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Simple Summary: Genomic instability (GI) plays an important role in the pathobiology of multiple
myeloma (MM) by promoting the acquisition of several tumor hallmarks. Molecular determinants of
GIin MM are continuously emerging and will be herein discussed, with specific regard to non-coding
RNAs. Targeting non-coding RNA molecules known to be involved in GI indeed provides novel
routes to dampen such oncogenic mechanisms in MM.

Abstract: Multiple myeloma (MM) is a complex hematological malignancy characterized by abnormal
proliferation of malignant plasma cells (PCs) within a permissive bone marrow microenvironment.
The pathogenesis of MM is unequivocally linked to the acquisition of genomic instability (GI), which
indicates the tendency of tumor cells to accumulate a wide repertoire of genetic alterations. Such
alterations can even be detected at the premalignant stages of monoclonal gammopathy of undeter-
mined significance (MGUS) and smoldering multiple myeloma (SMM) and, overall, contribute to
the acquisition of the malignant traits underlying disease progression. The molecular basis of GI
remains unclear, with replication stress and deregulation of DNA damage repair pathways represent-
ing the most documented mechanisms. The discovery that non-coding RNA molecules are deeply
dysregulated in MM and can target pivotal components of GI pathways has introduced a further
layer of complexity to the GI scenario in this disease. In this review, we will summarize available
information on the molecular determinants of GI in MM, focusing on the role of non-coding RNAs as
novel means to tackle GI for therapeutic intervention.

Keywords: multiple myeloma; DNA repair; genomic instability; DNA damage response; base
excision repair; homologous recombination

1. Introduction

Multiple myeloma (MM) is an incurable malignancy of mature antibody-producing
B cells, namely plasma cells (PCs), growing within a permissive bone marrow microenvi-
ronment (BMM) that triggers uncontrolled proliferation, chemo-resistance and immune
evasion [1,2]. Abnormal proliferation of malignant PCs in the bone marrow (BM) frequently
leads to excessive secretion of immunoglobulin (Ig) in the blood and urine, associated
with organ dysfunction as hypercalcemia, renal dysfunction, anemia, and/or bone dis-
ease [3]. MM follows a multistep development process, characterized by accumulation
of genomic aberrations in the malignant clone, which collectively drive the progression
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from precursor stages, namely monoclonal gammopathy of undetermined significance
(MGUS) and smoldering multiple myeloma (SMM) to overt MM [1,2,4]. Most cancers,
including MM, are characterized by GI, which defines the increased tendency of tumor cells
to acquire genomic alterations ranging from simple base substitutions and small insertions
or deletions to chromosome gains, loss, or rearrangements; the latter is generally referred
to as chromosomal instability (CI) [5].

Several factors, either endogenous, like natural metabolic byproducts, or exogenous,
such as ionizing radiation, ultraviolet (UV) radiation, and various chemical agents, can
cause DNA damage, leading to genetic alterations [6,7].

The recent advent of next generation sequencing (NGS) technologies has contributed
to further unravel the complex genomic landscape of MM, starting from its pre-malignant
or asymptomatic phases, supporting the idea that MM onset and progression are unequiv-
ocally associated with ongoing accumulation of genomic alterations, already detectable
at MGUS and SMM phases [8,9]. Various forms of CI have been detected in MM cells,
which can be numerical, such as copy number alterations (CNAs) involving whole chro-
mosomes or part of them, or structural, mainly chromosomal, rearrangements, inversions,
or reassembly.

CNAs in the form of trisomies of odd numbered chromosomes (including chromo-
somes 3, 5,7, 9, 11, 16, 19, and 21) are considered, along with IgH translocations, early
initiating events in MM. Accordingly, MM patients are broadly classified as hyperdiploid
or non-hyperdiploid: the hyperdiploid tumors are characterized by trisomies of three
or more of the above-reported odd-numbered chromosomes, while the majority of non-
hyperdiploid tumors display a translocation involving the IgH locus on chromosome
14 and one of the five recurrent translocation partners at chromosomes 11q13 (CCND1),
6p21 (CCND3), 4p16 (FGFR3 and NSD2), or 16q23 (MAF) [10,11]. Overall, the above-
mentioned chromosomal abnormalities can alreadybe detected in PCs of MGUS and SMM
patients; however, additional genetic alterations are required for progression towards a
clinically active disease [8,12]. These include translocations, deletions, and chromosome
gains, involving genes such as MYC, KRAS, NRAS, and TP53, some of which are implicated
in the DNA damage response (DDR). Secondary events are generally detected in the late
stage of the disease [12,13].

In this review, we will outline available information on the most well-characterized
molecular mechanisms underlying GI in MM, mostly focusing on the recent evidence that
deranged non-coding RNA-based networks may contribute to ongoing GI and represent
potential targets for therapeutic intervention.

2. Molecular Basis of GI in MM

Thus far, the most documented mechanisms of GI in MM involve abnormal DNA
repair processes and defective replicative stress, though novel mechanisms are emerging
that need to be fully elucidated [8,14,15].

2.1. Alterations of DNA Repair Pathawys
2.1.1. Deregulated Expression of DNA Repair Genes

DNA repair is critical to target extrinsic or intrinsic DNA damage, ensuring regulated
gene transcription and DNA replication. To ensure cell survival, specific protein networks
interact and collaborate to detect and repair DNA damage through a process collectively
referred to as DDR. Specific DNA repair pathways are required to repair the different type
of DNA lesions, mostly represented by DNA single-strand breaks (SSBs), DNA double-
strand breaks (DSBs), and interstrand crosslinks (ICLs). Deregulation of these pathways
are implicated in the onset and maintenance of human cancers, including MM.

The repair of SSB DNA is mediated by several pathways, such as base excision
repair (BER), nucleotide excision repair (NER), or mismatch repair (MMR), while non-
homologous end joining (NHE]) and homologous recombination (HR) pathways can repair
DNA DSBs. The Fanconi Anemia (FA) pathway is instead responsible for ICL repair (see
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more specialized reviews [16-18] for further details). Alterations or deregulation in crucial
genes or proteins involved in the different DDR processes in MM patients were reported
by independent research groups and are highlighted and summarized in Table 1.

With regard to the BER system, a single nucleotide polymorphism (SNP) within the
OGG1 gene was found to be associated with the occurrence and increased risk of disease
progression in MM patients [19,20]. Furthermore, polymorphisms in two other BER
pathway genes, APE1 or MUTYH, represent independent prognostic factors significantly
associated with the shorter survival of MM patients [20].

The NER pathway was reported to be activated in MM, and it was demonstrated
that its inhibition induces a chemo-sensitizing effect to alkylating agent treatment. In
line with this evidence, Botta et al. demonstrated that high RAD23B, XAB2, and POLD3
expression is associated with poor prognosis of MM patients [21]. Furthermore, it was
reported that specific targeting of the major NER gene ERCC3, overexpressed in MM, could
be particularly efficient for MM treatment [22].

Deregulation of the MMR pathway was also reported in MM, highlighting an increased
frequency of defects in this pathway, associated with more aggressive stages of the disease,
and suggesting their contribution in disease progression. Furthermore, the same group
highlighted a strong association between reduced DDR and the aberrant expression of
at least one MMR protein, including MLH1, MSH2, and PMSI1 [23], resulting in a higher
mutation rate, particularly within microsatellite DNA regions, leading to GL.

DNA DSBs can be caused by exogenous agents, such as ionizing radiation or chemicals,
or endogenously by ROS, replication of single-strand breaks, or replication stress. Two
main DDR pathways, NHE] and HR, are involved in DNA DSBs. NHE] occurs during
any phase of the cell cycle; although this pathway is very fast to seal DSBs, it could
lead to loss or changes of nucleotides, and, therefore, it represents an error-prone repair
process [24]. On the contrary, HR occurs in the late S- or G2-phase of the cell cycle, when
cells have an undamaged sister chromatid to be used as a homologous DNA template to
fix DSBs correctly.

Elevated activity of the NHE] repair pathway has been observed in MM, together with
its significant association with poor overall survival [25]. In line with this observation, LIG3
mRNA expression progressively increased in PCs from healthy donors to MM and plasma
cell leukemia (PCL) patients and significantly correlated with shorter overall survival
(OS) and event-free survival (EFS) [26]. Furthermore, Herrero et al. showed that DNA-
PKcs, XRCC4, and Artemis were clearly upregulated in MM cell lines compared to control
cells [27]. Interestingly, higher expression of XRCC4 has previously been reported in tumor
samples isolated from patients with MM [28]. The upregulation of these NHE] proteins is
likely to contribute to the increased repair efficiency observed in MM cells.

Moreover, association between polymorphisms or deregulated expression of the
XRCC5 (encoding KU80), XRCC6 (encoding KU70), LIG4 (encoding DNA ligase 4), Artemis,
or XRCC4 genes and the potential risk of developing MM has been described [28-30].

Kumar et al. highlighted that two BER proteins, belonging to the category of apurinic/
apyrimidinic (AP) nucleases, APEX1 and APEX2, contribute to regulating the HR process in
MM, suggesting a potential use of AP nuclease inhibitors in combination with the alkylating
agent melphalan to induce a synergistic cytotoxic effect in MM [31]. In such a context,
Shammas et al. reported the upregulation of both APEX1 and APEX2 genes in MM cell lines
and patient samples, with respect to normal PCs, demonstrating an increased HR activity
in primary MM cells and MM cell lines, compared with healthy PCs based on the evidence
of increased expression of mMRNA and protein levels of RAD50 and RAD51 [32]. The
induction of HR activity leads to a significant increase in the number of new mutations over
time, as well as development of drug resistance in MM cells, suggesting that dysregulated
HR activity in MM could be considered a potential therapeutic target [32].

An important role in the DDR to DSBs was demonstrated by Shah et al. for the MMSET
gene, encoding a histone methyltransferase overexpressed in t(4;14) MM patients. The
authors showed that MMSET is required for efficient NHE] and HR processes; importantly,



Cancers 2021, 13, 2127

40f16

MMSET loss was associated with the down regulation of several DNA repair proteins, as
well as the decreased recruitment of DNA repair proteins to DNA DSBs sites. By using
t(4,14 MM cell lines with constitutive expression of MMSET, the authors found that these
cells had increased DNA damage repair activity at baseline. Specifically, upon treatment
with DNA-damaging agents, these cells repaired DNA damage at an enhanced rate and
continued to proliferate, whereas those negative for the t(4;14) accumulated DNA damage
and entered cell cycle arrest. By means of an in vivo experiment, the authors demonstrated
that MMSET depletion had a chemo-sensitizing effect [33].

ICLs are covalent links between two opposite DNA strands, induced by endogenous
metabolites and exogenous chemicals, such as alkylating agents. The FA pathway detects
ICLs and repairs ICL lesions in co-operation with NER and HR pathways and greatly
influences drug response [34]. In this regard, it was reported that many FA /BRCA genes are
overexpressed and causative of drug resistance in melphalan-resistant MM cell lines [35].

2.1.2. Mutations in DNA Repair Genes

Mutations in DNA repair genes, mainly involving tumor suppressor genes, lead to
increased mutation frequency and GI in cancer [36].

In agreement with this, massive sequencing of paired tumor/normal samples obtained
from 203 MM patients allowed Lohr et al. to confirm previous findings of a significant
fraction of MM patients carrying mutations in the TP53 gene [37,38]. Furthermore, in
2015, Cifola et al. performed a whole-exome sequencing analysis of a prospective series
of 12 primary PCL (pPCL) cases, highlighting TP53 as the most recurrently disrupted
gene [39]. Furthermore, among 14 genes with a potential driver role in pPCL, the authors
identified KIF2B, known to play an important role in genome stability by regulation of
microtubule attachment to chromosomes during mitosis.

Moreover, Walker et al. performed whole-exome sequencing for 463 MM patients,
reporting alterations in crucial genes of the HR pathway, such as TP53, ATM, and ATR,
highlighting the association of these mutations with inferior patient survival [40]. In 2018,
Pawlyn et al. confirmed that ATM was frequently mutated in MM patients, together
with the BRCA2 gene, suggesting the importance of the identification of MM patients
with inherent BRCAness, which may be more likely to respond to single agent PARP
inhibition [41].

APOBEC DNA cytosine deaminases could be considered potential genomic mutators
in various cancers. APOBEC is involved in antiviral defense by restricting retrovirus
propagation and transposons mobility through the introduction of DNA lesions. The ability
of APOBEC enzymes to use ssDNA as a substrate has been reported, which inevitably
occurs during transcription and replication of DNA, leading to oncogenic mutations.

Kanu et al. reported a strong association between APOBEC-induced mutagenesis
and replicative stress by demonstrating that APOBEC3B activation can be counteracted
through alleviation of replication stress with nucleoside supplementation. Furthermore,
they demonstrated that, in the condition of replicative stress, prolonged exposure of ssDNA
can increase DNA susceptibility to APOBEC-induced mutagenesis [42].

In line with these findings, this susceptibly was exacerbated upon APOBEC hyper-
activation [43]. Accumulation of APOBEC signature mutations increases significantly in
refractory MM tumors and extramedullary forms [44] and is associated with poor progno-
sis [14,15]. In fact, Walker et al. reported the presence of an APOBEC mutational signature
in MM samples linked to the translocation-mediated deregulation of MAF and MAFB,
a known poor prognostic factor, while the loss of MAF or MAFB expression results in
decreased APOBEC3B and APOBEC4 expression indicated a transcriptional control [15].

NGS analyses have led to the identification of more than 17 mutational signatures in
MM genomes, including both single-base substitution mutational signatures [44—46] and
de novo chromosomal structural rearrangements [8,47], extending or confirming previous
findings on elevated GI and CI in MM PCs.
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Table 1. Crucial genes of the DNA damage response found deregulated in MM.
DNA Repair  Alterated Gene . .
Pathway in MM Type of Alteration Resulting Effect Reference

0GG1 SNP Low BER activity, 1ncr§;1[iidp1;tsil; r(1)th disease progression in [19,20]

BER MUTYH SNP Shorter survival of MM patients [20]

APE1 SNP Shorter survival of MM patients [20]

RAD23B Overexpression [21]

NER XAB2 Overexpression Poor prognosis of MM patients [21]

POLD3 Overexpression [21]

ERCC3 Overexpression Activation of NER pathway [22]

MLH] Aberrant expression/ 23]

MMR MSH?2 CTTant expressior Reduced functionality of MMR and higher mutation rate [23]

deficiencies in proteins

PMS1 [23]

APEX1 Upregulation [32]

APEX2 Upregulation Increased HR activity, increase in the number of new [32]

RAD50 Upregulation mutations, and development of drug resistance in MM [32]

RADS51 Upregulation [32]
HR TP53 Mutation [37-40]
ATM Mutation . . . [40,41]

ATR Mutation Inferior MM patient survival [40]

BRCA2 Mutation [41]

MMSET Overexpression Overexpression of several DNA repair proteins [33]

LIG3 Upregulation Shorter OS and EFS [26]

DNA-PKcs Upregulation Elevated NHE] activity [27]
XRCC4 SNP/Upregulation Potential risk of developing MM /Elevated NHE] activity [27-30]
NHE]/ XRCC5 SNP/deregulated expression [28-30]
ALT-NH] XRCC6 SNP/deregulated expression Potential risk of developing MM [28-30]
LIG4 SNP/deregulated expression [28-30]
Artemis SNP/Upregulation Potential risk of developing MM /Elevated NHE] activity [27-30]

MMSET Overexpression Overexpression of several DNA repair proteins [33]

2.2. Replication Stress

To ensure the integrity of the genome during replication, high-fidelity DNA replication
proceeds via bidirectional replication forks (RF). Replication stress (RS), which is acknowl-
edged as a relevant source of GI in MM, can be defined as the transient slowing or stalling
of the replication forks. RS is mostly dependent on the activation of oncogenes and/or
the inactivation of tumor suppressor genes, which can directly induce RS by stalling
and collapsing RFs or indirectly induce RS by enforcing premature transition towards
the S phase [48]. It is noteworthy that the processing and repair of single-ended DSBs
emerging from collapsed RFs are highly error-prone and generate mutations and complex
genomic rearrangements [49]. RS occurs early in MGUS and gradually increases during
MM progression [50,51]. Ongoing RS and associated DNA damage significantly enhance
the mutation rate via activation of low fidelity DNA repair pathways, leading to acquisition
of GI. In line with this assumption, it has been found that the HR machinery mediates the
response to RS by restarting stalled RFs and repairing single-ended DSBs that result from
collapsed RFs through error-prone mechanisms, causing complex genomic rearrangements
that drive tumorigenesis. Break-induced replication, a type of HR that predominantly
repairs single-ended DSBs resulting from altered RFs, works by engaging RAD51 to me-
diate strand invasion of a homologous DNA to restart stalled RFs; the invaded strand
may be released by branch migration, and the newly extended double-stranded DNA end
repaired by microhomology-mediated end-joining leaves a tandem duplication [52]. This
phenomenon, known as microhomology-mediated break-induced replication (MMBIR),
fills the DNA gap by NHE]. Moreover, MM cells display elevated expression of RAD51
and a high frequency of spontaneous RAD51-mediated HR events, sustaining GI [32].
Interestingly, pharmacologic targeting of RAD51 increased the frequency of spontaneous
DSBs, leading to MM cell apoptosis [53]. RS also cooperates with transcriptional stress
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to the ongoing GI observed in MM, as supported by the finding that RS mostly occurs in
highly transcribed PC-specific genes [8,47].

2.3. Newly Identified GI Mechanisms

Novel mechanisms involved in GI and CIN are continuously emerging. Chromothrip-
sis and chromoplexy are recently discovered GI mechanisms involving random breakage
and fusion of DNA. Chromothripsis occurs early in myelomagenesis as a single catastrophe
event, typically involving hundreds of locally clustered rearrangements, affecting only
one or a few chromosomes as a consequence of NHE] mechanisms [54]. Conversely, chro-
moplexy is a late event in MM, resulting from DSBs in several chromosomes which occur
simultaneously and are rejoined incorrectly [55].

3. Non-Coding RNA Involvement in MM GI

The identification and characterization of the non-coding genome have added a further
layer of complexity to the regulatory mechanisms underlying GI. In this section, we will
provide an overview of the most relevant classes of non-coding RNAs (ncRNAs) involved
in GI in MM,; their mechanisms of action and their role as tumor suppressor or oncogenic
ncRNAs will be highlighted (see Table 2 and Figure 1).

DNA repair systems

Single-strand break Double-strand break

LI :i::“n‘l OO LT L
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|
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ERCC3 ' RADS50 DNA-PKcs
0GG1 MLH1 : ——
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miR-520h . miR-137
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Figure 1. Schematic diagram illustrating pathways involved in GI molecular mechanisms in MM.
Genes with known aberrant expression or function in MM are reported in green and discussed in the
main text; miRNA and IncRNAs targeting crucial players of these pathways in MM are reported in
red, along with their putative/predicted molecular effect. Red bar-headed arrows indicate inhibiting
effects, while red arrows indicate activating effects.
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3.1. miRNAs

MicroRNAs (miRNAs) are short ncRNAs of ~22 nucleotides (nt) in length that post-
transcriptionally regulate gene expression upon binding to a target mRNA sequence
through its 5" end (known as a “seed sequence”). miRNAs are estimated to regulate the
translation of more than 60% of protein-coding genes [56] and are involved in almost every
cellular process.

Biogenesis of miRNAs takes place through a multi-step process that begins with
transcription, by RNA polimerase II, of a primary transcript (pri-miRNA), followed by
its cleavage by the RNA endonuclease Drosha. Such a cleavage leads to a 70-100 bp pre-
miRNA, which is translocated in the cytoplasm by exportin 5; here, the endonuclease Dicer
cleaves the pre-miRNA, leading to 20-22 bp miRNA /miRNA* duplexes. Thereafter, the
mature miRNA strand is loaded onto the RNA-induced silencing complex (RISC) to induce
translational repression or degradation of mRNAs, following a partial or complementary
binding to the 3'UTR (untranslated region), respectively [57]. Notably, miRNAs are able to
target hundreds of mRNAs, leading to a complex and combinatorial regulation of multiple
pathways. On this basis, it is reasonable that alterations in the expression of miRNAs could
underlie the pathogenesis of various diseases, including MM [58-60].

3.1.1. miR-29b

miR-29b is an established tumor suppressor miRNA in MM, which targets epigenetic
regulators, such as DNMT3A /B [61] and HDAC4 [62]. In the context of validated MM
preclinical models, it has been shown that miR-29b overexpression triggers anti-MM activ-
ity by promoting cell cycle arrest and apoptosis [63,64]; moreover, miR-29b enforcement
reduced the formation of mature human osteoclasts from their precursors, suggesting an
inhibitory role on the development of MM-related bone disease [65]. Importantly, miR-29b
was found to be downregulated in MM-associated dendritic cells (DCs) as compared to nor-
mal mature DCs. Enforcement of miR-29b in DCs co-cultured with MM cells counteracted
pro-inflammatory pathways, including STAT3, NF-«B, and various cytokine/chemokine
signaling networks, and antagonized DC-induced polarization of T helper lymphocytes
into Th17 cells [66,67]. An inflammatory BMM, including DCs, has been reported to pro-
mote GI in MM, which in turn promotes the arising of mutations responsible for tumor
progression, drug resistance, and immune escape [68]. Of note, after co-culture with MM
DCs, accumulation of DSBs was observed in MM plasma cells, which was reduced by
enforcing the expression of miR-29b in DCs; interestingly, in the latter cells, a decrease was
observed in the phosphorylation of ATM, ATR, their downstream molecules CHK1 and
CHK2, and H2AX, as compared with healthy DCs [66].

3.1.2. miR-22

Hyperactivation of DNA ligase 3 (LIG3) is relevant for GI and survival of MM cells.
LIG3 mRNA was found to be highly expressed in MM PCs, correlated with a worse outcome
in MM patients and increased during progression towards extramedullary disease. LIG3
knockdown strongly increased DNA damage of MM cells, as determined by an increase in
H2AX expression, and inhibited MM cell growth in vitro and in vivo, supporting the key
role played by LIG3 in ALT-NHE], a highly error prone DNA repair pathway involved in
GI [26]. Moreover, miR-22 inversely correlated with LIG3 mRNA levels in MM patients;
indeed, LIG3 mRNA was validated as a direct miR-22 target in MM, which acted as a
tumor suppressor miRNA. Of note, ectopic expression of miR-22 inhibited LIG3-mediated
nuclear and mitochondrial DNA repair, and increased unrepaired DNA damage, which
ultimately led to apoptosis of MM cells. Finally, upregulation of LIG3 promoted bortezomib
resistance, and LIG3 downregulation or miR-22 overexpression were highly cytotoxic and
partially restored drug sensitivity in bortezomib-resistant MM cells. On this basis, it was
postulated that MM cells, in order to survive ongoing endogenous or drug-mediated DNA
damage, redirect the DNA repair machinery towards LIG3-driven DNA repair, which
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repairs nuclear and mitochondrial DNA, allowing the acquisition of new genetic changes
relevant for disease progression and drug resistance [26].

3.1.3. miR-137

(I, i.e., the inability to maintain correct chromosome complement after mitosis, is
common in MM patients, known to exhibit a wide range of genomic abnormalities, such
as the t(4;14) translocation, MAF translocations, gain of chromosome 1q, and deletion of
chromosome 17p [12].

miR-137 is a tumor suppressor miRNA in several tumors [69,70]. It is located in the
frequently deleted region of chromosome 1p22. In MM, miR-137 acts as a tumor suppressor
and its low expression is associated with the 1p22 deletion [71]. Qin et al. reported low
expression levels of miR-137 in MM patients, which correlated with shorter progression
free survival and overall survival compared with high miR-137-expressing patients. In MM
PCs, silencing of miR-137 was due to increased promoter methylation. Of note, miR-137
overexpression was able to decrease the incidence of chromosome 1g21 gains and 1p22.2,
14q, and 17p13 deletions, which are generally present in patients at advanced stages. The
authors attributed these effects to the targeting of Aurora Kinase A (AURKA), a serine
threonine kinase playing an essential role in chromosome alignment, centrosomal amplifi-
cation, and mitotic spindle formation. AURKA phosphorylates CHK1/2 and other DNA
repair proteins thus dysregulate the DDR response. miR-137-induced AURKA downregu-
lation led to decreased levels of phosphorylated ATM/CHK2 and phosphorylated BRCAL,
enhancing p53 and p21 expression, which resulted in in vitro and in vivo anti-MM activity,
as well as increased bortezomib sensitivity [72].

3.1.4. miR-520g and -520h

By screening isogenic bortezomib sensitive and resistant MM cell lines, Yuan et al.
demonstrated differential miRNA profiling [73]. In particular, miR-520g and miR-520h, two
miRNAs located on the human chromosome 19 and belonging to the miR-515 family [74],
were downregulated in drug resistant cell lines. In MM, bortezomib significantly reduced
the expression of RAD51, an HR-related protein, indicating the anti-DNA repair function
of the drug [75]. APE1 is an important BER DNA repair protein that contributes to HR
dysregulation through transcription control of RAD51, as well as its ability to induce DNA
breaks [76]. APE1 was found to be upregulated in bortezomib-resistant MM cell lines
and was validated as a direct target of miR-520g and miR-520h, whose overexpression
alleviated drug resistance of MM cells; such effects were rescued by APE1 overexpression.
Importantly, combined miR-520g and miR-520h overexpression reduced the growth of
bortezomib-resistant MM xenograft, underscoring the potential of miR-520g /h replacement
strategies for the treatment of MM, even in the refractory setting [73].

3.1.5. miR-17-92 Cluster

Botta et al. demonstrated the upregulation of genes belonging to NER in MM cells
as compared to normal PCs. Specifically, 7 out of 31 genes involved in the NER system
were significantly deregulated in 4 out of 5 datasets analyzed. Among them, high RAD23B,
XAB2, and POLD3 expression was associated with poor prognosis, whereas a higher
expression of XPA was associated with better survival [21].

Based on this evidence, the authors investigated the anti-MM activity of trabectedin
(Ecteinascidin 743), whose mechanism of action relies on NER system expression [77]. This
drug binds to the minor groove of DNA and traps the NER machinery as it attempts to
repair DNA, leading to the generation of lethal DNA double strand breaks. Trabectedin
triggered potent anti-myeloma activity in cell lines and primary cells at nanomolar concen-
trations, both in conventional 2D and advanced 3D models, eliciting both direct cytotoxicity
on MM cells and also activating the innate immune response against MM through the up-
regulation of NKG2D ligands MICA /B and ULBP1. The relevance of NK response in MM
pathogenesis has been deeply investigated in the past, and a downregulation of surface
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expression of MICA on malignant PCs or a decline in NK-dependent immune-surveillance
was observed when MGUS progresses towards active MM [78].

Mechanistically, trabectedin increased the expression level of the MICA /B-positive
regulator E2F1 and reduced the expression of the negative regulators IRF4 and IKZF1.
Furthermore, taking into account that reprogramming of the immune response requires
rapid changes at both the transcriptional and post-transcriptional levels, the authors
hypothesized a role for miRNAs in finely tuning this regulatory network. By using miRNA
target prediction tools, the miR-17 family was identified as the most relevant in MM biology,
predicted to target, at the same time, MICA, MICB, and E2F1.

MiR-17-92 is an oncogenic cluster of miRNAs, encoded by MIRI7HG at 13q31.3 [79].
Morelli et al. identified a MYC/miR-17-92 feed-forward loop that maintained the expres-
sion of BIM, and likely other co-regulated genes, at homeostatic levels, allowing MM cells
to proliferate; moreover, they showed that MIR17PTi, a specific LNA gapmeR inhibitor
selectively targeting the MIR17HG primary transcript, was able to disrupt the MYC/miR-
17-92 loop and trigger apoptosis by inducing MYC-dependent synthetic lethality. MIR17PTi
antagonized in vivo growth of human MM cells as a single agent, as demonstrated in four
different and clinically relevant murine models, including those refractory to conventional
anti-MM agents and orthotopic systems, in which MM cells grow within a human BM
milieu [80]. Trabectedin downregulated miR-17 and miR-20a, and miR-17-92 stable overex-
pression reduced trabectedin-dependent upregulation of NKG2D ligands, confirming a
role for the miR-17-92 cluster in mediating, at least partially, trabectedin effects in MM [21].

3.2. IncRNAs

Long non-coding RNAs, which are acknowledged as transcripts of more than 200 bp
in length, have been involved in different biological processes, such as cell differentia-
tion [81], epigenetic regulation of gene expression, and modulation of nuclear architecture,
X-inactivation, and gene imprinting [82-84]. According to their genomic location. with
respect to the nearest protein-coding genes, IncRNAs can be classified as: (i) long intergenic
non-coding RNAs (lincRNAs), which do not lie close to protein-coding genes; (ii) sense
IncRNAs, which are on the same strand of protein-coding genes and are transcribed in the
same direction; (iii) antisense IncRNAs, which lie on the opposite strand of protein-coding
genes with which they overlap; (iv) intronic antisense IncRNAs and bidirectional IncRNAs,
located on the other strand, with respect to protein-coding genes and transcribed in the
opposite direction [85-87].

Different classes of IncRNNAs are transcribed from several DNA elements, such as
enhancers (eRNAs), promoters, and intergenic regions (lincRNAs) in eukaryotic cells [88].
LncRNAs are cell-type specific and tissue-specific. Through their interaction with RNA,
DNA, or proteins, they exert their functions through distinct molecular mechanisms [89].
LncRNAs are involved in both activation and inhibition of gene expression, playing a
role as regulators of the combinatorial actions of transcription factors [90]. Additionally,
it has been found that IncRNAs may act as a decoy by binding transcription factors or
proteins and thereby precluding their action on target DNA. For example, the IncRNA
MALAT1 binds nuclear splicing factors into nuclear speckles and also functions as a
sponge to miRNAs [91,92]; NEAT1 can mediate changes in the cell transcriptome by
negative regulation of effector molecules [93]. Another established function of IncRNAs is
to recruit and guide molecules for chromatin-modifying complexes to the target genes [89].
Finally, IncRNAs can bind multiple proteins and facilitate the formation of extensive
networks of ribonucleoprotein (RNP) complexes with numerous chromatin regulators
acting as scaffolds. The prototypical example of the IncRNA scaffold is the telomerase
RNA component TERC, which assembles the telomerase complex for the maintenance of
the GI [94].
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3.2.1. MALAT1

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a conserved
IncRNA, acting as oncogene in a wide variety of solid and hematological malignancies. In
MM, MALAT1 was found to be upregulated during the progression from intramedullary
to extramedullary disease. Mechanistically, MALAT1 promotes cell survival by regulating
the expression and activity of the proteasome machinery. Indeed, MALAT1 represents a
druggable target in MM, as demonstrated by the significant anti-tumor activity promoted
by selective LNA gapmeRs targeting MALATT1 in vitro and in vivo in NOD-SCID mice
bearing MM xenografts [60,85,95]. Hu et al. demonstrated that MALAT1 overexpression in
MM may trigger a NHE] DNA repair pathway to induce secondary chromosome changes,
likely promoting disease progression and drug resistance. MALAT1 was demonstrated to
act as a molecular scaffold in the formation of PARP1-LIG3 complexes that recognize the
DSBs on DNA and activate the A-NHE] DNA repair in MM cells. Importantly, MALAT1
inhibition by antisense oligonucleotides effectively synergized with both PARP inhibitors
and proteasome inhibitors [96].

3.2.2. NEAT1

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a functionally conserved
IncRNA, abundantly expressed in a variety of mammalian cell types and found to be
deregulated in various types of cancers; it has been implicated in the regulation of apop-
totic cell death, cell growth, proliferation, invasion, and metastasis [97,98].

NEAT1 represents an indispensable structural component of nuclear paraspeckles
(PSs), a class of subnuclear bodies found in the interchromatin space of mammalian
cells [99], potentially involved in the nuclear sequestration of specific RNAs or proteins
and stress responses [100].

Increasing evidence highlighted the crucial role of NEAT1 and essential structural
proteins of PSs (PSPs) in the direct and indirect regulation of the DDR system [101].

Importantly, NEAT1 was identified as a p53 target [102,103]. In line with this, Adriaens
et al. demonstrated that activation of p53 increased PS formation in mice and human cells.
Furthermore, the same group found that NEAT1 silencing in mice prevented PS formation,
sensitized preneoplastic cells to DNA-damage-induced cell death, and impaired skin
tumorigenesis [100].

NEAT1 was found to be significantly upregulated in primary MM cells, with respect to
its normal counterpart [104], and its knockdown antagonized MM cell growth both in vitro
and in vivo, highlighting that NEAT1 depletion affects the HR repair pathway [93]. This
finding is of relevance because it is an accepted notion that this pathway is deregulated in
MM, contributing to GI, disease progression, and drug resistance [32]. Specifically, NEAT1
silencing leads to a significant downregulation of the phosphorylated RPA32 protein and
RAD51B/1D transcripts [93]. RPA32 belongs to the replication protein A (RPA) complex, a
heterotrimeric ssDNA binding structure essential in the HR-mediated repair. RPA complex
binds to ssDNA at stalled forks and primes the HR repair cascade with the phosphorylation
of the RPA32 subunit at specific sites by DNA-PK, ATM, and ATR kinases [105]. It has been
shown that, at the DNA damage site, phosphorylated RPA32 directly interacts with RAD51,
also reported as downregulated upon NEATT1 silencing of MM cells [93]. It is known that
RAD?5]1 represents a second key responder in HR-mediated repair and that cells deficient
in RAD51 accumulate DSBs after replication or at stalled replication forks [106].

Furthermore, Adriaens et al. demonstrated that NEAT1 promotes ATR signaling
in response to replication stress and that it is engaged in a negative feedback loop that
attenuates oncogene-dependent activation of p53 [100].

Overall, these evidences underscore the involvement of NEAT1 in the regulation of
the HR repair pathway in MM.
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Table 2. ncRNAs regulating GI in MM.

11:: iﬁﬁi Ch]fzzr;)iso(;me Target/Pathway Expression Phenotypic Effects Reference
Pro-inflammatory Inhibition of MM proliferation;
. inhibition of osteoclast
miR-29b (7C 2;73) pathzvi}ili (ET}? l;i’ llii_kB’ Dowrllréguilac{egén MM differentiation and activity; [63,65,66]
52 cyto afh\?vae S)O € sa s Inhibition of DC-induced
p y polarization of Th cells into Th17 cells
. Inhibition of MM growth in vitro
miR-22 (1C7hrl ;é) LIG3; ALT-NHEJ Downregglé‘fd in MM and in vivo; [26]
plo Decrease of Bortezomib resistance
Chr1 Downregulated by In vitro and in vivo anti-MM
miR-137 (1p21.3) AURKA promoter CpG activity; increased [72]
pat- methylation bortezomib sensitivity
miR-520g/ Chr 19 APE1 Downregulated in drug Inhibition of MM growth in vitro (73]
miR-520h (19q13.42) resistant MM cells and in vivo -
Chr 13 In vitro and in vivo promotion of
miR-17-92 (13431.3) BIM; NKG2D ligands Upregulated in MM PCs MM growth; [21,80]
o inhibition of trabectedin effects
MALAT1 Chr 11 C(S);?ffl?z tlt%faffg:izla-tlictie Upregulated in MM and Promotion of MM progression and [95,96]
(11q13.1) K—NHE] pathway plasma cell leukemias drug resistance !
Chr 11 RPA32; RAD51B and . Promotion of HR pathway activity
NEATL (11q13.1) RAD51D (HR pathway) Upregulated in MM and drug resistance in MM cells 93]

4. Future Perspectives

At present, it is acknowledged that the pathogenesis of MM depends on the acqui-
sition of GI, which drives many features of malignant PCs, including dramatic genetic
heterogeneity, proliferative advantage, and drug resistance.

Elevated GI represents a therapeutic vulnerability of MM PCs; accordingly, small
molecule inhibitors targeting PARP or Aurora kinases, as well as spindle kinase inhibitors
have been successfully tested in MM preclinical models and in early phase I/1I trials;
moreover, ATM, ATR kinase inhibitors, and DNA helicase inhibitors appear to be promising
agents, displaying strong synergy in patients with highly refractory MM when combined
with DNA-damaging agents, platinum derivatives, immunomodulators, and proteasome
inhibitors [107].

In parallel, deregulation of the non-coding RNome has been recently regarded as a
further mechanism prompting GI along MM onset and progression. Two major classes
of non-coding RNA (ncRNA) molecules, i.e., miRNAs and IncRNAs, have been reported
as crucial players in various GI cellular pathways, acting through the regulation of the
transcription and/or the translation of GI machinery’s components. Indeed, exciting pre-
clinical research has demonstrated that strategies aimed at the overexpression of tumor
suppressor non-coding RNAs blocking relevant effectors of the GI pathways, or the inhibi-
tion of oncogenic non-coding RNAs affecting DDR responses, represent novel therapeutic
weapons to antagonize ongoing GI. These studies provide the framework for potential
clinical applications of ncRNA-based therapeutics to treat MM and other PC dyscrasias.
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