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Abstract: Midday stem water potential (Ψstem) is an important parameter for monitoring the water
status of pomegranate plants and for addressing irrigation management. However, Ψstem ground
surveys are time-consuming and difficult to carry out periodically over vast areas. Remote sensing,
specifically Copernicus Sentinel 2 data (S2), offers a promising alternative. S2 data are appropriate for
Ψstem monitoring due to their geometric, temporal and spectral resolutions. To test this hypothesis,
two plots were selected within a pomegranate orchard in southern Italy. A pressure chamber was
used to collect Ψstem measurements on four days in summer 2021. Ground data were compared with
the temporally closest S2 images with the aim of testing the effectiveness of remotely sensed imagery
in estimating and mapping the Ψstem of pomegranate plants. Regression models were applied with a
limited number of ground observations. Despite limited ground observations, the results showed
the promising capability of spectral indices (NDVI, NDRE and NDWI) and S2 bands in estimating
(MAE ∼= 0.10 MPa and NMAE < 10%) Ψstem readings. To understand the dimensional relationship
between S2 geometric resolution and the orchard pattern, predictive models were tested on both
native S2 data and on denoised (unmixed) data, revealing that native data are more effective in
predicting Ψstem values.

Keywords: stem water potential; NDVI; NDRE; spectral unmixing

1. Introduction

The pomegranate tree (Punica granatum L.) is a deciduous fruit tree native to central
Asia that has been cultivated since ancient times; its diffusion in the Mediterranean area
dates back to the third-second millennium BCE [1]. Pomegranate cultivation is currently
increasing in Italy, from barely 60 ha to more than 1400 ha in the last ten years. Apulia is
one of the most important Italian regions for pomegranate cultivation, supplying about
34% of the national production [2].

Similarly to other fruits rich in polyphenols and antioxidant compounds, interest in
pomegranate fruit and its derived products has been steadily increasing in recent years as a
result of an emphasis on the effects of phytochemicals on human health [3–6]. Specifically,
it has been demonstrated that polyphenols are beneficial in terms of reducing stroke risk,
diabetes incidence, blood pressure, systemic inflammation, cancer and cardiovascular
diseases [7,8]. Pomegranate fruits are a source of polyphenols and other active compounds
with antioxidant and anti-inflammatory properties; has potential effects against metabolic
disorders; and exerts cardiovascular protection, neuroprotective activity, hypoglycemic
effects, tumor cell proliferation and angiogenesis interference [9–12].

The content of polyphenol compounds in fruit as well as other relevant traits with
respect to fruit utilization are influenced by genotype [13–15], the environment and grow-
ing techniques [16–20]. In warm, arid environments, such as those of southern Italy, the
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commercial and nutritional attributes of fruit are particularly conditioned by plant water
status. This is often evaluated as the midday stem water potential (Ψstem) using a pressure
bomb, the measurement method of which involves darkening the leaf and preventing its
transpiration in order to balance the water status of the leaf and stem [21–23]. Pomegranates
are considered a rustic species capable of withstanding water deficits; hence, in order to
save water, irrigation restrictions are desirable, especially during periods in which the fruit
is less sensitive to water stress, such as the phase of linear fruit growth [19,21–23]. Con-
sequently, monitoring the stem water potential in pomegranate orchards may be helpful
for water management. However, Ψstem surveys are time-consuming and difficult to peri-
odically carry out over large plots. In this context, remote sensing could play an effective
role in crop monitoring. The Sentinel-2 mission (S2) of the European Copernicus program
provides optical imagery for land monitoring, the geometric and spectral features of which
satisfy agricultural requirements [24]. A broad range of vegetation and water indices (VIs
and Wis, respectively) could be obtained by properly combining native S2 bands [25].
Concerning the interpretation of spectral data for a prediction of agronomic parameters,
according to the literature, VIs and WIs appear to be the most promising in retrieving
crop-related information at the field level [26,27], assessing plant vigor [27], exploring cli-
mate change effects [28,29], monitoring and interpreting wildlife diseases [30], estimating
crop nitrogen content [31] and production [32], supporting insurance activities for damage
estimation [33,34], improving Common Agricultural Policy controls [35,36] and investigat-
ing crop water stress [37]. Specifically, to remotely estimate stem water potential, several
techniques can be applied, such as those involving thermal radiation, visible canopy, near-
infrared and shortwave infrared reflectance [38,39], and canopy radiometric temperature
derived from an energy balance model based on airborne data [40]. The abovementioned
approaches have led to satisfactory results (RMSE = 0.36 MPa; RMSE = 0.11 MPa) but are
all based on multiple-year time-series analyses. Time-series analyses are time-consuming
and expensive; therefore, they are rarely used by farmers.

To the best of our knowledge, there are no fast, easy and cost-effective approaches to
monitoring Ψstem. Within this framework, the present study specifically intended to test
the effectiveness of S2 free imagery in estimating and mapping Ψstem in a pomegranate
orchard located in Apulia, basing both regression model calibration and validation on a
limited number of ground measures at varying water delivery levels. However, S2 imagery
is provided at 10 and 20 m resolutions, depending on the spectral bands. In conventional
orchards with 6 m spacing between rows, S2 resolution could be inadequate due to the
inter-row detection, and therefore, the deductions could be inaccurate. Spectral unmixing
is a procedure that could be used to extract the potential “pure” signal related to vegetation
only, thus excluding the contributions of soil [41]. To test the reliability of S2 data, models
were developed both with native S2 imagery and “pure” S2 imagery derived from the
spectral unmixing procedure.

2. Materials and Methods
2.1. Study Area and Pilot Plots

The present trial is part of a broader multiyear research project, which involves several
aspects of pomegranate cultivation. The area of investigation (AOI) is located in the Apulia
region (southeast Italy) and is centered on the organic commercial pomegranate orchard (cv.
Acco) of the Durante farm (40◦12′36′ ′ N; 18◦04′07′ ′ E) in Nardò (Lecce province). Within
this area, 2 adjacent pilot plots, both about 2.5 ha in size, were selected and labelled as plot
N (north) and plot S (south), respectively, according to their relative position (Figure 1). The
soil of both plots has a sandy-loam texture (USDA soil classification); the distance between
trees is 1.75 m within rows and 6 m between rows; the tree canopy can be assumed to be
a continuous strip about 3 m wide. The tree rows were established on raised beds and
mulched by a white plastic foil; the trees were trained to transverse Y trellis system. During
the trial, the soil between rows was managed by periodic plowings.
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through emitters positioned at 50 cm intervals along a single-line pipe laid parallel to the 
row under the plastic mulch. In accordance with the broader research project, a specific 
irrigation restriction was applied, in summer 2021, during the period of fruit linear 
growth, to assess its effect on the water status of pomegranate trees: plot S received about 
60% of the standard farm irrigation, about 20 m3/ha every 2–3 days, while plot N was 
irrigated with the full amount of water on the same days. This period lasted from 28 June 
to 30 July. 

From 18 to 20 July, unusual rainfalls occurred and provided about 62 mm of 
additional water. In the first half of August 2021, about 32 m3/ha of water was supplied 
every 2–3 days to both plots in accordance with standard farm management. The dates of 
drip irrigation and rainfall are provided in Table 1. All additional cultural practices were 
uniformly applied to the two plots during the entire growing season, according to the 
farm’s standard procedures. 

Table 1. Irrigation and rainfall during the trial period. 

Date Irrigation of Plot N  
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(mm) 

23 June 0.0 0.0 0.0 
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7 July 19.2 11.5 0.0 
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Figure 1. Apulia region (green lined), located in Southern Italy. Pomegranate plots N and S are repre-
sented with blue and red lined polygons, respectively. Yellow dots represent the spatial distribution
of surveyed pomegranate plants. The S2 T33TYE tile is represented as a blue square in the left frame
(the reference system is WGS 84/UTM 33N, EPSG: 32,633).

Starting from late June, pilot plots N and S were drip-irrigated with a time frequency
of 2–3 days. The irrigations were completed by 10:00 am. Water release was operated
through emitters positioned at 50 cm intervals along a single-line pipe laid parallel to the
row under the plastic mulch. In accordance with the broader research project, a specific
irrigation restriction was applied, in summer 2021, during the period of fruit linear growth,
to assess its effect on the water status of pomegranate trees: plot S received about 60% of
the standard farm irrigation, about 20 m3/ha every 2–3 days, while plot N was irrigated
with the full amount of water on the same days. This period lasted from 28 June to 30 July.

From 18 to 20 July, unusual rainfalls occurred and provided about 62 mm of additional
water. In the first half of August 2021, about 32 m3/ha of water was supplied every
2–3 days to both plots in accordance with standard farm management. The dates of drip
irrigation and rainfall are provided in Table 1. All additional cultural practices were
uniformly applied to the two plots during the entire growing season, according to the
farm’s standard procedures.

Table 1. Irrigation and rainfall during the trial period.

Date Irrigation of Plot N
(m3 ha−1)

Irrigation of Plot S
(m3 ha−1)

Rainfall
(mm)

23 June 0.0 0.0 0.0
28 June 21.2 12.6 0.0
1 July 21.2 12.7 0.0
4 July 19.1 11.4 0.0
7 July 19.2 11.5 0.0
9 July 19.2 11.4 0.0

11 July 19.3 11.4 0.0
13 July 19.1 11.5 0.0
15 July 19.2 11.4 0.0
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Table 1. Cont.

Date Irrigation of Plot N
(m3 ha−1)

Irrigation of Plot S
(m3 ha−1)

Rainfall
(mm)

17 July 19.2 11.3 0.0
18 July 0.0 0.0 20.2
19 July 0.0 0.0 38.2
20 July 0.0 0.0 3.5
22 July 16.3 9.6 0.0
24 July 16.1 9.5 0.0
26 July 18.2 10.9 0.0
28 July 19.2 11.4 0.0
30 July 19.3 11.3 0.0

1 August 31.5 32.0 0.0
3 August 32.0 31.8 0.0
5 August 32.4 32.6 0.0
7 August 31.8 31.5 0.0
9 August 30.0 32.0 0.0

11 August 32.5 32.2 0.0
13 August 32.0 31.5 0.0

2.2. Ground Measurements

Ψstem was measured using a pressure chamber (model 3005, Soilmoisture Equip. Corp,
Santa Barbara, CA, USA). Measurements were taken for 9 trees per plot (each at least 10 m
apart) as single replicates by sampling two small mature shoots located in the lower part of
the canopy on two tertiary scaffolds on opposite sides of each tree. Before the measurements,
the shoots were enclosed in two-layer bags (plastic inside and aluminum outside) for 2 h to
reach equilibrium. The number of replicates was adjusted to take measurements within
about 1 h (11:30 a.m. to 12:30 p.m.), aiming to keep environmental conditions as stable
as possible to avoid changes that affect the readings of the physiological parameter Ψstem.
During the period of irrigation restriction, field surveys were carried out on three dates
coinciding with the passage of the Sentinel 2 satellite over the study area: 28 July 2021,
7 August 2021 and 12 August 2021. Outside, that period, the same measurements were
taken before the start of irrigation, that is, on 23 June.

The difference between the canopy cover of the trees of the two plots was investigated.
Digital pictures of the tree shades were taken at solar noon on 23 June 2021, 28 July 2021,
7 August 2021 and 12 August 2021 and processed with the program GIMP (www.gimp.org,
accessed on 24 March 2022), transforming the images into black (vegetation) and white
(ground) pixels. The percentage of black pixels was indicative of the ground shaded area,
which in turn, is known to be related to the tree leaf area. A GNSS receiver (Leica 1200, Leica
Geosystem AG, Heerbrugg, Switzerland) was used to position the ground observations.
The survey was conducted in the NRTK (Network Real Time Kinematic) VRS mode using
the Puglia Region correction service (http://gps.sit.puglia.it/SpiderWeb/frmIndex.aspx,
accessed on 24 March 2022). The average accuracy (3D) was 3 cm [42].

A total of 18 points were finally collected (see Figure 1 for the spatial distribution) for
the 4 abovementioned dates.

2.3. Satellite Data

A single S2 tile, namely T33TYE, was used. Four S2 cloud-free images were obtained
as close as possible to the dates of the field surveys (23 June 2021, 28 July 2021, 7 August
2021 and 12 August 2021). The images were downloaded from the Copernicus Scientific
Open Data Hub (https://scihub.copernicus.eu/, accessed on 12 January 2022) as Level 2A
products (at-the-ground reflectance calibrated and orthoprojected in WGS84/UTM). The
Sentinel 2 acquisition time was set at around 10:30 a.m. local time. The S2 L2A data were
provided as 100 km2 tiles and contained a scene classification layer (SCL) alerting about
shadowy, cloudy or faulty pixels. The S2 technical features are reported in Table 2.

www.gimp.org
http://gps.sit.puglia.it/SpiderWeb/frmIndex.aspx
https://scihub.copernicus.eu/
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Table 2. S2 band technical features: central wavelength, bandwidth, ground sample distance (GSD),
radiometric resolution and temporal resolution [43].

Spectral Band Central Wavelength (nm) Band Width
(nm) GSD (m)

B1 (Aerosol) 443 20 60
B2 (Blue) 490 65 10

B3 (Green) 560 35 10
B4 (Red) 665 30 10

B5 (Red Edge 5) 705 15 20
B6 (Red Edge 6) 740 15 20
B7 (Red Edge 7) 783 20 20

B8 (Near Infrared) 842 115 10
B8A (Near-Infrared Plateau) 885 20 20

B9 (Water Vapor) 945 20 60

B10 (Cirrus) 1380 30 60
B11 (Short-Wave Infrared 1) 1610 90 20
B12 (Short-Wave Infrared 2) 2019 180 20

Radiometric resolution 12 bit
Temporal resolution 5 days

2.4. Data Processing

The Ψstem data from plots N and S were compared (i) for a single date and (ii) as
aggregated dates to test the significances of both instantaneous differences, which refers
to a single date, and differences over the trial period, respectively. A comparison of the
group mean values was obtained using a t-test. The significance of differences was tested at
p < 0.05. The data were processed by the PAST v. 3.24 software. A point vector file (shapefile
format) was then generated from the available GNSS measurements to locate Ψstem values
in the plots at the right positions, making a direct comparison with S2 data possible.

During S2 data processing, the native bands with 20 m GSD were initially oversampled
(bilinear resampling) to 10 m. This pixel size, if considered with respect to the abovemen-
tioned canopy and orchard structure, appears to introduce a high degree of noise in the
pomegranate interpretation. In fact, the spectral signature of a single S2 pixel has to be con-
sidered a “mixed” one, resulting from the joint contribution of both pomegranate canopy
and inter-row space (mostly bare soil in AOI); a scheme is given in Figure 2.

Consequently, a first issue to consider recovering the potential “pure” signal for the
pomegranate canopy only. The hypothesis is that, with no pure signal recovered, all
deductions would be inaccurate and, possibly, misleading. This task is somehow different
form the ordinary spectral unmixing (SU) problem [41]. In fact, ordinary SU relies on
a priori knowledge of (i) the type of cover class that is expected to participate in the
generation of the “recorded” mixed pixel and (ii) the pure spectrum of the cover classes
involved. Ordinarily, SU gives an estimate of the percentage of contribution of each class to
the recorded signal.

In this study, we needed to recover the pure signal of pomegranate (V) assuming that
both the local percentage of area contribution from the two involved classes (pomegranate
canopy and bare soil of inter-rows) and the spectrum of the pure local bare soil (S) at the
pixel level are known. The spectral un-mixing problem for this study can, therefore, be
described by Equation (1):

Fi (x, y) = α(x, y)·Si + β(x, y)·Vi(x, y) (1)

where Fi(x,y) is the local reflectance value of the i-th band from S2 data, Si is the reference
reflectance value of the i-th band for the bare soil class, Vi(x,y) is the desired estimate of
the local pomegranate reflectance of the i-th band; and α(x,y) and β(x,y) are the numerical
parameters representing the local partial contribution of S and V to the mixed signal F. They
are assumed to vary locally but remain the same for all the bands.
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Since the unknown parameter in the problem is the pure V(x,y) spectrum, Equation (1)
can be inverted according to Equation (2):

Vi(x, y) =
Fi(x, y)– α(x, y)Si

β(x, y)
(2)

This makes it possible to obtain an estimate of the expected “pure” signal from the
pomegranate canopy once the local contributions of V (β) and S (α) are known in terms of
the percentage of area within the single S2 pixel.

Based on these premises, a reference spectrum (one for each of the dates considered)
of “pure” bare soil was obtained by properly sampling the S2 images available at a location
where a bare soil area (AOI2) with a size consistent with S2 geometric resolution was found
based on a local inspection. AOI2 was found 1.8 km away from the pilot sites (Figure 3),
showing a size of 0.8 ha and being characterized by the same sandy-loam texture (USDA
soil classification) of the two pilot plots, which is very common in the area.

Parameters α(x,y) and β(x,y) were locally mapped once the orchard pattern (in terms of
the size and direction of the rows) was known and a proper vector graticule was aligned to
the S2 tile. The orchard rows were initially represented using a line vector layer interactively
edited in QGIS. The rows were interpreted from a high-resolution 2019 aerial orthimage
from AGEA (Italian Agency for Payments in Agriculture). The orchard owner confirmed
that the orchard pattern did not change between 2019 and 2021. Lines representing the
middle of the pomegranate rows were drawn and saved as vector shapefiles. Successively,
a buffer of 1.5 m was generated around lines (B) to map the expected area covered by
pomegranate canopy (about 3 m wide).

A 10 m squared graticule, perfectly fitting S2 pixels, was then generated (G) and
clipped using (B). The resulting layer (C) contains only the parts of the graticule elements
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potentially filled with pomegranate canopy. For each, the corresponding area was computed
using ordinary field calculation tools available in QGIS. The QGIS plugin MMQGIS v.
2021.9.10 was used to operate a spatial join aimed at transferring to (G) the value of
the areal contribution of C elements falling within the same (G) feature. A further field
computation involving G was finally carried out to derive the local value of β (the fraction
of vegetated cover in a pixel) obtained by dividing the previous value by the area of a single
S2 pixel (100 m2). Consequently, α was obtained as (1-β). The entire process is graphically
shown in Figure 4.
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The updated G layer was further completed with the local reflectance values from
the S2 bands for all 4 dates considered, making it possible to couple spectral information
(F) with the areal one (α and β). Given the previously mentioned reference spectra for
bare soil, Equation (2) was applied for each G element and the local estimate of reflectance
values of the “pure” pomegranate generated, including the ones at the position of the
surveyed plants.

For the interpretation of spectra for predicting agronomic parameters (i.e., Ψstem),
according to the literature, the adoption of appropriate vegetation indices (VIs) appeared to
be the most promising one. VIs are in fact able to provide information on crop phenology,
growth rate, physiological stresses, etc. [44].

For this study, 2 VIs were selected based on their renowned ability to investigate crop
phenology, growth rate and chlorophyll content: (i) the normalized difference vegetation
index (NDVI) and (ii) the normalized difference red-edge index (NDRE) [26,45–47].

One additional water index, namely the normalized difference water index (NDWI) [47,48],
was considered since water-content monitoring is the main issue of this research.

All of the selected indices, given their formulation (see Table 3), ranged between
−1 and +1. In particular, higher NDVI and NDRE values corresponded to highly veg-
etated/active areas, and high NDWI values indicated high leaf water content or plant
water status.

VIs were computed from both native and modified (“pure”) spectra, thus generating
two datasets of VIs (namely, VIM and VIU) and NDWI (namely, NDWIM and NDWIU).

Surveyed plant positions were used to extract the corresponding NDVI, NDRE and
NDWI values to characterize the local spectral properties.
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84/UTM 33N, EPSG: 32633).

Table 3. Spectral indices used for this work. ρb3, ρb4, ρb5, ρb8, ρb11 and ρb12 are the bottom of
atmosphere (BOA) reflectance values for S2 bands 3, 4, 5, 8, 11 and 12, respectively.

Spectral Index Name Formula
Normalized Difference Vegetation Index NDVI = (ρ b8−ρb4)

(ρb8+ρb4)

Normalized Difference Red-Edge Index NDRE = (ρb8−ρb5)
(ρb8+ρb5)

Normalized Difference Water Index NDWI = (ρb3−ρb11)
(ρb3+ρb11)

To investigate the capability of obtaining spectral information from indices to distin-
guish ordinarily irrigated plants (plot N) from the ones receiving a reduced water volume
(plot S), a t-test and F-test were performed with respect to the mean and variance values
of the two groups for both native and pure datasets. A comparison was performed with
reference to both the single dates (4 tests) and to the aggregated measures (i.e., 1 test
including all observations for the 4 dates).

2.5. Relationships between Ground and Satellite Data through Regression Models

The Ψstem values on surveyed plants were directly compared using regression models
with both native and pure spectral indices and single bands. Additionally, using a sim-
ilar approach proposed in [47], the following ratios were computed for both native and
pure bands:

τ1 =
Ψstem

NDVIM
(3)

τ2 =
Ψstem

NDREM
(4)
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τ3 =
Ψstem

NDVIU
(5)

τ4 =
Ψstem

NDREU
(6)

The generic τi ratio was tested against NDWI and against all of the available S2 bands
for both the native and pure datasets. The 1st order polynomial of Equation (7) was used to
model all of the relationships:

τ̂i = â ·x + b̂ (7)

where â and b̂ are the “best” estimates of model coefficients, and x is the generic predictor
(NDWI or single band).

An estimate of Ψstem can be obtained from the ratios by inverting Equation (7) and by
replacing τi with τ̂i (Equation (8))

Ψ̂stem = τ̂i ·VI =
(

â x + b̂
)
·VI (8)

where Ψ̂stem is the estimated Ψstem and VI is the generic vegetation index used to build
the ratio.

To test the capability of the regression models of predicting Ψstem, the mean absolute
error (MAE, Equation (9)) and NMAE (Normalized MAE, Equation (10)) were used as
quality measures to compare the estimates with the observed values of Ψstem.

MAE =
∑N

i=1|xobs − xest|i
N

(9)

NMAE =
MAE

mean(xobs)
(10)

where |xobs − xest| is the absolute difference between the observed water potential (Ψstem)
and the estimated one (Ψ̂stem).

Given the low number of available observations, we decided to use them all to calibrate
the predicting models and to approach the validation step using the Leave One Out
strategy [49]. In this way, all of the observations, alternatively, were used as members of
the validation set to compute both MAE and NMAE.

3. Results
3.1. Testing Ψstem and Ground Shaded Area Differences between Plots S and N

The observed stem water potential values ranged from −0.78 MPa in plot N on
12 August to −1.66 MPa in plot S on 23 June. Ψstem proved to always be lower in plot
S than in plot N. A first analysis aimed to test if any significant difference affects the
Ψstem values from ground measures taken in plots S and N (Table 4). Comparisons at
the single-date level proved that, on 23 June and 28 July 2021 (first and second dates),
the Ψstem differences between plots were not significant. Differences of about 0.06 and
0.04 MPa, respectively, were found, corresponding to percentage difference of about 4 and
3%. On 7 and 12 August 2022 (third and fourth dates); on the contrary, the Ψstem difference
between plots was found to be significant. Differences of 0.17 and 0.15 MPa, corresponding
to percentage differences of about 14% and 12%, respectively, were found. Considering all
of the dates together, the Ψstem of plots N and S showed a significant difference of 0.11 MPa,
corresponding to a percentage difference of about 8%. The portion of ground shaded by
pomegranate canopies was different for the 2 plots. As an average of the four dates of
measurements, the percentage of shaded soil in plot S exceeded that in plot N by about 17%.

3.2. Vegetation Indices Analyses

With reference to spectral measures from the satellite, the values for plots S and N were
compared to test if any significant spectral difference could be found. Again, the tests were
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carried out at the single-date and global levels. Table 5 provides the summary statistics of
the t-test aiming to test the differences in the spectral indices considered between plots N
and S. During the first survey (23 June), no significant difference was detected by NDVIs
and NDREs; conversely, NDWIs detected significant differences. All spectral indices found
no differences during the second survey (28 July).

Table 4. The stem water potential differences (ground measures) between plots N and S. Compar-
isons (t-test) were carried out for both the single-date measures and globally (all dates were jointly
considered). Standard deviation, and maximum and minimum values of Ψstem measurements are
also reported. Significance of tests was set at p < 0.05.

Plot t-Test
p-Value Mean Standard

Deviation Max Ψstem Min Ψstem

23 June 2021
N

0.120
−1.41 0.09 −1.18 −1.58

S −1.47 0.07 −1.30 −1.66

28 July 2021 N
0.450

−1.36 0.11 −1.12 −1.52
S −1.40 0.08 −1.24 −1.58

7 August 2021 N
0.050

−1.18 0.17 −0.82 −1.42
S −1.35 0.17 −1.06 −1.64

12 August 2021 N
0.008

−1.07 0.12 −0.78 −1.23
S −1.22 0.08 −1.01 −1.38

Global
N

0.008
−1.25 0.18 −0.78 −1.58

S −1.36 0.15 −1.01 −1.66

Table 5. VIM, VIU, NDWIM and NDWIU statistics of plots N and S over single and aggregated
surveys (significance p < 0.05).

NDVIM NDVIU

Survey
Plot t-Test

p-Value Mean t-Test
p-Value Mean

23 June 2021
N

0.67
0.28

0.95
0.44

S 0.28 0.44

28 July 2021 N
0.18

0.29
0.18

0.39
S 0.27 0.35

07 August 2021 N
0.35

0.35
0.11

0.60
S 0.34 0.53

12 August 2021 N
0.83

0.36
0.44

0.62
S 0.36 0.59

Global
N

0.62
0.32

0.23
0.52

S 0.32 0.49

NDREM NDREU

Plot t-test
p-Value Mean t-test

p-Value Mean

23 June 2021
N

0.58
0.17

0.64
0.24

S 0.17 0.25

28 July 2021 N
0.21

0.17
0.21

0.22
S 0.15 0.18

7 August 2021 N
0.25

0.24
0.12

0.39
S 0.21 0.31

12 August 2021 N
0.63

0.24
0.33

0.40
S 0.23 0.34

Global
N

0.29
0.21

0.13
0.32

S 0.19 0.28
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Table 5. Cont.

NDWIM NDWIU

Survey Plot t-Test
p-Value Mean t-Test

p-Value Mean

23 June 2021
N

0.00
−0.53

0.00
−0.54

S −0.49 −0.47

28 July 2021 N
0.51

−0.50
0.56

−0.42
S −0.49 −0.41

7 August 2021 N
0.07

−0.62
0.06

−0.67
S −0.59 −0.60

12 August 2021 N
0.06

−0.62
0.05

−0.66
S −0.59 −0.59

Global
N

0.06
−0.57

0.03
−0.59

S −0.54 −0.53

Similar results were obtained for the third and fourth surveys (7 August and 12 August)
although NDWIM and NDWIU showed p-values very close to the significance limit of 0.05
(7 August: 0.07 and 0.06 for NDWIM and NDWIU, respectively; 12 August: 0.06 and 0.05 for
NDWIM and NDWIU, respectively). In general, NDWIs showed lower values in plot N
than in plot S.

Similarly, the t-test conducted for aggregated measures on NDVIs and NDREs showed
no significant differences, while the NDWIM p-value was very close to the significance limit
(p = 0.06) and NDWIU was significant (p = 0.03). Comparing these results with the ones in
Table 4 confirms the ability of NDWI to detect differences in leaf water content.

3.3. Relating Ground to Satellite Data through Regression Models

Relating Ψstem to spectral bands, VIs and NDWI through regression models led to
poor results; in fact, no strong correlation was found for both the “pure” and “mixed”
values. However, Ψ̂stem was reasonably estimated when using τ̂i . The results are reported
in Tables 6 and 7. It is worth remembering that τ̂i (estimate of τi) already summarizes the
spectral content of both VIs and bands (see Table 3 and Equation (7)). For this reason, B8, B4,
B5, NDVI and NDRE were not used as predictors (Equation (7)) of the corresponding τ̂i .

Table 6. Statistics concerning the τ̂1 and τ̂2 estimates by Equation (7). SE = standard error, r = Pearson
correlation coefficient, R2 = coefficient of determination. Predictors are native (“mixed”) bands and
spectral indices. B8, B4, B5, NDVI and NDRE were not considered (n/a).

Predictor

τ1 τ2

a b
r R2

a b
r R2

Value SEa Value SEb Value SEa Value SEb

B2M −51.30 4.24 −1.19 0.26 −0.84 0.70 −106.55 10.97 −0.75 0.67 −0.77 0.59
B3M −43.38 2.89 −25 0.27 −0.88 0.78 −91.65 7.68 1.35 0.72 −0.83 0.69
B4M n/a n/a n/a n/a n/a n/a −84.08 6.07 3.49 0.77 −0.87 0.75
B5M −24.44 2.77 −0.26 0.45 −0.74 0.55 n/a n/a n/a n/a n/a n/a
B6M −24.43 3.45 1.13 0.76 −0.66 0.44 −69.50 5.62 8.16 1.24 −0.84 0.70
B7M −24.04 3.48 1.57 0.84 −0.65 0.42 −68.07 5.85 9.34 1.14 −0.82 0.68
B8M n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

B8AM −24.65 3.71 2.56 0.98 −0.65 0.43 −70.92 6.52 11.70 1.73 −0.81 0.65
B11M −28.54 3.66 4.87 1.17 −0.70 0.49 −84.47 4.47 19.86 1.42 −0.92 0.85
B12M −30.26 3.83 2.98 0.91 −0.70 0.49 −84.33 5.92 13.02 1.41 −0.87 0.76

NDVIM n/a n/a n/a n/a n/a n/a 37.79 3.54 −19.10 1.15 0.80 0.64
NDREM 11.05 1.84 −6.43 0.38 0.6 0.36 n/a n/a n/a n/a n/a n/a
NDWIM −14.97 1.10 −12.58 0.62 −0.86 0.74 −27.03 3.51 −22.13 1.97 −0.69 0.48
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Table 7. Statistics concerning the τ̂3 and τ̂4 estimates by Equation (7). SE = standard error of the
parameters, r = Pearson correlation coefficient, R2 = coefficient of determination. Predictors are “pure”
bands and spectral indices. B8, B4, B5, NDVI and NDRE were not considered (n/a).

Predictor

τ3 τ4

a b
r R2

a b
r R2

Value SEa Value SEb Value SEa Value SEb

B2U −25.83 1.78 −1.35 0.11 −0.87 0.77 −58.04 6.27 −1.95 −0.40 −0.76 0.57
B3U −22.03 1.29 −0.83 0.12 −0.91 0.82 −52.08 4.48 −0.56 0.43 −0.84 0.70
B4U n/a n/a n/a n/a n/a n/a −47.89 3.66 −0.72 0.37 −0.85 0.72
B5U −11.65 1.30 −1.04 0.21 −0.74 0.55 n/a n/a n/a n/a n/a n/a
B6U −10.44 1.67 −0.24 0.42 −0.61 0.38 −36.80 3.05 3.80 0.76 −0.84 0.70
B7U −10.20 1.67 −0.01 0.46 −0.61 0.37 −35.75 3.14 4.65 0.87 −0.84 0.67
B8U n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

B8AU −10.94 1.81 0.44 0.54 −0.60 0.36 −37.69 3.55 5.92 1.06 −0.80 0.64
B11U −13.74 1.56 1.29 0.47 −0.74 0.55 −44.85 2.21 8.11 0.66 −0.93 0.86
B12U −15.27 1.44 0.54 0.32 −0.80 0.64 −44.68 2.82 4.57 0.61 −0.90 0.81

NDVIU n/a n/a n/a n/a n/a n/a 15.27 1.53 −12.90 0.80 0.78 0.61
NDREU 5.14 0.82 −4.33 0.23 0.67 0.44 n/a n/a n/a n/a n/a n/a
NDWIU −7.45 0.54 −6.94 0.31 −0.86 0.75 −14.38 2.15 −13.20 1.22 −0.64 0.41

Table 6 shows the following good correlations: τ1 vs. B2M (R2 = 0.70), τ1 vs. B3M
(R2 = 0.78) and τ1 vs. NDWIM (R2 = 0.74). Unsatisfying correlations were found between
τ1 and the other bands and spectral indices.

Concerning R2, the following good correlations were found: τ2 vs. B4M (R2 = 0.75),
τ2 vs. B6M (R2 = 0.70), τ2 vs. B11M (R2 = 0.85) and τ2 vs. B12M (R2 = 0.76). This suggests
that medium infrared bands showed the best ability to predict water potential. Unsatisfying
correlations were found between τ2 and the other bands and spectral indices.

Table 7 reports the parameters and statistics of the model (Equation (7)) for τi, with the
“pure” bands and indices. The results demonstrate a general improvement in the estimates
while working with de-noised spectral measures. The following R2 values were, in fact,
found for τ3, with B2U, B3U and NDWIU: 0.77, 0.82 and 0.75, respectively.

Similarly, models for the τ4 estimate proved to perform slightly better when working
with de-noised measures. The following good correlations were, in fact, found in the
visible and red-edge regions: τ4 vs. B3U (R2 = 0.70), τ4 vs. B4U (R2 = 0.72) and τ4 vs. B6U
(R2 = 0.70). Again, medium infrared bands proved to have the best predictive capacity:
τ4 vs. B11U (R2 = 0.86) and τ4 vs. B12U (R2 = 0.81).

Whatever the approach (based on native or de-noised spectral measures), it can be
noticed that the correlation of τi with bands/indices is, generally, negative (r < 0). The only
exception comes from NDRE, which once more, demonstrates the synthesis of features of
vegetation different from NDVI. Negative correlation values suggest that, generally, plant
water status increases when reflectance decreases (or spectral index), thus confirming the
absorption capability of water. It is, therefore, reasonable to interpret the higher prediction
power of the medium infrared bands as being correlated with their well-known sensitivity
to the water content of surfaces.

With reference to the best performing models for τi prediction (R2 ≥ 0.7), the corre-
sponding Ψstem estimates were generated. The associated MAE and NMAE values were
therefore computed (see Table 8) to test their prediction capability.

Table 8 shows that the Ψ̂stem values obtained using τ̂1 (B3M) and τ̂2 (B11M) as predic-
tors are the most accurate ones. Conversely, τ̂3 and τ̂4 , although showing better correlations
with bands and indices (compare Tables 6 and 7), led to less accurate results. This means
that native data appear to perform better when predicting local water potential conditions
than de-noised ones. Although it remains to be confirmed with other more representative
tests, this finding suggests that the joint effects of the soil–plant system and its related
spectral response are probably more representative of the local water-related dynamics.
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From an operational point of view, these findings can be translated in maps able to give an
estimate of the local expected stem water potential. To make this evident for the case study,
a map of Ψ̂stem was generated for the four sample dates using the following two models:
one based on τ̂1 (B3M) and the other ones based on τ̂2 (B11M). For each date, the maps
of differences between the two approaches were also generated (Figure 5i–l). They show
no negligible differences in reaching their maximum (about ±50%) during the growing
season (up until 12 August). The value of differences cannot entirely be associated with
the joint contribution of the estimated uncertainty of each of the maps compared (expected
value is around 14% according to the Variance Propagation Law [50]). Consequently, the
resulting differences highlight a low degree of robustness of the estimates, making them
highly dependent on the predictor adopted.
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Table 8. Mean absolute errors (MAE) and normalized MAE values, as computed for the best
performing models for the τi estimate (n/a = result not compliant with model performance, i.e., R2 of
the model for τi estimate < 0.7).

Predictor

τ̂1 τ̂2 τ̂3 τ̂4

MAE (MPa) NMAE
(%) MAE (MPa) NMAE

(%) MAE (MPa) NMAE
(%) MAE (MPa) NMAE

(%)

B2 0.131 −10.0 n/a n/a 0.172 −13.2 n/a n/a
B3 0.106 −8.1 n/a n/a 0.131 −10.1 0.261 −20.0
B4 n/a n/a 0.139 −10.7 n/a n/a 0.257 −19.8
B6 n/a n/a 0.175 −13.5 n/a n/a 0.256 −19.7
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Table 8. Cont.

Predictor

τ̂1 τ̂2 τ̂3 τ̂4

MAE (MPa) NMAE
(%) MAE (MPa) NMAE

(%) MAE (MPa) NMAE
(%) MAE (MPa) NMAE

(%)

B11 n/a n/a 0.113 −8.7 n/a n/a 0.149 −11.5
B12 n/a n/a 0.142 −10.9 n/a n/a 0.188 −14.4

NDWI 0.130 −9.9 n/a n/a 0.192 −14.7 n/a n/a

4. Discussion

Midday stem water potential is well-known as a sensitive indicator of plant water
status [23,51]. In previous studies, the Ψstem of non-water-stressed pomegranate trees
was found to vary from −0.73 to −0.98 MPa [52] or to decrease from −0.6 to −1.5 MPa
mid-season, when vapor pressure deficits increased [19]. In the same studies, the Ψstem
of stressed trees dropped to −1.98 MPa at the end of a water-withholding period [52], to
−2.0 MPa when irrigation was managed with a sustained deficit or to −2.4 MPa when irri-
gation was managed with a regulated deficit [19]. In the present study, Ψstem ranged from
−0.78 MPa (plot N, 12 August) to −1.66 MPa (plot S, 23 June); these values, compared with
the ones reported above, indicate a light level of water deficit for trees of both plots. This
consideration is consistent with what was reported in a recent review on the effect of water
deficits on pomegranate trees. According to this report, Ψstem values between −0.98 and
−1.23 MPa indicate no/minimal water deficit, while values between −1.5 and −1.8 MPa
indicate a mild/moderate level of water deficit, and values from −1.9 to −2.8 MPa account
for a severe/strong water deficit [20]. Regarding the single-date data, the small difference
between Ψstem of plots N and S found on 23 June and 28 July (i.e., before and at the end
of the period in which the amount of irrigation in plot S was restricted) can be explained
by the complete absence of irrigation for the first date and by the rainfall that occurred in
the second half of July, flattening the tree water status for the second date. On the third
(7 August) and fourth (12 August) dates of measurement, i.e., after the end of the differenti-
ation of irrigation between the two plots, the lower Ψstem values of plot S indicated a lower
water status, which can be explained by the greater leaf surface attributable to these trees
based on their canopy shadow.

As far as estimating the capability of these spectral measures is concerned, it was
found that spectral signals from the green (B3) and the medium infrared (B11) bands are
the best performing ones, making the generation of Ψstem estimates with an MAE and
an NMAE of about 0.11 MPa and 9%, respectively, possible. These results confirm the
association of NDWIs and short-wave infrared (SWIR) bands with tree water status, as
found in other studies [53,54]. The approach followed in this test provides sufficiently
reliable results despite having a limited amount of data (18 ground measurements for
four dates), consistent with the objective of the present study: to develop an easy, fast
and cost-effective methodology to map Ψstem over the orchard. Other studies tried to
estimate Ψstem using a multi-seasonal approach, obtaining similar results using commercial
high-resolution imagery (Planet and WorldView-2) [38,39], which are not compliant with
the objective of the present study.

S2 imagery is provided at 10 (visible and infrared) and 20 m (red-edge and SWIR)
resolution depending on the band. S2 geometric resolution could be inadequate when
monitoring orchards with 6 m spacing between rows. To overcome this issue, spectral
unmixing was performed in order to extract a “pure” signal from the canopy while exclud-
ing the bare soil contribution. Good model performances were achieved when native S2
data were used and slightly worse when de-noised measures were used. Although to be
confirmed with other more representative tests, this finding suggests that the joint effects
of the soil–plant system and its related spectral responses is probably more representative
of the local water-related dynamics. If confirmed, this issue will strengthen, once more,
the role of S2 L2A data even for describing the behavior of vegetated discontinued surface
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such as orchards despite the expected noise from the inter-row areas. Both approaches
(based on native and “pure” spectral bands) led to negative correlations between τi and
various bands/indices, suggesting that reflectance decreases (or spectral indices) when
plant water status increases, thus confirming the absorption capability of water. Only
NDRE led to positive correlations; therefore, this study confirms that NDRE expresses
different vegetation features from NDVI or NDWI.

Regarding the degree of confidence of the Ψstem estimates, it was proven to be unsatis-
factory for operational purposes, since it is strictly dependent on the predictors selected:
τi (i.e., spectral index) and spectral bands used to model τi (namely, B3 and B11). Nev-
ertheless, some interesting indications come from our tests. The first one concerns the
relationship between the spectral index involved in the τi computation and the band used
as a predictor. In fact, the results suggest that an NDRE-based τ can be better estimated
from the mid-infrared bands; conversely, an NDVI-based τ can be better estimated form
visible bands (specifically, the green one).

Conclusions: (i) Ψstem can be satisfactorily estimated by the Ψ̂stem equation, even
with a limited amount of ground data; (ii) native data, despite noise, appear to perform
better when predicting local Ψstem values than de-noised ones; (iii) predictions based on
band 3 (green @ 560) and band 11 (SWIR @ 1610 nm) are the most accurate ones; and (iv)
Ψstem estimates from different regression methods showed slightly differences in both value
and spatial distribution. This alerts us that our deductions are probably not conclusive and,
certainly, preliminary. Nevertheless, the approach appears to be promising, and further
developments are desirable.
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