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1. Introduction 

The rise in antimicrobial resistance has recently been defined as the most likely cause of the 

next pandemic (FAO, 2021). Antimicrobial resistance is recognized globally as one of the most serious 

threats to public health, with significant adverse outcomes for human and animal health and for the 

agriculture and food sectors (EFSA Panel on Biological Hazards (BIOHAZ) et al., 2021). Addressing this 

serious threat requires continuous and deep-level surveillance of antimicrobial usage and emergence 

of resistance through a one-health approach, whilst considering human, animal, and environmental 

reservoirs (Lammie & Hughes, 2016). In this context, the high use of antimicrobial compounds in 

food-producing animals has attracted particular attention, as it is known that the use and the misuse 

of antibiotics can exert a selective pressure on bacteria driving the emergence of resistance in both 

pathogens and commensal bacteria alike (Call et al., 2008; Cuccato et al., 2021). The genetic 

reservoirs of antimicrobial resistance (AMR) genes include both commensal and pathogenic bacteria; 



the potential transmission of resistant isolates from food-producing animals to humans via direct 

contact or via the food chain is therefore considered a risk of the utmost importance (Call et al., 

2008).  

Antibiotics are extensively used to treat bacterial infections in cattle production systems; 

bovine mastitis, in particular, is recognized as the root cause of antimicrobial compound use in dairy 

farms worldwide, leading to considerable financial losses for farmers and the potential selection and 

introduction of AMR-encoding genes and associated bacteria in milk production environments and 

dairy products (Nobrega et al., 2018). Among the indicators of intramammary gland infection, an 

increased somatic cell count (SCC) in milk is considered a prognostic indicator. According to 

the International Dairy Federation guidelines, the optimal SCC value to distinguish between infected 

and uninfected cows is around 200,000 cells/ml, while the Regulation (EC) No 853/2004 of the 

European Parliament and of the Council of 29 April 2004 has established 400,000 SCC as the cut-off 

point to consider the milk suitable for human consumption. In the context of growing AMR use, the 

interest in raw milk, which has already proven to pose a risk for the consumer due to the possible 

presence of foodborne pathogens, is a cause for concern (Claeys et al., 2013). 

Although AMR is not limited to pathogenic bacteria, AMR surveillance is usually concentrated 

on a modest number of bacterial genera of importance to public health (EFSA Panel on Biological 

Hazards (BIOHAZ) et al., 2021). As resistance can be intrinsic or acquired, emergence and 

transmission of AMR may occur through different mechanisms, including point mutations in target 

genes and the horizontal movement of resistance genes. Among the strategies underpinning its 

occurrence, horizontal gene transfer (HGT) can lead to the lateral exchange of genetic elements 

between different bacteria, thereby amplifying the risk of AMR gene dissemination (EFSA Panel on 

Biological Hazards (BIOHAZ) et al., 2021). 



Among the different techniques applied to characterize the so called resistome, defined as 

the totality of all genes encoding AMR in a given sample, Next Generation Sequencing (NGS) 

technologies are regarded as useful tools to facilitate characterization; as for functional and 

resistome diversity, shotgun metagenomics enables effective, timesaving and culture-independent 

exploration of microbial communities in complex samples, thereby overcoming the limitations posed 

by more traditional culture-dependent methods and targeted genomics (Quince et al., 2017). 

However, shotgun metagenomic sequencing has some limitations, especially once applied to host-

derived samples. Indeed, the advantage of sequencing all DNA present in a sample will also include a 

large percentage of the host genome, and this is observed in the case of most of the food-related 

matrices, such as milk and dairy products, containing DNA of bovine origin (Alexa (Oniciuc) et al., 

2020; McHugh et al., 2020; Rubiola et al., 2020; Yap et al., 2020). Although a greater sequencing 

depth can partially solve this problem, it leads to an increase in cost. As our recent pilot study 

reported, in-line milk filters constitute a cheap and valuable tool to overcome this issue when the 

target matrix is represented by raw milk, providing an alternative for characterizing the microbiome, 

the resistome and for the detection of foodborne pathogens at farm level (Čížek et al., 2008; Rubiola 

et al., 2020). Despite the growing concern related to AMR, few attempts have been made thus far to 

characterize the resistome associated with dairy cattle production systems through the application 

of NGS strategies (Alexa (Oniciuc) et al., 2020; McHugh et al., 2020; Nikoloudaki et al., 2021). 

Nevertheless, investigation of samples for the presence of AMR-encoding genes in milk and milk 

production environments could provide data to estimate the public health risk associated with 

antimicrobial compound use in the dairy industry, raw milk consumption and raw milk cheese 

production; indeed, along with potential pathogenic bacteria, raw milk may contain AMR bacteria 

which can be disseminated to the human gastrointestinal tract (Liu et al., 2020). 



Given the current knowledge gap relating to the resistome of milk and its production 

environment, the aim of the present study was to investigate the resistome of dairy farms with history 

of different bulk tank SCCs through a shotgun metagenomic sequencing approach, taking advantage 

of in-line milk filters as promising though yet unexplored tools. 

 

2. Materials and methods 

 

2.1 Farms selection and collection of samples 

Farms were selected based on their historical bulk tank SCC data recorded by ARAP (Associazione 

Regionale Allevatori del Piemonte) reference laboratories on milk collected from dairy farms located 

in Piedmont (North-West Italy) from January 1st, 2017, to December 31st, 2019. Milk SCCs were 

analyzed by the fluoro-opto-electronic method according to ISO 13366-2/2006 (European Regulation 

No. 2019/627). The SCC geometric average was calculated over the three-year period for farms 

having at least two SCC recorded data per month, thereby identifying three categories of farms -

defined as farms with low historical SCC (geometric average ≤ 150,000 cells/mL), farms with mid-level 

historical SCC (geometric average >150,000 and ≤300,000) and farms with high historical SCC 

(geometric average > 300,000 cells/mL). The low- and the high-SCC herd groups were used to select 

5 dairy farms from each, representing a total of 10 dairy farms. Data on herds size, number of 

lactating cows, milk production trends and welfare assessment based on ClassyFarm integrated 

monitoring system (www.classyfarm.it) of the Italian Ministry of Health, including farm management, 

housing and animal-based measures (ABMs), were also collected.  

The samples were collected in May 2020 and 2021 and the sampling procedure included the 

use of disposable in-line milk filters that were taken from the bulk tank of each selected dairy farm. 

Milk filters were collected directly from the tank under aseptic conditions, then inserted in sterile 



plastic sampling bags (Whirl-Pack, NASCO) and transported in controlled temperature to the 

Laboratory of Food Inspection - Department of Veterinary Science, University of Turin - where DNA 

extraction was performed immediately.  

 

2.2 DNA extraction and shotgun metagenomic sequencing 

Upon arrival at the laboratory, 10 g of each milk filter were added to 90 ml of sterile buffered 

saline solution (Ringer's solution, Oxoid, Basingstoke, UK) in a sterile stomacher bag and 

homogenized for 2 min at 230 rpm in a stomacher (Seward Stomacher Blender 400, London, UK). 

Total DNA was then extracted from filter homogenates using the DNeasy Blood and Tissue Kit 

(QIAGEN, Hilden, Germany), with minor adjustments. Samples were centrifuged for 10 min at 100  × g 

to pellet and discard eukaryotic cells; milk serum was then centrifuged at 13,000 × g for 15 min at 

4°C to pellet prokaryotic cells and pellets recovered resuspended in phosphate-buffered saline [PBS] 

(Oxoid Basingstoke, UK). Isolation of genomic DNA was then performed following the manufacturer’s 

protocol; DNA was eluted in 50 μl 10 mM Tris-HCl buffer (pH 8.5) and frozen at −20°C until analyzed. 

Template DNA of each sample was quantified using a Qubit 2.0 Fluorometer (Life Technologies, 

Carlsbad, CA, USA) with the Qubit double-stranded DNA (dsDNA) high-sensitivity assay kit. DNA 

integrity and purity were verified by conventional 2% agarose gel electrophoresis and also using a 

NanoDrop spectrophotometer (ThermoFisher Scientific, Belgium). Samples meeting quality criteria 

were submitted for library preparation and subsequent shotgun metagenomic sequencing. DNA 

library preparation and shotgun metagenomic sequencing steps were performed by Genewiz 

(Leipzig, Germany). DNA library preparation was conducted according to the NEBnext Ultra II DNA 

library preparation guide and four PCR cycles were applied to generate libraries (New England 

Biolabs, Ipswich, MA); samples were sequenced on the Illumina NovaSeq 6000 platform to generate 



2 × 150 bp paired-end (PE) reads. The required sequencing depth for each sample was 50 million PE 

reads. 

 

2.3 Bioinformatics pipelines  

Raw read sequencing data quality control was carried out using FastQC v.0.11.9 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC v1.11 (Ewels et al., 

2016) with default parameters. Raw reads were quality-trimmed using Trimmomatic version 0.39 

(Bolger et al., 2014) (leading, 3; trailing, 3; slidingwindow, 4:20; minlen, 36), removing low-quality 

regions, adaptor sequences and sequencing primers. After the quality filtering step, clean reads were 

aligned using Bowtie2 v.2.4.4 (Langmead & Salzberg, 2012) against the Bos taurus ARS-UCD1.2 bovine 

reference genome (NCBI genome database), to remove host DNA sequences. Unmapped reads were 

then used for the downstream analysis. 

Host-filtered reads were aligned against the AMR databases MEGARes v.1.0.1 (Lakin et al., 

2017), the Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al., 2020), ARG-ANNOT 

(Gupta et al., 2014), and ResFinder 4.1 (Zankari et al., 2012) using the Burrows Wheeler Aligner (BWA-

MEM) (Li, 2013) with default settings to perform reads-based resistome characterization; bam-files 

containing mapped reads were generated with SAMtools v1.10 (Li et al., 2009) and paired reads were 

extracted from the bam-files with the Coverage Sampler tool 

(https://github.com/cdeanj/coveragesampler) using an 80% gene fraction threshold (Zaheer et al., 

2018). Counts of short reads aligned to the AMR genes were recorded and redundant genes were 

manually removed. Read counts originating from alignments to housekeeping genes associated with 

AMR requiring single nucleotide polymorphism (SNP) confirmation were filtered out before further 

analyses. Reads predicted to encode AMR were taxonomically classified using Kraken2 v2.1.2 (Wood 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


et al., 2019). Taxonomic classification of host-filtered reads was assigned by mapping the reads 

against the MiniKraken2 v1 reference database using Kraken2; the package Bracken was then used 

on Kraken’s reports to re-estimate species abundance (threshold=10) (Lu et al., 2017). AMR and 

microbial count tables were normalized using the cumulative sum scaling (CSS) method (Paulson et 

al., 2013). The pairwise Spearman’s correlation test was applied to investigate correlations between 

detected AMR determinants and identified microbial species with a relative abundance > 0.99 % (R 

software, version 3.5.1). Additionally, Spearman's correlation test was performed in order to assess 

any correlation between the presence of AMR genes, the SCCs herd group and the sampling year (p 

< 0.05).  

Host-filtered reads were assembled de novo using IDBA-UD v1.1.3 (Peng et al., 2012); the 

generated scaffolds were quality-checked using CheckM v1.1.3 (Parks et al., 2015) and used for 

screening for AMR genes using ABRicate tool (https://github.com/tseemann/abricate) against 

MEGARes v1.0.1, CARD, ARG-ANNOT, NCBI and ResFinder (Camacho et al., 2009) databases with a 

coverage > 80% and a minimum identity threshold set to 80%;  multiple hits against the same AMR 

gene were regarded as one hit due to the fragmented nature of the metagenome assemblies , and 

redundant genes were manually removed (Esaiassen et al., 2018). MOB-typer and MOB-recon tool 

from MOB-suite v.1.4.9 (Robertson & Nash, 2018) were used on scaffolds longer than 500 bp to 

predict plasmid sequences and mobility from single-sample assemblies and each plasmid FASTA file 

generated by MOB-suite was screened for the presence of AMR genes using ABRicate tool as 

previously described. HGT events were identified in metagenomic contigs using WAAFLE 

(https://huttenhower.sph.harvard.edu/waafle/). Single-sample metagenomic assemblies generated 

with IDBA-UD were used for the reconstruction of microbial genomes. Contigs longer than 1,500 nt 

were binned with MetaBAT2 v2.12.1 (Kang et al., 2019). Coverage information was generated by 

mapping quality trimmed reads from individual samples to the contigs from each assembly using 

https://huttenhower.sph.harvard.edu/waafle/


Bowtie2 v2.3.5 and SAMtools v1.7. Multiple bins recovered were quality -assessed with CheckM in 

order to assess completeness and the presence of contamination; low-quality metagenome-

assembled genomes (MAGs) (<50% completeness and/or >10% contamination) were excluded from 

further analysis. Taxonomic assignment of MAGs was performed with CAT/BAT tool v5.2.3 (von 

Meijenfeldt et al., 2019). Retained MAGs were used for screening for AMR genes, plasmids and HGT 

events using ABRicate, MOB-suite and WAAFLE tools as previously described. The overall workflow is 

shown in Figure 1. 

 

 

Figure 1. Illustration showing the overall workflow of this study. 

 

3. Results 

The study area selected to enroll the dairy farms comprised the neighboring Provinces of Turin and 

Cuneo, located in the southwest and in the northeast part of the Piedmont region (North-West Italy); 

https://github.com/dutilh/CAT/commit/b2b47b0ea3d159f9c3acfd790b6192f6274e178c


each dairy farm was separated by up to ∼100 km from others. The mean herd size was 237 cows 

(range 143-382 cows), while lactating herds ranged between 70 and 166 cows, with a mean lactating 

herd size of 106 cows at the times of sampling and a mean herd level production of 30,3 kg milk/cow 

(range 22-39 kg). All selected farms raised Friesian cattle and had a high level of animal welfare based 

on the ClassyFarm integrated monitoring system (www.classyfarm.it) of the Italian Ministry of Health 

(Ventura et al., 2021). 

 

3.1 Shotgun metagenomic sequencing 

Shotgun metagenomic sequencing yielded 1.06 billion reads, with an average of 53.1 million reads 

per sample (range 44.8-76.8 M, Supplementary File S1). The mean read quality score for samples 

ranged from 35 to 36. Trimming resulted in removal of 2.4-3.5% reads per sample, while the 

percentage of reads associated with the bovine reference genome ranged from 91.3 % to 98.8% 

across all samples (Supplementary File S1). Out of 29.9 million remaining reads, 6.2 million were 

identified at the bacterial and archaeal phyla level (20.7%). 

 

3.2 Resistome characterization: reads-based approach 

Across all sample datasets, 29,162 reads (0,47% of microbial reads, 0,003% of total reads) were 

successfully aligned to the manually curated AMR databases including MEGARes, CARD, ARG-ANNOT 

and ResFinder, with an average count per sample of 1,458 reads (range 74 – 4,828). A total of 160 

individual AMR genes were identified and assigned to 39 AMR mechanisms and 12 AMR classes; the 

median number of unique AMR genes identified per sample was 20 across all sample datasets (range 

5 - 51), 25 across the low SCCs farm group samples (range 5 - 51) and 16 across the high SCCs farm 

group samples (range 5 - 35). The resistome profiles were broadly similar across all samples with 



aminoglycoside (n=29), β-lactam (n=27), tetracycline (n=20), multidrug (n=47) and macrolide-

lincosamide-streptogramin (MLS) (n=14) being the most abundant classes in both high- and low-SCCs 

farm groups, followed by phenicol (n=9), antimicrobial peptides (AMPs) (n=4), fosfomycin (n=3) and 

sulfonamide (n=2) classes. Two AMR genes conferring resistance to triclosan (triA and triC) were 

identified in the low-SCCs farm group, while two more AMR classes were identified in the high SCCs 

farm group, corresponding to rifampin (n=1) and fluoroquinolone (n=2) classes (Figure 2). 

Aminoglycoside O-phosphotransferases, aminoglycoside O-nucleotidyltransferases, tetracycline 

resistance ribosomal protection proteins, tetracycline resistance major facilitator superfamily MFS 

efflux pumps, class A beta-lactamases, lincosamide nucleotidyltransferases, and drug and biocide 

RND efflux pumps were the most abundant AMR mechanisms (Supplementary File S2). The 

Spearman's correlation test did not highlight any significative correlation between the presence of 

AMR determinants and the SCCs herd group or the sampling year.  



 

Figure 2.   Actual abundance of AMR classes across filter samples corresponding to high and low SCCs 

farm groups separated (A) and merged (B) after normalization; the y-axis shows the reads per million 

(RPM). 

 



Of a total 1.06 billion reads generated, 6.19 million reads were identified at the bacterial, archeal and 

viral phyla level, with an average number of 307,730 reads aligning to phyla per sample (range 61,101 

– 726,995). Across all datasets, 37 phyla, 74 classes, 169 orders, 371 families, 1 ,152 genera and 3,744 

species were identified. Proteobacteria (18,2% - 81,4%), Actinobacteria (9,3% - 38,6 %) and 

Firmicutes (3,1% - 44,6%) were the most abundant phyla, followed by Bacteroidetes (0,7% - 6,7%) 

with Euryarcheota (0,1% - 3,3%). Moraxellaceae (4,3% - 50,3 %), Enterobacteriaceae (0,7% - 33,7%), 

Streptococcaceae (0,1% - 31,2 %), Bifidobacteriaceae (0,2% - 12,9%), Corynebacteriaceae (0,9% - 8%), 

Burkholderiaceae (0,1% - 12,2%), Pseudomonadaceae (1% - 13,1%), Microbacteriaceae (0,1% - 7%), 

Staphylococcaceae (0,1% - 12,3%) and Xanthomonadaceae (0,5% - 7,3%) among the ten most 

abundant families across all sample datasets. Acinetobacter (3% - 49,8%), Enterobacter (0,1% - 

28,5%), Bifidobacterium (0,2% - 12,9%), Corynebacterium (0,9% - 8%), Pseudomonas (0,8% - 5,6%), 

Escherichia (0,4% - 11,5%), Lactococcus (0,1% - 11,2%), Ralstonia (0,1% - 8,6%), Staphylococcus (0,1% 

- 11,3%) and Bradyrhizobium (0,1% - 6,2%) were the most abundant genera detected. 

The associations between the relative abundance of the 160 AMR genes and the 20 most abundant 

bacterial genera (> 0.99 %) were assessed by Spearman’s correlation, revealing the presence of 19 

significant interactions (p  < 0.05) among β-lactam, tetracycline, MLS and aminoglycoside resistance-

encoding genes and bacteria belonging to the genera Aerococcus, Corynebacterium, Ralstonia, 

Bifidobacterium, Microbacterium, Bradyrhizobium and Sphingomonas (Supplementary File S3). 

Some 40,7% of reads predicted to encode AMR were taxonomically assigned at the phylum level, the 

most abundant originating from Proteobacteria, followed by Firmicutes, Actinobacteria and 

Bacteroidetes (Figure 3). Only 30,1% of identified resistance determinants could be taxonomically 

assigned to the genus level, with most originating from Gram-negative bacteria, namely Enterobacter, 

Acinetobacter, Escherichia and Pseudomonas, and Gram-positive bacteria, namely Clostridioides, 

Staphylococcus and Bifidobacterium (Figure 3). 



 

 

Figure 3.   Illustration showing phylum (circle packing) and genus-level (alluvial diagram) classification 

of AMR genes per AMR class based on kraken2 classification.   

 

3.3 Resistome characterization: assembly-based approach 

 



Single-sample de novo assembly of trimmed and host-DNA cleaned reads produced up to 85,118 

contigs in each sample; quality parameters of generated assemblies are reported in Supplementary 

File S4.  

The scaffold-based approach allowed the identification of 71 individual AMR-encoding genes across 

all single-sample assemblies, corresponding to 27 AMR mechanisms and 9 AMR classes, namely 

aminoglycoside (n=19), multidrug (n=19), β-lactam (n=9), tetracycline (n=9), MLS (n=8), sulfonamide 

(n=2), fosfomycin (n=2), phenicol (n=2) and AMPs (n=1) classes. All single-sample assemblies 

harbored at least one AMR gene (range 1 - 30 genes), except for one sample which did not show any 

AMR determinant. Aminoglycoside O-nucleotidyltransferases (n=12) were the main AMR mechanism 

detected in most single-sample assemblies, followed by aminoglycoside O-phosphotransferases, 

tetracycline resistance MFS efflux pumps, lincosamide nucleotidyltransferases, multidrug RND efflux 

regulator and multidrug RND efflux pumps. The resistome profiles were broadly similar to the 

annotated AMR genes derived from the reads-based approach (shown above), despite the lower 

number of AMR genes detected due to the loss of data resulting from de novo assembly. As shown 

by Venn diagrams (Figure 4),  9 AMR classes, 26 AMR mechanisms and 62 AMR genes were identified 

through both the reads-based and the scaffolds-based approach, while 3 additional AMR classes, 13 

AMR mechanisms and 99 AMR genes were identified through the reads-based approach. 

 

 



Figure 4 . Venn diagrams showing the number of a) AMR classes, b) AMR mechanisms and c) AMR 

genes shared or unique among the reads-based approach, the scaffolds-based approach and the 

high-quality MAGs based approach.  

 

Thirty-seven plasmids carrying between 1 and up to 6 AMR-encoding genes were detected across 14 

of 20 single-sample assemblies; among them, 14 plasmids were classified as mobilizable by MOB-

suite tools (Supplementary File S5 ). Mobilizable plasmids carried 10 AMR genes belonging to 5 AMR 

classes, namely aminoglycoside (n=5), tetracycline (n=2), β-lactam (n=1), MLS (n=1) and sulfonamide 

(n=1) classes. Among mobilizable plasmids, the small plasmid pALWED1.8 (4,135 bp) carrying the 

streptomycin/spectinomycin resistance gene aadA27, whose observed host range includes 

Acinetobacter spp., was detected in nine different samples; plasmid pDJ91S (3,928 bp), carrying the 

aminoglycoside nucleotidyltransferase spd gene, plasmid paadD (7,190 bp), carrying the macrolide 

phosphotransferase mphB gene conferring resistance to erythromycin, spiramycin and telithromycin, 

plasmid pvSw1 (13,186), carrying the aminoglycoside nucleotidyltransferase ant6 gene, the 

multiresistance plasmid p2012N21 (73,223), carrying two streptomycin resistance genes (strA and 

strB), the tet(X3) and tetM genes, conferring resistance to tetracyclines, the oxa-58 beta-lactamase 

and the sulfonamide resistant dihydropteroate synthase sul2 gene, and the multiresistance plasmid 

pKLH80 (14,835 bp), carrying two streptomycin resistance genes (strA and strB), were detected in 

one sample each. MOB-typer output values for mobilizable plasmids, including observed host range 

and AMR determinants, are reported in Supplementary File S6.  

Across 19 of the 20 single-sample assemblies, 144 occurrences of HGT events were identified, most 

of which occurred between members of the same phylum (Figure 5). The HGT direction could be 

determined for 7 instances. HGTs were most frequent between members of the phylum 

Proteobacteria, especially among Psychrobacter and Acinetobacter. Out of the 144 instances, 26 



were identified as transposases, of which one had a determined HGT direction (UniRef90_C8Q1E5), 

while one was identified as a site-specific recombinase, phage integrase family (UniRef50_E2XJZ7), 

two were identified as ABC-type transporters (UniRef50_B3DSG6; UniRef90_A0A011TBE8), one was 

identified as a macrolide 2'-phosphotransferase II (UniRef90_O32553) and one was identified as a 

beta-lactamase (UniRef90_P30897). 

 

 

Figure 5.  HGTs detected in single-sample assemblies and MAGs; the taxa within which HGTs were 

detected are reported on the x-axis. 

 

Scaffolds longer than 1,500 bp underwent binning and the de novo assembly resulted in 8 high-quality 

MAGs, whose genome sizes varied from 1.3 to 4.2 Mb. Quality parameters of the generated MAGs 

are reported in Table 1.  Seven MAGs of eight were identified at the genus or family level, including 
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one Psychrobacter sp., two Acinetobacter spp., one Lactococcus sp., one member of the 

Moraxellaceae family, one member of the Enterobacteriaceae family and one member of the 

Weeksellaceae family. The remaining MAG belonged to phylum Gammaproteobacteria (Table 2). 

 

Table 1. Quality parameters of the 8 high quality MAGs gained after binning and single-sample de 

novo assembly. 

 

MAG ID S ample 

ID  

Genome 

s ize 

Phylum GC (%) N. of  

sca ffolds 

Longest 

sca ffold 

(bp) 

N50 Complete

ness 

Contami

na tion 

Coding 

density 

Predicted 

g enes 

MA G 1 F3 

2020 

3,018,221 Proteob

acteria 

38.51 

 

414 80193 

 

11542 

 

91.85 

 

1.05 

 

0.881 3208 

MA G 2 F4 

2020 

1,833,608 Proteob

acteria 

41.83 

 

522 17074 

 

3934 

 

68.63 

 

4.31 

 

0.854 2062 

MA G 3 F4 

2020 

2,314,343 Firmicut

es 

34.82 

 

468 26466 

 

6785 

 

91.76 

 

1.35 

 

0.858 2656 

MA G 4 F4 

2020 
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The MAGs-based approach allowed the identification of 22 AMR genes across seven of eight MAGs, 

corresponding to 14 AMR mechanisms and 6 AMR classes, including multidrug, β -lactam, 

aminoglycoside, tetracycline, AMPs and fosfomycin classes. Three matches, related to genes 



conferring resistance to β-lactams (blaACT-52 and CARB-16) and tetracyclines (tetH) had perfect 

nucleotide coverages and identity, while 20 AMR genes had strict nucleotide matches, with 

sequences coverage ranging between 90.54% and 100 % and sequences identity ranging between 

80.20 and 98.97 %. MAG 4 (highlighted in grey shading) was identified as a member of the 

Enterobacteriaceae family; this genome harbored 11 multidrug-resistance genes, most of which were 

complete, conferring resistance to diaminopyrimidine, fluoroquinolone, glycylcycline, nitrofuran, 

tetracycline, carbapenem, cephalosporin, cephamycin, monobactam, penam, penem, phenicol, 

rifamycin, triclosan, aminocoumarin, aminoglycoside, macrolide and peptide antibiotics, together 

with three class C beta-lactamases (ACT-9, ACT-28 and ACT-52), one penicillin binding protein (PBP2), 

one gene conferring resistance to bacitracin (bacA) and one gene conferring resistance to Fosfomycin 

(fosA2). While MAG 1 was not annotated to contain any AMR gene, MAG 2 and MAG 7 harbored the 

multidrug-resistance gene MexT, a transcriptional regulator conferring resistance to 

phenicol, diaminopyrimidine and fluoroquinolone antimicrobial compounds; MAG 5 and MAG 3 

harbored a tetracycline efflux protein linked to the resistance genes sul2 and strAB and a 

chromosomally-encoded efflux pump that confers resistance to lincosamides, respectively. The gene 

CARB-16, an IMP beta-lactamase conferring resistance to penems, was annotated in MAG 8. Finally, 

MAG 6 harbored the complete streptomycin/spectinomycin resistance gene aadA27, a variant of the 

aadA gene identified on the small mobilizable plasmid pALWED1.8 of Acinetobacter spp.  

The mobilizable plasmid pALWED1.8 carrying the resistance gene aadA27, conferring resistance to 

streptomycin and spectinomycin, was the only plasmid detected on high-quality MAGs (Table 2); the 

same plasmid gene was previously detected on the corresponding single-sample assembly. The 

detection of HGTs on MAGs was consistent with the annotation of HGTs from scaffolds (Figure 5). 

Thirteen occurrences of HGTs were identified across 5 of the 8 MAGs; the direction could be 

determined for 4 instances. Four instances were identified as transposases (UniRef90_Q1Q7T2, 



UniRef50_E6MV57, UniRef90_UPI00029B00C6 and UniRef90_A5EVZ2) and one was identified as a 

beta-lactamase (UniRef90_P30897). 

 

Table 2. A table showing the taxonomy and identification of AMR genes, plasmids and HGT events in 

the 8 high-quality MAGs. 

MAG id Taxonomy AMR genes Plasmids HGTs 

MAG 1  Acinetobacter sp. 0 0 1 

MAG 2  Gammaproteobacteria 1 0 1 

MAG 3 Lactococcus sp. 1 0 3 

MAG 4  Enterobacteriaceae sp. 17 0 0 

MAG 5  Weeksellaceae sp. 1 0 1 

MAG 6  Acinetobacter sp. 1 1 0 

MAG 7 Moraxellaceae sp. 1 0 0 

MAG 8 Psychrobacter sp. 1 0 7 

 

4. Discussion 

In the context of growing concerns about AMR, a comprehensive resistome characterization of 

different niches, including food and food-related matrices, has been identified as a knowledge gap. 

The recent advances in high throughput sequencing technologies are now enabling the fast and 

untargeted exploration of microbial communities in a wide range of environments, including food. 

However, as highlighted by some recent studies using host-derived samples, a detailed resistome 

investigation of food matrices might be challenging due to the large concentration of host DNA 

encountered, which can be up to 99% of the nucleic acid content for milk and dairy products (Alexa 

(Oniciuc) et al., 2020; Liu et al., 2020; McHugh et al., 2020; Rubiola et al., 2020; Tóth et al., 2020; 



Vasquez et al., 2022; Warder et al., 2021). The microbiome of bulk tank milk is strongly related to the 

microbiome of the in-line bulk tank milk filter, whose pores, which reach a size of 100–150 μm, are 

designed to retain debris and large particles of organic material while allowing bacteria to enter the 

bulk milk. Therefore, the microbiome and the related AMR determinants detected on milk filters can 

be  considered representative of the microbiome and the resistome of milk and milk production 

environments (Murphy et al., 2005; Rubiola et al., 2020). Here, the use of milk filters has provided 

the opportunity to overcome the host DNA issue related to the shotgun metagenomic sequencing 

techniques. In the present study, the resistome of 5 dairy farms with high historical SCCs and 5 dairy 

farms with low historical SCCs were characterized through the use of 20 disposable milk filters  

subjected to the reads- and the assembly-based resistome profiling. In this study different AMR 

determinants were detected in each analyzed sample, showing the absence of a significative 

correlation between the presence of AMR determinants and the SCCs herd group and demonstrating 

similar resistomes despite their origin from different farms. The use of historical SCCs as indicators of 

recurrent mastitis and resultant high antimicrobial compound use has already been investigated 

(Ruegg & Tabone, 2000); our findings, although focused on a different matrix, are consistent with 

other studies evaluating the faecal resistome of cattle from conventional and “raised without 

antibiotics” farms and in cattle experimentally treated and untreated with antibiotics (Doster et al., 

2018; Rovira et al., 2019), suggesting that other factors, together with the antimicrobial use, may 

influence the resistome composition, including environmental factors. In this context, however, it is 

worth noting that any comparisons between different milk filter samples should be carefully  

interpreted, even after normalization, due to the different proportion of host-related reads 

recovered from each milk filter, as a higher number of microbial reads may result in a greater 

probability of finding AMR genes (Rovira et al., 2019). 



As previously mentioned, for detection of AMR genes in the metagenomic datasets obtained fro m 

milk filters, both the unassembled reads and the de novo assembled reads were queried, with the 

aim of achieving a more comprehensive resistome characterization. Indeed, despite the limitations 

of the reads-based method, this approach has gained attention in recent years thanks to the speed 

and relatively low computational demand, now becoming the favored technical approach; besides, 

the reads-based approach allows the detection of AMR genes from low abundance bacteria that 

might otherwise be undetectable by assembly-based approaches with incomplete assemblies 

(Boolchandani et al., 2019; Lal Gupta et al., 2020). However, the direct analysis of unassembled reads 

can result in a high false-positive prediction arising from artificial alignment of reads to AMR gene 

datasets due to local sequence homology (Lal Gupta et al., 2020). On the other hand, characterizing 

the resistome from contigs or MAGs after de novo assembly, despite being time consuming, 

computationally demanding and requiring a higher genome coverage, allows a more accurate 

detection of valid coding DNA sequences and a better exploration of the surrounding genomic 

context, which can then be used to study co-linked genes, given sufficient coverage (Boolchandani et 

al., 2019; Lal Gupta et al., 2020). In the present study, the application of both approaches facilitated 

a comprehensive resolution of the resistome while confirming the loss of data resulting from the 

assembly-based method. Through the reads-based approach, 160 AMR genes were detected, mostly 

belonging to the aminoglycoside, β-lactam, tetracycline, multidrug and MLS classes; notably most of 

the species harboring AMR genes were predicted to be Gram-negative genera, namely Enterobacter, 

Acinetobacter, Escherichia, and Pseudomonas. This prediction was further confirmed by the 

assembly-based approach, which allowed the identification of different MAGs belonging to the 

Moraxellaceae and to the Enterobacteriaceae families harboring AMR genes and the subsequent 

detection of 71 AMR-encoding genes mostly belonging to the multidrug, aminoglycoside, β-lactam, 

tetracycline and MLS classes. While the high relative abundance of Enterobacteriaceae detected in 



some milk filters, including bacteria commonly isolated from bulk tank milk, can be related to faecal 

contamination of udder surfaces or dairy farm environments, Acinetobacter and Pseudomonas spp. 

have been identified as the dominant bacterial communities in the bulk tank milk by some recent 

studies reporting on the high abundance of psychrotolerant bacteria in milk samples prior to thermal 

treatments (McHugh et al., 2020; Nikoloudaki et al., 2021). The role of these bacterial families as 

important reservoirs of AMR genes is consistent with a  recent study which predicted the presence 

of four main families harboring AMR genes in raw milk maintained at room temperature for 24  h, 

namely  Pseudomonadaceae, Enterobacteriaceae, Yersiniaceae and Moraxellaceae families (Liu et al., 

2020); another recent paper emphasized the role of Pseudomonas as the main bacterial genus 

harboring AMR genes in raw milk (Nikoloudaki et al., 2021). Both Acinetobacter spp. and 

Pseudomonas spp. are ubiquitous Gram-negative bacteria widely distributed in nature which can 

acclimate to different ecological habitats and temperatures; thereby, their detection in bulk tank milk 

can be due to their frequent presence on udder surfaces, milking machines and in contaminated 

water used for cleaning purposes. Although these bacterial genera are avirulent for healthy humans, 

nevertheless some strains including opportunistic pathogens such as Acinetobacter baumannii and 

Pseudomonas aeruginosa, Acinetobacter spp. and Pseudomonas spp. have proven to be potential 

reservoirs of AMR genes; their ability to survive in the aquatic environments for long periods forming 

biofilms and to resist heat (Jain & Danziger, 2004; Meng et al., 2020; Panebianco et al., 2022), 

together with the possible exchange of genetic material with other non-pathogenic or pathogenic 

bacteria, points to the fact that their presence in milk filters, hence in the corresponding bulk tank 

milk, should be considered a matter of public health concern. In addition to the presence of AMR 

psychrotolerant bacteria, the detection of multidrug-resistant Enterobacteriaceae in milk filters,  

including Enterobacter spp. and Escherichia spp., as previously reported in poorly handled dairy 

chains, has been linked to many food safety and spoilage issues and should be considered yet another 



public health challenge due to the potential to transmit AMR genes from milk to humans through the 

food supply (Ntuli et al., 2016).  

Although resulting in a loss of metagenomic data, the single sample assembly-based approach used 

in this study allowed the reconstruction of different MAGs carrying AMR determinants; notably, out 

of 8 high quality MAGs, a genome identified as belonging to the Enterobacteriaceae family harbored 

17 AMR genes, most of which were complete multidrug-resistance genes conferring resistance to 

diaminopyrimidine, fluoroquinolone, glycylcycline, nitrofuran, tetracycline, carbapenem, 

cephalosporin, cephamycin, monobactam, penem, phenicol, rifamycin, triclosan, aminocoumarin, 

aminoglycoside, macrolide and peptide antibiotics. Milk filters have already been used along with 

traditional bacteriological methods to investigate the presence of Enterobacteriaceae which could 

enter the food chain, such as Escherichia coli, Salmonella, Cronobacter and Enterobacter spp. 

(Albonico et al., 2017; GIACOMETTI et al., 2012), both as indicators of milk hygiene and as potential 

foodborne pathogens. Herein, the application of shotgun metagenomic sequencing of milk filters has 

allowed the concurrent detection of members of the Enterobacteriaceae family and the complete 

characterization of their AMR determinants, highlighting the possible further implication of risk to 

human health for the consumers of raw milk. Interestingly, in accordance with our findings, the 

microbial carriage and intake of AMR-expressing E. coli through raw milk was recently found to be 

the primary predictor of AMR prevalence in low-income countries, pointing to the role of raw milk as 

carrier of AMR reservoirs (Caudell et al., 2018; Liu et al., 2020).  

Together with the reconstruction of high quality MAGs, the assembly-based approach allowed the 

investigation of the mobilome; in this regard, the occurrence of AMR genes in dairy products can be 

considered less of a risk if those genes are not easily transferred to the gut microbes of the human 

host following consumption (Walsh et al., 2020). In this study, 14 of 37 detected and reconstructed 

plasmids carrying AMR genes belonging to the aminoglycoside, tetracycline, β-lactam, MLS and 



sulfonamide classes were classified as mobilizable; among them the mobilizable plasmid carrying the 

gene aadA27, conferring resistance to streptomycin and spectinomycin, was detected on one of the 

high-quality MAGs identified as a member of the Acinetobacter genus. Further, HGT occurrences 

were detected in both scaffolds and MAGs, showing similar results and revealing a higher frequency 

of HGT events between Gram-negative psychrotolerant bacteria such as Psychrobacter and 

Acinetobacter. The evidence of transposon mediated HGT events and mobile genetic elements 

carrying AMR genes points to the fact that there is potential for transfer of AMR genes between 

bacteria which can be found in raw milk, mostly among bacteria that are more likely to be introduced 

from the farm environment. These findings are consistent with previous studies investigating the 

cheese microbiomes and highlight the need to improve general farm hygiene practices related to the 

environment and the milking process to reduce the chance of raw milk serving as reservoir of 

transmissible AMR genes (Walsh et al., 2020). It should be noted that future investigations are 

required to evaluate the extent to which these findings based on the detection of AMR genes are 

consistent with an associated resistance phenotype. 

Although this study highlights the merits of using high throughput sequencing techniques such as 

shotgun metagenomic sequencing to characterize the resistome of milk filters as predictors of the 

raw milk resistome, the NGS approach applied in this study can be improved and further explored to 

extend the potential of its application together with routine microbiology testing. The high level of 

bovine DNA contamination of raw milk and dairy products and the resulting high percentage of host 

DNA in metagenomic libraries remains an issue for the untargeted whole metagenomic sequencing. 

The resultant lower yields of microbial DNA sequences limits the number of reads recoverable from 

the untargeted shotgun metagenomics for the microbiome analysis (McHugh et al., 2020). The 

recently explored use of microbial enrichment methods can decrease the amount of host DNA, 

though resulting in an increased cost and time spent manipulating the sample, while the enrichment 



for targeted microorganisms before DNA extraction can improve the recoverable reads for a specific 

population (Alexa (Oniciuc) et al., 2020; Rubiola et al., 2020). Developments and standardizations of 

these laboratory procedures together with further advances in the speed and accuracy of 

bioinformatics tools can greatly help detecting and tracking potential foodborne pathogens and AMR 

determinants throughout the food chain, thereby supporting scientifically sound risk reduction 

decision-making for the protection of public health. 

 

5. Conclusions 

Understanding the distribution of AMR genes in a complex, important food matrix such as milk has 

relevance in terms of protecting consumers and maintaining food safety standards. Our findings 

suggest that milk filters can successfully be used to investigate the resistome of raw milk through the 

application of shotgun metagenomic sequencing. This approach facilitates the identification of 

numerous AMR determinants without the need for culture. In this context, de novo assembly allows 

for a more holistic AMR detection strategy, while the reads-based approach facilitates the detection 

of AMR genes from low abundance bacteria that might be undetectable by assembly-based methods, 

with the caveat that it may result in false positive prediction. The application of both reads- and 

assembly-based approaches, despite being computationally demanding, has facilitated the 

comprehensive characterization of a food chain resistome, while also allowing the construction of 

complete MAGs and the investigation of mobile genetic elements. In accordance with our results, 

raw milk can be considered a source of AMR bacteria and genes; this points out the importance of 

properly informing food business operators about the risk associated with poor hygiene practices in 

the dairy production environment and consumers of the potential microbial food safety risks derived 

from raw milk products consumption. Translating these findings as risk assessment outputs heralds 

the next generation of food safety controls. 
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