scribed previously. The localization argument is the standard one: let Zjyp,er be the hyper-
multiplet partition function, which is a path integral with functional weights e~hvper . We
then make the replacement Shyper — Shyper +1 Sloc, With ¢ being a real parameter and Sj,c a
d-exact positive definite deformation action. The resulting partition function Z(t) naively
depends on t and is such that Z(0) = Zuyper- In fact, Z(t) is independent of ¢ because
both the path integral measure and the integrand are invariant under §. This implies that
Z(00) = Znyper, meaning that the latter can be computed exactly via saddle point method

by using the integrand e e,

Consequently, Zpyper is given by e e evaluated on the
locus of BPS field configurations, times the corresponding 1-loop determinant. Actually,
Zhyper can elegantly be obtained from the index of a transversally elliptic operator, as we
shall see. After gauge fixing, the supersymmetry transformation § becomes an equivari-
ant differential squaring to 62 = iL, — G,,, where ag is a constant valued in the Cartan
subalgebra of the gauge group G. A priori, then, Zyyper will be a function of ag. If the
manifold admits non-trivial fluxes with magnetic charges m;, the value of the Coulomb

branch parameter aq is suitably shifted by m;, as in the case of 52 x §? [25].

5.1 BPS locus

On the BPS locus, the fermionic fields b, ¢ and their supersymmetric variations are vanish-
ing. In particular, this yields h = 0 and

(iLy—Go)q=0. (5.1)

Since the field ® is complex and the Killing vector v is real, by imposing reality conditions
on the above equations we end up with a trivial BPS locus: q = 0.
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5.2 One-loop determinant from index theorem

The deformation term we employ is

1 8
Viee = —— (00 ,,)" W, = ————[(86,)*b,, + (6¢p)*¢y] - 5.2
oe = i (0)" W = (5 (000" + (B’ (52)
By construction, Vi, leads to a positive definite deformation Lagrangian Lioc = 0Viee-
Explicitly,
8 — — . _ . -
Vioe = G §)3{ —bob + b [i(s + 5)v* (D, +1iT),) — 20,G — g(s + 5)¢] q

+ (B0) iy — i® — i(20 + i(s — 5)p)]a} | (5.3)

The deformation term Vj,. can be recast in the quadratic form
8 — \ (Doy D
Vioe = 1 3 ((5% [’) o0 o | > (5'4)
(s+35) Dio D11/ \0b
with entries

Dooziﬁv—i@—i[2¢+i($—§)¢] 5 D01 =0 5
(5.5)
Dig = i(s+ 57" (Dy + iTy) — 20,G — g(s + 8)gp Dip=—-1.

The operator D1 implicitly fulfills D19 = Z_DloZ+ because it acts on q and b, which are
Dirac spinors satisfying the projection conditions Z,q = q and Z_b = b. Furthermore,
Dqg is a transversally elliptic operator. Ellipticity of a differential operator 2 amounts to
the invertibility of the corresponding symbol o[Z], where the latter is obtained by keeping
only the highest derivative terms in 2 and making the substitution d, — ip,. If 0[] is
invertible for any p* # 0, then Z is elliptic. For instance, the Dirac operator 4 = —iy*0,,
has symbol o[Z] = 4"p,, which is everywhere invertible in flat Euclidean space. As for
D, its symbol is

o [D1o] = (Sng)g Z Az (5.6)
At plus fixed points we have
0 [D10]|320.y=0 = 88% RAWL — 88%5” =0 [—ia”@u] , (5.7)
while at minus fixed points we find
0 [D10]] 5= y=0 = 8;;“ Ly*R — 85% ot =0 [—ZU“BM] . (5.8)

Consequently, the symbol o [D1g] coincides with that of a chiral Dirac operator whenever
5 =0 or s = 0, ensuring ellipticity of D1y. On the other hand,

P v v 4 ~
o [D1o]] =5 = ﬁ (1 - 8”757”) AH (1 - ;75’vp> =2 Z_s"" puvy (5.9)
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implying that Djq is not elliptic in the patch where s = §, because o [Dyg]|,_; = 0 for
pt = v* # 0. The operator Dig is then transversally elliptic with respect to the Killing
vector v, as the symbol o [D1] is everywhere invertible for any p* # 0 such that p-v = 0.

The hypermultiplet contribution to the partition function is encoded into the index of
the transversally elliptic operator Dy [28, 29]:

) Trge "tH — TreitH .
ind(D1o)(t) = Z L e /bax) , H=06=iLl,—Go , (5.10)

T r=x

where t € R, while T is the image of the coordinates x under the torus action induced by
‘H and the sum is over the fixed points £ = z. In a neighborhood of a plus fixed point, the
metric becomes flat and the manifold can be parametrized by a pair of complex coordinates
(z1,22). In (5.10), bosons q contributes to ind(Dj¢)(t) with a plus sign, whereas fermions
b contributes with a minus sign.

The Killing vector v in a neighborhood of 5§ = 0 reads

v =i\ (210, — 7105,) +ies) (200, — 2205,) | (5.11)

with eg—’_) and e§+) being real parameters. Hence, e #'* is a U(1) x U(1) action attaching

to (21, 22) phases ¢; with i = 1,2:
N~ L - () F_
Zi = 2 = QiZi , ¢ =exp(ie 't), 1=1,2. (5.12)

In a neighborhood of a plus point, the denominator entering the index formula (5.10) is

det (1 - SN) — (- )1 - 7)1 - g)(1 ) (5.13)

~j

where q; = q; 1 is the complex conjugate/inverse of the phase ¢;. We now need the action of
‘H upon the spinors q and b. We then embed U(1) x U(1) into SU(2)4 x SU(2)_ ~ Spin(4)
to see how spinors transform under H. We define

0 0 zZo 71
0 0 zZ1 —Rr2
= H — 5.14
z T —z9 —2z1 O 0 ( )

—z1 zZ9 O 0

Then, coordinates z and spinors ¥ = {q, b} transform as

z — ng_l 3 v — g_l\lj ’ g= dlag (\/ 61623 vV 41492, v/ quQa V C]l@z) ) (515)

with g € SU(2)4+ x SU(2)_ being the spinor representation of the torus action £,. At a
plus point, q is left-handed and b is right-handed: ¢ = Lq and b = Rb. Then, the action
of £, upon ¢, b is

d+ = V@192 9+ d— —+vq1929— [ \/ Q1%E+ ) b — \/61(125_ .
(5.16)
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The operator ‘H also contains G, which acts non-trivially on g, b. Thus, for a hypermulti-
plet in the representation R of the gauge group, the index formula (5.10) yields

. V11G2 -
1nd<D10)’pluS p01nt (1 o (11 1 — q2 Z e t p(®o) . (517)
PER

This index translates into a functional determinant by expanding ind(D1o)|plus point i
powers of q1,¢2 and converting the corresponding series into an infinite product. The
latter requires regularization, which is a delicate matter. For instance, in cases linked to
five-dimensional manifolds, the regularization was established in [37, 42-44, 59]. Here, we
will examine diverse regularizations.

We define:

[1—%] =D a L_} ==Y g=-> ¢ " (5.18)

n>0 n<—1 n>0

The difference between the two regularizations is

[1—1%] [1_%]_ > (5.19)

neL

which becomes a periodic Dirac delta supported at ¢ = 0 if ¢; = e*. Whenever both ¢; and
g2 appear, we write [...]+1, where the first (respectively, the second) subscript refers to
the regularization of ¢; (¢2). Indeed, the index ind(D1g)|plus point depends on both ¢; and
q2, and we have four possible series expansions:

[ | _ n1+f n2+ o—to(®
_lnd(D10)|plus point | it =+ Z Z : p(®o) s
pPER n1,n2eN
- B _1
ind(l)l())‘plus point == Z Z n1+2 n2 ° e_tp(CDO) )
L 14—
ER ny,n2eN
i _ e N (5.20)
. —ni1—35 no+s _
1nd(Dl())|plus point| , T T Z Z a4y ' 2 22 ‘e to(®o) )
B . pPER n1,n2€N
r b —ny—1i _po—1
0d(D10) pus poine| =T D, @ g e AT
) . pPER n1,n2eEN
Here, p is a sum over weights in the representation R and ®¢ is
Do = ap + ki (7, | (5.21)

(g (+) €§+)) parametrizing the flux contri-

with ap being a Coulomb branch moduli and k4
bution at the plus fixed point. As in [1, 29], the index ind(D1o)|plus point translates into a

1-loop determinant given by an infinite product. For each regularization, we have

[22M765+>(a0,k+)} =11 1I [ <n1 + ;) + et <n2 + ;) + ip(@o)} -

PER n1,n2€N
= TI T2 (@) + (L7 + €57y /2)[el7, 57y (5.22)
PER
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as well as

28 gtk =TT TT |47 (moeg) =" (ma+ ) +iot@0)]

- pPER n1,n2€N

= H [F2(ip(¢o) + ()~ Eéﬂ)/z)kgﬂ’_&éﬂ)]_l ’

ER
[Zglgﬁgﬁ(ao’ k+)] :lelzm]";[ew [—61 <n1 + ;) + egﬂ (nz + ;) + Z’p(@o)} )
= IT [ratiotdo) + (-7 + &7/ - D)
b
[Z§%7€é+)(a0vk+)] ) EWI;IGN [—61 <n1 + ;) — M <n2 + ;) +ip(<1>0)}_1 :
= Q [Ta(i p(®0) — (e + ) /2) = el =] . (5.23)
b

These are 1-loop contributions to the hypermultiplet partition function at a plus fixed
point. We used Barnes multiple zeta and gamma functions [48, 60],

(n(s,wld) = Y (w+a-m)~",

"ENN
Tn(wld) = J] (w+a-m)~" = ePenewldl=o (5.24)
reENN
to regularize the infinite product that gives Z I?% (+)(ao, k). For instance, in the case of
€1 €
squashed S* worked out in [29], the regularization chosen for the plus point contribution
is ++:

Z?M (a0, ki) = {Z:(IM) . (ao, k+)] : (5.25)
1 =2 1 =2 ++

Similarly, in a neighborhood of a minus fixed point the manifold can be parametrized by a
pair of complex coordinates (27, z5) and the Killing vector v in a neighborhood of s = 0 is

v=ie) (0 — #0z) +icy (0. — %) | (5.26)
with eg_) and eé_) being real parameters. The U(1) x U(1) action of v upon (21, z5) reads

doF=ds,  d=ewliq ), i=12. (5.27)

In a neighborhood of a minus point, the denominator entering the index formula (5.10) is
formally the same as the one computed at the plus point:

det (1 - §~) (- )71 - )1 -). (5.28)

J
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At s = 0, there is a chirality flip with respect to the plus fixed point at § = 0. Indeed, q is
right-handed and b is left-handed: ¢ = Rq and b = L b. Therefore,

by > \/dighby, b =\ /@ ghb- . T =\ /ddhat, T = \Jdda . (5.29)

By taking into account the action of Gg/ at a minus fixed point, the index formula (5.10)
provides

ind(Dyo)|. = Vi Z emtP(®) (5.30)

minus point —
(1 Q1 1 CI2 bR
Again, we have four possible series expansions:
ind(DlO)‘minus point = — Z Z n1+ n2+2e t p(®p) 7
) PER n1,m2€EN
ind(DlO)‘minus point =4+ Z Z n1+ nz—%e—t p(®)) ’
) R N
- | s 1 y (5.31)
ind(ljlo)|minus point | =+ Z Z Q1 e )n2+7 —tr(®) s
) pPER n1,n2EN
M. 1 1 _ /
lnd(Dlo)‘minus point| - = Z Z Qi) " 2( é) n2T 26 tp(<1> ) s
) _ PER n1,m2EN
where @ is
b=ap+k (7,67, (5.32)

with k_(eg_), eg_)) encoding the flux contribution at the minus fixed point. We now trans-
late the index ind(D10)|minus point into 1-loop determinants:

[zg%gg)(ag,k_)} =11 1I [ i (n1+;> ey <n2+;> +z’p(<1>6>} :

pPER n1,n2€N

= T [ra o) + (7 + /201767

pR

2 k)] -1I H[ ()~ (v y) winten)]
::JEL,ﬁE ip(@) + (e = 7))l =)

[ng)é \(af k- )} LIWEIEN [—el <n1+;> ey (nz+§> +z‘p<<1>’o)]1 ,
=££ﬁzm¢m+« 7+ -7 7))

] I (o) )]
—i%ﬁmm%rw< re) -0 -] 639)
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These are 1-loop contribution to the hypermultiplet partition function at a minus fixed
point. For example, in the case of the squashed four-sphere studied in [29], the regulariza-
tion chosen for the minus point contribution is? —+:

SHM _ | »HM
Z5 olag ko) = [Z;—) 6(—)(6167/‘3)] - (5.34)
1 €2 1 =2 —+
Using the results of [1], we can write down the complete partition function for an equiv-
ariantly twisted N' = 2 gauge theory coupled to matter with p (respectively (I — p)) plus
(minus) fixed points, giving formula (1.1).

5.3 Example: hypermultiplets on squashed S*

As an example, let us apply (1.1) to the specific case of hypermultiplets on a squashed

four-sphere S?j studied in [29]. This manifold possesses a plus and a minus fixed point,

respectively dubbed north and south pole. In fact, S;‘j is a four-dimensional ellipsoid
embedded in R® according to

1:% + x% " x% + xi ﬂg

12 2 2

=1, (5.35)

where E,Z are the lengths of the ellipsoid axis, while r is its radius. If ¢ = (= r, one
recovers the round four-sphere S*, whose isometry group is SO(5). For arbitrary ¢, Z the
group SO(5) is broken to SO(2) x SO(2), which is a real torus action rotating (x1,x2) and
(x3,24). At the fixed points, the equivariant parameters egi) and egi) are related to the
lengths of the ellipsoid axis as follows:

N S
Ggi) 1| 1
eéi) 1| 1

Indeed, we can make contact with the previous subsection by setting z; = x1 + ixe and
zo = x3 + 1x4, so that at the north pole of Szl i the torus action becomes a complex torus

action U(1) x U(1) generated by a Killing vector (5.11) with e§+) = (=1 and eé” =t

On Szl ; we have vanishing fluxes, then ky = k_ = 0, and for a hypermultiplet in the
represéntation R of the gauge group we find
HM HM 571 +O
Z§M (@0) wort pete = |2} 7 1 (a0, 0)] = T Taliplao) —— L L (5:36)
0,0 SR
Analogously, at the south pole we have a U(1) x U(1) generated by a Killing vector (5.26)
with eg_) = /¢! and eg_) = —(~!. Consequently,
ettt s
2§ a0) soutn pote = |25 1(a0,0)] = T Tali plao) — =Y.
'y SR
(5.37)
2In the notation of [29], the regularization appears to be ——, while in ours is —+, as reported in the
main text.
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Combining the two contributions we obtain a T-function depending on the Coulomb branch
parameter ag and on the lengths of the ellipsoid axis £, £:

Z?le\;l<a0) - Z‘%l (GO)‘north pole X Z 2, <a0)’south pole >

= TL s (Vi pla) + 50+ 5~ >)_1, s=\ui,  (639)

PER

which matches [29]. We recall that the definition of the Y-function is

Ts(x) = H (mB+nB~'+z)(mB+nB~ ' +B+4"1 —1) . (5.39)

m,neN

5.4 Example: hypermultiplets on S% x S2

As another example, we apply (1.1) to hypermultiplets defined on the product of two
spheres of radii 61_1,62_ ! which we denote by Sfl X 5’32. Gauge theories on manifolds
with such a topology were studied e.g. in [25], as well as in [37] by dimensional reduction
from five-dimensional toric Sasaki-Einstein manifolds. There are four fixed points on the
manifold S2 x S2, corresponding to the four combinations NN, NS, SN, SS of north (N)
and south (S) poles of the two spheres. Here, we consider NN and NS being plus fixed
points, while SN and SS being minus fixed points. At the fixed points, the local equivariant

parameters egi) and egi) are related to €1 and ey as follows:

NN | NS | SN | SS

€1 €1 €1 —€1 —€1

€9 €9 —€9 €9 —€9

Using a regularization consistent with [37], the hypermultiplet contribution at plus fixed
points is

ZKIS{‘EII/IXSE?Q ((I)O)’NNv NS = [2217\212 ((I)OINN)] 44 [Zgy—ﬂ ((I)O’NS)]+_ )

_ H Lo (i p(Po|nn) + 52 er, €2)

- — , (5.40)
= L2(i p(Polss) + ate e e)
while the hypermultiplet contribution at minus fixed points reads
ZS2 ><S2 (I)IO)’SNv SS — [Zgi\i[,GQ( 6’SN):| ++ [Z§£f7_62( B‘SS)]_A'__ ’
=11 La(i p(®olss) + =95"2)] — €1, e2) (5.41)

= D2(i p(Pplsn) + =52 —er,e0)
In absence of fluxes, @y = ®(, = ap at any fixed point and the partition function trivializes:

Zg' sz (a0) =1. (5.42)
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A Notation and conventions

Here we collect the relevant formulas used in the main text and a summary of our conven-
tions. These are based on those of [61], adapted to Euclidean signature.

A.1 Flat Euclidean space and Dirac spinors

We define the Levi-Civita symbol as €234 = 1. The rotation group is SO(4) ~ Spin(4) =
SU(2)4+ x SU(2)—. Left-handed spinors are SU(2)4 doublets and are denoted by undotted
indices (,. Right-handed spinors (g are doublets under SU(2)_ and carry a bar as well as
dotted indices. In Euclidean signature, SU(2); and SU(2)_ are not related by complex con-
jugation, hence ¢ and ¢ are independent spinors. We raise and lower dotted and undotted

12— ey =€l? = €5 = +1.

indices by acting on the left with the tensors €45 and €, 4o where €
For instance, (¢ = ¢*8 (g and (¢ = B ¢ 5 The SU(2)+ invariant inner product of ¢ and 7
is (n = (*ne. The SU(2)_ invariant inner product of ¢ and 7 is given by (7 = (47", We

introduce the sigma matrices

ob. = (d,—il), gHoe = (=&, —il), (A1)

where & = (0!,02,03) is a vector whose components are Pauli matrices. Four-dimensional
sigma matrices satisfy the reality conditions (U#)T = —0,. Furthermore,

0oy + 0,0, = =20, , 0uoy + 0,0, = =20, . (A.2)

We also define the matrices

1 1
O = Z(JH@, — 0,0,), O = 1(6#0,, — 0,0y) - (A.3)

The latter fulfill self-duality (or anti self-duality) properties:

1 1 _ _
§6Wp>\0p>‘ = 0w, §6Wp>\0p>‘ = —0u - (A.4)

We can use these matrices to separate the (2,0) and (0,2) components of a two-form w as

follows:
+ 1 Ky N 1 o+ (A.5)

Was 2‘*’#!/%@7 W5 QWWUdB .
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A Dirac spinor ¥ contains a left-handed Weyl spinor v, and a right-handed one e,

v (Zg) . (A.6)

Correspondingly, the adjoint spinor ¥ is

They are arranged as

T = (w @d) — (c)T = —vTC (A7)

where T denotes transposition and C' is the (skew-symmetric) charge-conjugation matrix

P 0 1 €ag 0
C= ( 0 6@3) , Cc = ( 0 b (A.8)

In general, the adjoint ¥ of a spinor VU, is not related to the conjugate spinor ¥*. The
Spin(4)-invariant product between two Grassmann-odd Dirac spinors W1, Uy reads

VW) = —UTCWy = fhon + h1a?s . (A.9)

The Clifford algebra is generated by Dirac matrices 7, in chiral representation, namely

0 o _

Y = <_ M) y {'7#7'71/} = _2g,ul/ , C'Y,LLC L= _(VM)T ; (A'l())
o, 0

where g, is the spacetime metric. The chirality matrix 45 and the Spin(4) generators

Vv are

Ty

1 0 1 ow 0
— = v = - v — v = . A.ll
V5 = —MY2Y3N4 <0 —1) e = 7 O = ) ( 0 ) (A.11)

In particular, Cy;C~1 = (75)7, while 0, and &, generate SU(2); and SU(2)_ respec-

tively. The matrix 5 is used to construct the standard chiral projectors

1 1
L=35(1+%) R=5(1-7) . (A.12)
Bilinears of Grassmann-odd spinors satisfy
U0y = Ul Wy, Wy = —Ugy, Uy , Wyy509 = Uoys Wy . (A.13)

Bilinears of Grassmann-even spinors fulfill the same identities with an additional minus
sign on the right-hand side.

A.2 Differential geometry

Greek letters u, v, ... are used to denote curved indices and Latin letters a, b, ... to denote
frame indices. Let e®, be the orthonormal vielbein corresponding to the metric g,,. We
denote the Levi-Civita connection by V. The corresponding spin connection is

wuab = ebyvuea” . (A.14)
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The Riemann tensor is

b b b c b c b
Ruva’ = Opva” — Oupa” + Woa“Wpe' — Wua“Wye - (A.15)
The Ricci tensor is R, = R,,,”, and R = R,* is the Ricci scalar. In these conventions a
round sphere has negative Ricci scalar.
The covariant derivative acts on spinors ( and ( as

1 _ _ 1 _
V¢ =0, + iwwbaabg, VG = 0u( + iwuabaabg : (A.16)
The Lie derivative of spinors along a Killing vector v is given by [62]

L, ="V, ( — %(G“UV)O'“VC, L,¢ = U“Vﬂf — %(8“01,)6“”5 ) (A.17)

B Supergravity background solutions

In this appendix, we write down explicitly the supergravity background on which the
Killing spinor equations are solved by the Killing spinor constructed in section 3.1. This
is a summary of the results of [1].

The background supergravity fields are the metric g, a SU(2) g connection V,, i, aone
form G, a two-form W,,,, a scalar N, a closed two-form F},,,, and a scalar S;; transformmg
as an SU(2)g triplet. The Killing spinors do not determine the supergravity background
completely. In the formulas below, this freedom is parametrized by two one-forms. One is
G, and is arbitrary, the other is denoted b, and satisfies 2,b = 0. The reality conditions
for the Killing spinors (2.1) are compatible with the following behavior of the background
supergravity fields under complex conjugation:

Vi) =Vid,, N*=N, Gi=-G,, Wi,=-Wu, Fiu=-Fu. S5=57.
(B.1)
We will make use of various spinor bilinears. Besides the SU(2)g singlets s, 5 and v
defined in (2.5) and (2.6) and used extensively throughout the paper, we introduce

D =Co + o', 0 =, 0l =xamy . (B.2)
We also define the combination
01, =2 j: 5 (e, +63) - (B.3)

The two-form W), and the SU(2)g connection (V),);; are given by:
21 ~ 4

— L _ _ = AP - W AP
W o (Opvy — Opuy) PR €uvp VPOV (s — §) s SEuvp” U G,
s—3§ 1
+ mel“’p 7) b)\ + m(@uby — UVbN) N (B4)
4 _ _ 4 . al/(s - 5) o \V
(Vi = 57 (CaValy) + XaVaXy) + 515 (21(;,, - M) (945 — ©45)",
44 . ~ .,

—97 —



The graviphoton field strength F,,, is:

s— K s— K
Fop = i0), <+) —id, <+) | (B.6)

SS S8

Here K is the constant defined in section 3 and such that (s + 5 — K)/(s%5?) is smooth at
the fixed points of v. The scalars S;; are:

— K
Sij:428 + & @““0 — &
(s+3)3 (s8)?

_s—§ _3’5—5 2 )
<4G“ L R 8“(S+S)>U”' (B1)

(50 + s @z]) Y0,y

_|_

5+8
Finally, the combination R/6 — N (where R is the Ricci scalar) is given by:

R s— 3 _ 3[“111,]6[“11”] 1 s—35
ZON) = 2 (s — _
(6 ) (s+35)2 (s =8+ (s +35)2 2(s+35)3
AeHvP 255
_——,—, _— S - S /’L - S
(S+§)3vu(8yvp)8,\(s 5)+ (s+§)48“(8 5)ot(s — 3)
s—3§ g Lo 2is8 2(s8)% .,
T 5)30#(3 5)0"(s + 3) G §)2V by + G+ §)4bub
_ Z-(S%)ewpk(auvy)vpm n 31‘%17“(5@3 — 50,8
S S S S
82+ 2 . s? + 52 8(v'G )2
2" pg v Gu+4——G'G, + L
A Ouls8) — 2 Ly ) 5192
s—3§ 4qpet” -8
R O N — v h—
(s+§)3G“ + (s—l—s) (8 0,0, G + z( e

C Cohomological variables for vector multiplet

GWP)\@;LUV) (Gpvr)

+4s§ G"0,(s5) . (B.8)

The component fields in the N/ = 2 vector multiplet are the complex scalar X, a gauge
field A, two gauginos \;, and )\g and an auxiliary scalar field D;;. These can be recast in
the following twisted fields (see [1]):

Y= _i(X_X)v

\IIM = Ciguj\i + )Zia-,u)‘i )

¢ =5X+sX,
S _|_ g i 1
Xpy = 82 T 32 |:XZUMV Czo'lw)\z §(UH\IIV - UV\I}M):| ) (Cl)
X+ X

H (P+) |:@;))\ i Fp)\ +1 P (8p’l))\ - 8)\’Up)+

21 5 . . S
“i: —€pxy VT <<D5 — 2iGs — Zs

Here we used @;& defined in (B.3) and the projector Py defined in (4.1).

~b(5>AX— <D5+2iG5—i
S S

)]
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All the fields (C.1) are differential forms in the adjoint of the gauge group. They are

all singlets under the SU(2)r symmetry. It follows from the definitions above that the

two-forms x,, and H,, are in the image of the projector P, .

The change of variables (C.1) has a smooth inverse,

1 . - 1 .
X—S+§(¢+28§0), X_S+S(¢_ s@
- 1 245 .~
M= [ S+3 X O X+ 01GY “+X1]

- C.2)

1 [s2+3%  ~. (
Ai:8+§|:8+§ C]@%X;w UXZ Czn]

2 | 2

§° 4+ 8% A
D;; = m@fj”(ﬂw—...),

where in the last formula the ellipsis stand for terms in H,, that are not proportional to

(see (C.1)).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.

References

1]

2]

G. Festuccia, J. Qiu, J. Winding and M. Zabzine, Twisting with a flip (the art of
pestunization), Commun. Math. Phys. 377 (2020) 341 [arXiv:1812.06473] [INSPIRE].

E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353
[INSPIRE].

S.K. Donaldson, Polynomial invariants for smooth manifolds, Topology 29 (1990) 257
[INSPIRE].

J.P. Yamron, Topological actions from twisted supersymmetric theories, Phys. Lett. B 213
(1988) 325 [INSPIRE].

D. Anselmi and P. Fré, Topological twist in four-dimensions, R duality and hyperinstantons,
Nucl. Phys. B 404 (1993) 288 [hep-th/9211121] [INSPIRE].

D. Anselmi and P. Fré, Topological o-models in four-dimensions and triholomorphic maps,
Nucl. Phys. B 416 (1994) 255 [hep-th/9306080] [INSPIRE].

D. Anselmi and P. Fré, Gauged hyper-instantons and monopole equations, Phys. Lett. B 347
(1995) 247 [hep-th/9411205] [INSPIRE].

M. Alvarez and J.M.F. Labastida, Breaking of topological symmetry, Phys. Lett. B 315
(1993) 251 [hep-th/9305028] [INSPIRE].

M. Alvarez and J.M.F. Labastida, Topological matter in four-dimensions, Nucl. Phys. B 437
(1995) 356 [hep-th/9404115] [INSPIRE].

J.M.F. Labastida and M. Marifio, A topological Lagrangian for monopoles on four manifolds,
Phys. Lett. B 351 (1995) 146 [hep-th/9503105] [INSPIRE].

~ 99 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00220-020-03681-9
https://arxiv.org/abs/1812.06473
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06473
https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C117%2C353%22
https://doi.org/10.1016/0040-9383(90)90001-Z
https://inspirehep.net/search?p=find+J%20%22Topology%2C29%2C257%22
https://doi.org/10.1016/0370-2693(88)91769-8
https://doi.org/10.1016/0370-2693(88)91769-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB213%2C325%22
https://doi.org/10.1016/0550-3213(93)90481-4
https://arxiv.org/abs/hep-th/9211121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9211121
https://doi.org/10.1016/0550-3213(94)90585-1
https://arxiv.org/abs/hep-th/9306080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306080
https://doi.org/10.1016/0370-2693(95)00033-H
https://doi.org/10.1016/0370-2693(95)00033-H
https://arxiv.org/abs/hep-th/9411205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9411205
https://doi.org/10.1016/0370-2693(93)91609-Q
https://doi.org/10.1016/0370-2693(93)91609-Q
https://arxiv.org/abs/hep-th/9305028
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9305028
https://doi.org/10.1016/0550-3213(94)00512-D
https://doi.org/10.1016/0550-3213(94)00512-D
https://arxiv.org/abs/hep-th/9404115
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9404115
https://doi.org/10.1016/0370-2693(95)00411-D
https://arxiv.org/abs/hep-th/9503105
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503105

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

J.M.F. Labastida and M. Marino, Non-Abelian monopoles on four manifolds, Nucl. Phys. B
448 (1995) 373 [hep-th/9504010] [INSPIRE].

S. Hyun, J. Park and J.-S. Park, Spin-c topological QCD, Nucl. Phys. B 453 (1995) 199
[hep-th/9503201] [INSPIRE].

A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B
534 (1998) 549 [hep-th/9711108] [INSPIRE].

A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg- Witten solution, NATO Sci.
Ser. C' 520 (1999) 359 [hep-th/9801061] [INSPIRE].

G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun.
Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized
instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] INSPIRE].

N.A. Nekrasov, Seiberg- Witten prepotential from instanton counting, Adv. Theor. Math.
Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

N. Nekrasov and A. Okounkov, Seiberg- Witten theory and random partitions, Prog. Math.
244 (2006) 525 [hep-th/0306238] [INSPIRE].

N.A. Nekrasov, Localizing gauge theories, in XIVth International Congress on Mathematical
Physics, J.C. Zambrini ed., World Scientific, Singapore (2006).

L. Gottsche, H. Nakajima and K. Yoshioka, Instanton counting and Donaldson invariants, J.
Diff. Geom. 80 (2008) 343 [math/0606180] [INSPIRE].

L. Gottsche, H. Nakajima and K. Yoshioka, K-theoretic Donaldson invariants via instanton
counting, Pure Appl. Math. Quart. 5 (2009) 1029 [math/0611945] [INSPIRE].

E. Gasparim and C.-C.M. Liu, The Nekrasov conjecture for toric surfaces, Commun. Math.
Phys. 293 (2010) 661 [arXiv:0808.0884] [INSPIRE].

M. Bershtein, G. Bonelli, M. Ronzani and A. Tanzini, Ezact results for N' = 2
supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson
invariants, JHEP 07 (2016) 023 [arXiv:1509.00267] [INSPIRE].

M. Bershtein, G. Bonelli, M. Ronzani and A. Tanzini, Gauge theories on compact toric
surfaces, conformal field theories and equivariant Donaldson invariants, J. Geom. Phys. 118
(2017) 40 [arXiv:1606.07148] [INSPIRE].

A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, N' = 2 supersymmetric gauge theories on
5% x S? and Liowville Gravity, JHEP 07 (2015) 054 [arXiv:1411.2762] [INSPIRE].

M. Sinamuli, On N = 2 supersymmetric gauge theories on S* x S?, JHEP 05 (2016) 062
[arXiv:1411.4918] [INSPIRE].

D. Rodriguez-Gomez and J. Schmude, Partition functions for equivariantly twisted N = 2
gauge theories on toric Kdhler manifolds, JHEP 05 (2015) 111 [arXiv:1412.4407] [INSPIRE].

[28] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824| [INSPIRE].

[29] N. Hama and K. Hosomichi, Seiberg- Witten theories on ellipsoids, JHEP 09 (2012) 033

[Addendum ibid. 10 (2012) 051] [arXiv:1206.6359] [INSPIRE].

— 30 —


https://doi.org/10.1016/0550-3213(95)00300-H
https://doi.org/10.1016/0550-3213(95)00300-H
https://arxiv.org/abs/hep-th/9504010
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9504010
https://doi.org/10.1016/0550-3213(95)00404-G
https://arxiv.org/abs/hep-th/9503201
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503201
https://doi.org/10.1016/S0550-3213(98)00628-2
https://doi.org/10.1016/S0550-3213(98)00628-2
https://arxiv.org/abs/hep-th/9711108
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711108
https://arxiv.org/abs/hep-th/9801061
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9801061
https://doi.org/10.1007/PL00005525
https://doi.org/10.1007/PL00005525
https://arxiv.org/abs/hep-th/9712241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9712241
https://doi.org/10.1007/s002200050016
https://arxiv.org/abs/hep-th/9803265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803265
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206161
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0306238
https://doi.org/10.1142/5778
https://arxiv.org/abs/math/0606180
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0606180
https://doi.org/10.4310/PAMQ.2009.v5.n3.a5
https://arxiv.org/abs/math/0611945
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0611945
https://doi.org/10.1007/s00220-009-0948-4
https://doi.org/10.1007/s00220-009-0948-4
https://arxiv.org/abs/0808.0884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.0884
https://doi.org/10.1007/JHEP07(2016)023
https://arxiv.org/abs/1509.00267
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00267
https://doi.org/10.1016/j.geomphys.2017.01.012
https://doi.org/10.1016/j.geomphys.2017.01.012
https://arxiv.org/abs/1606.07148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.07148
https://doi.org/10.1007/JHEP07(2015)054
https://arxiv.org/abs/1411.2762
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2762
https://doi.org/10.1007/JHEP05(2016)062
https://arxiv.org/abs/1411.4918
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.4918
https://doi.org/10.1007/JHEP05(2015)111
https://arxiv.org/abs/1412.4407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.4407
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.2824
https://doi.org/10.1007/JHEP09(2012)033
https://arxiv.org/abs/1206.6359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6359

[30]

V. Pestun, Localization for N = 2 supersymmetric gauge theories in four dimensions, in New
dualities of supersymmetric gauge theories, J. Teschner, Springer, Germany (2016)
[arXiv:1412.7134] [INSPIRE].

V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)
440301 [arXiv:1608.02952] [INSPIRE].

G. Festuccia, J. Qiu, J. Winding and M. Zabzine, Transversally elliptic complex and
cohomological field theory, J. Geom. Phys. 156 (2020) 103786 [arXiv:1904.12782] [INSPIRE].

J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008
[arXiv:1104.5353] [INSPIRE].

B. Assel, D. Martelli, S. Murthy and D. Yokoyama, Localization of supersymmetric field
theories on non-compact hyperbolic three-manifolds, JHEP 03 (2017) 095
[arXiv:1609.08071] [INSPIRE].

A. Pittelli, Supersymmetric localization of refined chiral multiplets on topologically twisted
H? x S, Phys. Lett. B 801 (2020) 135154 [arXiv:1812.11151] [NSPIRE].

C. Closset and I. Shamir, The N' = 1 chiral multiplet on T? x S? and supersymmetric
localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

G. Festuccia, J. Qiu, J. Winding and M. Zabzine, N' = 2 supersymmetric gauge theory on
connected sums of S? x S, JHEP 03 (2017) 026 [arXiv:1611.04868] [INSPIRE].

A. Bawane, S. Benvenuti, G. Bonelli, N. Muteeb and A. Tanzini, N' = 2 gauge theories on
unoriented/open four-manifolds and their AGT counterparts, JHEP 07 (2019) 040
[arXiv:1710.06283] [INSPIRE].

P. Longhi, F. Nieri and A. Pittelli, Localization of 4d N' = 1 theories on D? x T2, JHEP 12
(2019) 147 [arXiv:1906.02051] [INSPIRE].

J. Kéllén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact
geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

J. Kéllén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D
Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]
[INSPIRE].

J. Qiu and M. Zabzine, 5D Super Yang-Mills on YP9 Sasaki-Einstein manifolds, Commun.
Math. Phys. 333 (2015) 861 [arXiv:1307.3149] [INSPIRE].

J. Qiu and M. Zabzine, Factorization of 5D super Yang-Mills theory on YP? spaces, Phys.
Rev. D 89 (2014) 065040 [arXiv:1312.3475] [InSPIRE].

J. Qiu and M. Zabzine, On twisted N = 2 5D super Yang-Mills theory, Lett. Math. Phys.
106 (2016) 1 [arXiv:1409.1058] [INSPIRE].

J.A. Minahan and M. Zabzine, Gauge theories with 16 supersymmetries on spheres, JHEP
03 (2015) 155 [arXiv:1502.07154] [INSPIRE].

K. Polydorou, A. Rocén and M. Zabzine, 7D supersymmetric Yang-Mills on curved
manifolds, JHEP 12 (2017) 152 [arXiv:1710.09653] [INSPIRE].

N. Iakovidis, J. Qiu, A. Rocén and M. Zabzine, 7D supersymmetric Yang-Mills on hypertoric
3-Sasakian manifolds, JHEP 06 (2020) 026 [arXiv:2003.12461] [INSPIRE].

E. Friedman and S. Ruijsenaars, Shintani—-Barnes ¢ and v functions, Adv. Math. 187 (2004)
362.

~ 31—


https://doi.org/10.1007/978-3-319-18769-3_6
https://arxiv.org/abs/1412.7134
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7134
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02952
https://doi.org/10.1016/j.geomphys.2020.103786
https://arxiv.org/abs/1904.12782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12782
https://doi.org/10.1007/JHEP08(2011)008
https://arxiv.org/abs/1104.5353
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.5353
https://doi.org/10.1007/JHEP03(2017)095
https://arxiv.org/abs/1609.08071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.08071
https://doi.org/10.1016/j.physletb.2019.135154
https://arxiv.org/abs/1812.11151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11151
https://doi.org/10.1007/JHEP03(2014)040
https://arxiv.org/abs/1311.2430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2430
https://doi.org/10.1007/JHEP03(2017)026
https://arxiv.org/abs/1611.04868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.04868
https://doi.org/10.1007/JHEP07(2019)040
https://arxiv.org/abs/1710.06283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.06283
https://doi.org/10.1007/JHEP12(2019)147
https://doi.org/10.1007/JHEP12(2019)147
https://arxiv.org/abs/1906.02051
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02051
https://doi.org/10.1007/JHEP05(2012)125
https://arxiv.org/abs/1202.1956
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.1956
https://doi.org/10.1007/JHEP08(2012)157
https://arxiv.org/abs/1206.6008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6008
https://doi.org/10.1007/s00220-014-2194-7
https://doi.org/10.1007/s00220-014-2194-7
https://arxiv.org/abs/1307.3149
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.3149
https://doi.org/10.1103/PhysRevD.89.065040
https://doi.org/10.1103/PhysRevD.89.065040
https://arxiv.org/abs/1312.3475
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.3475
https://doi.org/10.1007/s11005-015-0804-8
https://doi.org/10.1007/s11005-015-0804-8
https://arxiv.org/abs/1409.1058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.1058
https://doi.org/10.1007/JHEP03(2015)155
https://doi.org/10.1007/JHEP03(2015)155
https://arxiv.org/abs/1502.07154
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.07154
https://doi.org/10.1007/JHEP12(2017)152
https://arxiv.org/abs/1710.09653
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09653
https://doi.org/10.1007/JHEP06(2020)026
https://arxiv.org/abs/2003.12461
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.12461
https://doi.org/https://doi.org/10.1016/j.aim.2003.07.020
https://doi.org/https://doi.org/10.1016/j.aim.2003.07.020

[49] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3
[hep-th/9408074] [INSPIRE].

[50] G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06
(2011) 114 [arXiv:1105.0689] [INSPIRE].

[51] M.F. Sohnius, The multiplet of currents for N = 2 extended supersymmetry, Phys. Lett. B
81 (1979) 8 [INSPIRE].

[52] B. de Wit, J.W. van Holten and A. Van Proeyen, Transformation rules of N =2
supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [InSPIRE].

[63] B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl.
Phys. B 184 (1981) 77 [Erratum ibid. 222 (1983) 516] [INSPIRE].

[54] B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter
systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

[65] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge
UK. (2012).

[56] C. Klare and A. Zaffaroni, Fztended supersymmetry on curved spaces, JHEP 10 (2013) 218
[arXiv:1308.1102] [NSPIRE].

[57] D. Butter, G. Inverso and I. Lodato, Rigid 4D N = 2 supersymmetric backgrounds and
actions, JHEP 09 (2015) 088 [arXiv:1505.03500] [INSPIRE].

[68] J. Labastida and M. Marifio, Topological quantum field theory and four manifolds, Springer,
Germany (2005).

[59] J. Qiu, L. Tizzano, J. Winding and M. Zabzine, Gluing Nekrasov partition functions,
Commun. Math. Phys. 337 (2015) 785 [arXiv:1403.2945] [INSPIRE].

[60] G. Felder and A. Varchenko, The elliptic gamma function and sl(3,z) x 23, Adv. Math. 156
(2000) 44.

[61] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton U.S.A. (1992).

[62] Y. Kosmann, Dérivées de Lie des spineurs, Ann. Mat. Pura Appl. 91 (1971) 317.

~32 -


https://doi.org/10.1016/0550-3213(94)90097-3
https://arxiv.org/abs/hep-th/9408074
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9408074
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.0689
https://doi.org/10.1016/0370-2693(79)90703-2
https://doi.org/10.1016/0370-2693(79)90703-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB81%2C8%22
https://doi.org/10.1016/0550-3213(80)90125-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB167%2C186%22
https://doi.org/10.1016/0550-3213(83)90548-5
https://doi.org/10.1016/0550-3213(83)90548-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB184%2C77%22
https://doi.org/10.1016/0550-3213(85)90154-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB255%2C569%22
https://doi.org/10.1007/JHEP10(2013)218
https://arxiv.org/abs/1308.1102
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1102
https://doi.org/10.1007/JHEP09(2015)088
https://arxiv.org/abs/1505.03500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.03500
https://doi.org/10.1007/1-4020-3177-7
https://doi.org/10.1007/s00220-015-2351-7
https://arxiv.org/abs/1403.2945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.2945
https://doi.org/10.1006/aima.2000.1951
https://doi.org/10.1006/aima.2000.1951
https://doi.org/10.1007/BF02428822

	Introduction and summary
	N=2 theories on four-manifolds
	Review of N=2 rigid supergravity
	Supersymmetric multiplets
	Vector multiplet
	Hypermultiplet

	Hypermultiplet Lagrangian

	Construction of Killing spinors
	Killing spinors
	Auxiliary Killing spinors

	Twisted supersymmetry
	Flipping projectors
	Cohomological fields
	Vector multiplet
	Hypermultiplet

	Hypermultiplet Lagrangian in cohomological fields
	Non-equivariant topological twist

	Cohomological localization
	BPS locus
	One-loop determinant from index theorem
	Example: hypermultiplets on squashed S**4
	Example: hypermultiplets on S**2 x S**2

	Notation and conventions
	Flat Euclidean space and Dirac spinors
	Differential geometry

	Supergravity background solutions
	Cohomological variables for vector multiplet

