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Abstract: In a study of debris flow susceptibility on the European continent, an analysis of the impact
between known location and a location accuracy offset for 99 debris flows demonstrates the impact
of uncertainty in defining appropriate predisposing factors and consequent analysis for areas of
susceptibility. The dominant predisposing environmental factors, as determined through Maximum
Entropy modeling, are presented and analyzed with respect to the values found at debris flow event
points versus a buffered distance of locational uncertainty around each point. Maximum Entropy
susceptibility models are developed utilizing the original debris flow inventory of points, randomly
generated points, and two models utilizing a subset of points with an uncertainty of 5 km, 1 km,
and a model utilizing only points with a known location of “exact”. The AUCs are 0.891, 0.893,
0.896, 0.921, and 0.93, respectively. The “exact” model, with the highest AUC, is ignored in final
analyses due to the small number of points and localized distribution, and hence susceptibility results
are likely non-representational of the continent. Each model is analyzed with respect to the AUC,
highest contributing factors, factor classes, susceptibility impact, and comparisons of the susceptibility
distributions and susceptibility value differences. Based on model comparisons, geographic extent,
and the context of this study, the models utilizing points with a location uncertainty of less than
or equal to 5 km best represent debris flow susceptibility for the continent of Europe. A novel
representation of the uncertainty is expressed and included in a final susceptibility map, as an overlay
of standard deviation and mean of susceptibility values for the two best models, providing additional
insight for subsequent action.

Keywords: spatial uncertainty; debris flow; susceptibility

1. Introduction

Debris flows, and landslides in general, are worldwide catastrophic phenomena [1–4].
Due to an expanding population and urbanization trends, the human and economic impact
due to debris flow hazards necessitates broader geographic research. At least 14% of total
casualties from natural hazards are due to slope failures, and ~49% of natural hazards are
landslides [5]. Between 1988 and 2017 it is estimated that there were more than 56,000 deaths
worldwide due to landslides, more than 4.8 million people affected injuriously and/or
economically, and about 6 billion EUR/year for damages in industrialized countries [5–9].
Although it must be pointed out that in Europe, and likely the world, the number of
landslides and their societal and economic impact are grossly underestimated [10]. With
peak flow speeds reaching 10 m/s and volumes approaching 109 m3, debris flows pose a
significant hazard to structures and lives [11,12].

As the world population and urbanization grows in number and geographic cover-
age [13], we realize the need to extend our focus, research, and modeling to a continental
scale. Localized field surveys to collect event inventories are not a practicable approach in
continental hazard susceptibility modeling. Thus, debris flow susceptibility at this scale
requires data-driven and statistical methodologies, which include continental remotely
sensed and aggregated coverages of environmental factors that may influence susceptibility.
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Susceptibility, in this context, is a qualitative assessment of potential areas of instability
with respect to debris flows.

In a landslide susceptibility analysis, landslide event location accuracy is paramount
yet often inaccurately known unless a direct field survey is conducted. Landslide inven-
tories are often constructed based on mapping from aerial imagery, media reports, local
governmental agencies, witness accounts, and field work by third party sources [5,14,15].
Uncertainties are inherent in all spatial data and at all scales [16]; however, when working at
a continental scale and in the absence of direct field surveys, the uncertainties are inherently
greater [17,18]. “Uncertainty exists widely in the natural world, and certainty is conditional
and relative” [19]. When utilizing methods that overlay and correlate multiple datasets
each with their own uncertainty, their derivative products, such as susceptibility maps, are
prone to error propagation of an unknown magnitude [19]. It is not a matter of adding
more or better data, but rather a “sobering reminder that uncertainty is an irreducible part
of sufficiently complex knowledge” [20], and thus should be thought of as a natural compo-
nent of, and addressed in, every project. The presence of data uncertainty does not preclude
the use of the data, but rather necessitates a methodology for qualitatively or quantitively
characterizing and conveying the level of uncertainty and modeling the associated uncer-
tainty for the benefit of the end-users of the hazard model. “Unlike industrial and other
products of material processes, knowledge products do not carry with them the evidence
of their own inadequacy and the most critical aspects of the quality of its products are often
only testable through their indirect and sometimes remote consequences” [20]. Our aim is
to minimize the societal ‘testing’ of an inadequately understood susceptibility model.

Although there are many factors and attributes associated with debris flow analyses
which are prone to uncertainty, such as debris flow location, type, volume/size, setting, pre-
disposing factors, triggers, etc. [14,21,22], for simplicity, in this study, only the uncertainty
associated with debris flow event location is investigated. The focus herein is the impact of
uncertainty on the determination of principal environmental predisposing factors, factor
classes, and resulting susceptibility analyses.

The debris flow predisposing environmental factors initially employed are those
that are commonly associated with debris flows [23–30]; they are aridity, climate, depth
to bedrock, elevation, fault density, landcover, landform, lithology, topsoil percent clay,
precipitation, slope, soil drainage, soil type, and soil thickness. The study herein is focused
on the European continent, as a case study. While all fourteen environmental factors were
inputs to the Maximum Entropy (MaxEnt) models, only a subset of these debris flow
predisposing factors are used to demonstrate the uncertainty issues. The factors further
investigated are those with the highest gain (contribution) to debris flow susceptibility as
defined by MaxEnt modelling. They are precipitation, fault density, and soil type.

2. Study Area

The study area is the continent of Europe. The mean elevation of Europe is 300 m
above sea level, 31% of the continent is depositional plains, 30% erosional plains and
plateau in sedimentary rocks, and mountain belts account for 25% [31]. The European
continent is generally characterized by a temperate climate. Soils across the continent are
diverse with twenty-three out of the total of thirty Reference Soil Groups of the world
being present [32]. It is expected that the uncertainty and susceptibility impact principles
discussed herein, and found to be true in Europe, may be true on any of the continents.

3. Materials and Methods

Determination of the most relevant debris flow conditioning factors, as well as the fac-
tor classes, is essential to susceptibility analyses. Global coverage of fourteen conditioning
factor datasets (aridity, climate, precipitation, elevation, fault density, landform, lithology,
depth to bedrock, slope, soil thickness, soil type, topsoil percent clay, soil drainage, and
landcover) were acquired from various sources. A European continent boundary dataset
was used to clip each factor and create a Europe-only coverage. The landside inventory
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was sourced from NASA [15]. The inventory contains 99 debris flows and mudslides
within the continent of Europe. Mudslides are included in this study as it is a common
misnomer for debris flows. It is noteworthy that landslide classification itself may be a
source of data uncertainty. The event inventory contains a “location accuracy” attribute for
each event. The locational accuracies associated with the 99 debris flows in Europe range
from an “exact” known location to 50 km (Table 1), plus six events that were identified
with a location accuracy of “unknown”. Figure 1 shows the distribution of this model
training data depicted with locational uncertainty buffers for the 93 events with defined
locational uncertainties.

Table 1. Locational uncertainty frequency distribution of global inventory: Europe debris flows (left),
world debris flows (center), and world–all landslide types (right). The Europe debris flows are used
for this study.

Locational
Uncertainty
Radius (km)

Frequency
Distribution

(Europe Debris
Flows)

Percent of
Total Debris
Flow Events

Cum
Percent

Frequency
Distribution

(World Debris
Flows)

Percent of
Total Debris
Flow Events

Cum
Percent

Frequency
Distribution
(World All

Landslide Types)

Percent of
Total

Landslide
Events

Cum
Percent

exact 5 5.1 5.1 174 7.6 7.6 1386 12.6 12.6
1 19 19.2 24.3 620 27.0 34.6 2185 19.8 32.4
5 31 31.3 55.6 763 33.3 67.9 3178 28.8 61.2

10 20 20.2 75.8 277 12.1 79.9 1435 13.0 74.2
25 12 12.1 87.9 240 10.5 90.4 1470 13.3 87.5
50 6 6.1 93.9 125 5.4 95.9 794 7.2 94.7
100 0 9 0.4 96.3 25 0.2 94.9
250 0 4 0.2 96.4 16 0.1 95.1

“unknown” 6 6.1 99.9 82 3.6 100.0 546 4.9 100.0
Total 99 2294 11,033

Figure 1. 93 (of 99) European debris flow events with a buffered “known” locational uncertainty.
Some larger buffers overlap and occlude nearby smaller buffers. Base map is from ArcGIS®, the
intellectual property of Esri, used herein under license. Copyright© Esri.

The predisposing factors were analyzed for Pearson’s correlation coefficient (r) with
Excel Correl function and found to have a weak to very weak correlation among all factors
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(Table 2). Analysis of the predisposing factor contributions, from a Maximum Entropy
model of the original 99 events, resulted in precipitation, fault density, and soil with the
highest relative contributions at 42%, 27.6%, and 8.6%, respectively. Thus, for purposes of
this study, the location uncertainty impact is analyzed and demonstrated for only these
three factors. A fault density derivative dataset was developed with the ArcGIS “Line
Density” tool and the active faults from the GEM Global Active Faults database [33],
utilizing a search radius of 250 km and an output cell size of 25 sq km. The new dataset
represents the fault length (km) per square kilometers of area.

Table 2. Matrix of environmental factor correlation coefficients.

Climate
Class

Distance
to Fault Drainage Percent

Clay Lithology Soil
Type Precip Elev Soil

Thick
Aridity
Index Landform Landcover Slope Fault

Density
Depth to
Bedrock

Climate Class 1 −0.180 0.107 −0.246 −0.051 −0.009 −0.109 −0.009 −0.036 −0.065 −0.029 0.041 0.026 −0.010 −0.052
Distance to Fault 1 −0.068 0.072 0.050 0.093 0.011 0.001 −0.012 0.015 0.038 −0.015 0.023 −0.016 −0.026
Drainage 1 −0.416 0.006 0.040 −0.135 −0.016 −0.001 −0.087 0.067 0.019 −0.041 −0.057 −0.017
Percent Clay 1 0.026 −0.013 0.020 −0.001 0.022 0.005 0.017 −0.025 0.024 −0.001 0.025
Lithology 1 0.087 −0.120 0.053 −0.003 −0.095 0.011 0.009 0.041 0.018 −0.052
Soil Type 1 −0.315 0.096 −0.010 −0.274 0.148 0.102 0.030 0.029 −0.107
Precip 1 −0.261 0.010 0.864 −0.436 −0.174 −0.058 −0.102 0.252
Elev 1 −0.213 −0.240 −0.070 −0.143 0.027 −0.067 −0.061
Soil Thick 1 −0.015 −0.052 0.241 0.036 0.026 0.007
Aridity Index 1 −0.416 −0.162 −0.058 −0.081 0.217
Landform 1 −0.008 −0.015 0.076 −0.096
Landcover 1 0.030 0.105 −0.047
Slope 1 0.043 −0.012
Fault Density 1 −0.016
Depth to Bedrock 1

Maximum Entropy (MaxEnt), a “presence-only” machine learning algorithm [34], is
used due to the ambiguity of “absence” in this context and the dependence on landslide
inventories that were not collected through manual field surveys and thus without verified
locations. Absence does not necessarily mean that there are or were no debris flows in an
area. It means we do not know and/or we do not have substantiating data sources or ability
to conduct field surveys, particularly at a continental scale. MaxEnt utilizes the environmen-
tal data across the entire study area, rather than the area strictly associated with the presence
data, which is an important factor when working with limited presence data [35]. The
MaxEnt model output is a maximum likelihood estimate of relative probability of presence.
MaxEnt is a widely used technique in biological species distribution modeling with recent
and growing interest in its use for landslide susceptibility modeling due to its predictive
success compared with other methodologies in “presence” only scenarios [27,36–40]. The
MaxEnt model renders information for those debris flow predisposing factors that provide
the greatest contribution to the susceptibility analysis. For this study, each MaxEnt model
was run with five replications (cross-validation), logistic output format, with jackknife tests
of variable importance. The MaxEnt models were developed with the event point data.
Since MaxEnt requires the event data input be in point format, it alone does not lend itself
to assessing the impact using debris flow locational accuracy buffered areas and associated
‘what if’ scenario representations. Therefore, in addition to MaxEnt software v. 3.4.4 [41] for
susceptibility and environmental factor analyses, ArcGIS Pro 2.7 [42] was used for creating
uncertainty buffers around each point based on its location accuracy (uncertainty), spatial
calculations (pixel math for determining differences between models), statistical analyses
(standard deviation, mean), and additional scenario representations. All maps presented
herein include base maps from ArcGIS® and are the intellectual property of Esri and are
used herein under license.

Five models were developed with MaxEnt. The first model was developed using the
original inventory of 99 Europe debris flow events with varying locational uncertainties.
This model will subsequently be referred to as “Original”. The second model utilizes a
training dataset created from 93 randomly generated points, randomly located within each
of the original 93 locational uncertainty buffers. In ArcGIS, for each event buffer (regardless
of location accuracy), the “Create Random Points” tool was used to generate a new point
randomly located within each buffer. These new points were then used in MaxEnt to create
a susceptibility model. This model is referred to as “93 Random”. The third model utilizes
only those original inventory event points with known locational uncertainties ≤ 5 km
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(55 events) as the training data, including “exact” points. This is the “LTE 5km” model. The
fourth model, “LTE 1km” utilizes only those original inventory event points with known
locational uncertainties ≤ 1 km (24 events), including “exact” points. The fifth model,
“Exact”, utilizes only those points identified as having an “exact” known location (five
events). All MaxEnt models include a test dataset composed of 2743 debris flow events in
Europe, with no location accuracy attribute. The data were curated from approximately
100 governmental organizations throughout Europe. These data include landslide type
and location among other attributes, but no information with regard to location accuracy.
They are representative of typical landslide inventories. The “Original” model is the model
against which all other models are compared, with the purpose of understanding the
suitability of such an inventory of events with locational uncertainties, and the option for
choosing an alternative set of events for the best susceptibility representation.

4. Results
4.1. Impact of Locational Uncertainty on Precipitation as a Predisposing Factor

According to the “Original” MaxEnt model, the monthly average precipitation predis-
posing factor provided the highest contribution (gain) and was the most significant factor
in the jackknife test both in most significance as the only variable, and most significant
negative impact when removed from the model. In a worldwide study of non-seismic
landslide occurrences, ref. [5] found a strong correlation between the mean monthly precip-
itation and landslide events in four of five global regions studied. Table 3 shows the AUC
(area under the curve) and the relative factor contribution (gain) for the “Original” MaxEnt
model, and all factors input to the model.

Table 3. AUC and factor contribution derived from MaxEnt “Original” model.

Variable/Model “Original”
Factor Contribution to Model

AUC 0.891
precipitation 42.0
fault density 27.6

soil type 8.6
landcover 4.7

climate 4.5
lithology 2.1

soil thickness 2.4
landform 4.9
elevation 0.2
drainage 2.3

topsoil percent clay 0.1
depth to bedrock 0.0

aridity 0.5

Two events, 560 and 6381, each with a 50 km location uncertainty, are selected to view
the precipitation factor classes within each buffer, at a larger scale. Table 4 and Figure 2
depict precipitation values and range of values found within their buffered areas.

Table 4. Impact of location uncertainty: buffered area values vs. point value of precipitation factor
class, for two sample events, 560 and 6381.

Event ID 560 6381

Precipitation point value 92 mm 73 mm
Locational uncertainty buffer 50 km 50 km

Number of different precipitation factor classes within buffer 32 31
Precipitation range of values within buffer 58–141 mm 49–94 mm
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Figure 2. Map overlay of monthly average precipitation (mm) raster and debris flow event locational
uncertainty buffers, highlighting event 560 and 6381, both with 50 km locational uncertainty. Each
color cell represents an associated precipitation factor class value (mm). Base map is from ArcGIS®,
the intellectual property of Esri, used herein under license. Copyright© Esri.

4.2. Impact of Locational Uncertainty on Fault Density as a Predisposing Factor

According to the “Original” MaxEnt model, the fault density environmental layer pro-
vided the second highest contribution (gain), at 27.6%, and was the second most significant
factor in the jackknife test with most significance as the only variable. Figure 3a depicts
the fault density in western Europe with debris flow locational uncertainty buffers. Table 5
and Figure 3b depict the point fault density value versus the range of values within the
buffered areas, for sample events 560 and 6381.

Figure 3. Fault density (km/sq km) overlay and debris flow event locational uncertainty buffers.
(a) Fault densities in western Europe. (b) Fault density (Natural Break (Jenks) classification—
10 breaks) and debris flow event locational uncertainty buffers, highlighting events 560 and 6381,
both with 50 km location uncertainties. Base maps and imagery are from ArcGIS®, the intellectual
property of Esri, used herein under license. Copyright© Esri.



Appl. Sci. 2022, 12, 6697 7 of 17

Table 5. Impact of location uncertainty: buffered area values vs. point value of fault density factor
class, for events 560 and 6381.

Event ID 560 6381

Single fault density class at point (km/sq km) 0.0065–0.0084 0.000001–0.05
Locational Uncertainty Buffer 50 km 50 km

Range of multiple fault density classes within
buffer (km/sq km) 0.0050–0.0840 0.0–0.059

4.3. Impact of Locational Uncertainty on Soil as a Predisposing Factor

The environmental layer with the third highest contribution in the “Original” MaxEnt
model is soil type with a gain of 8.6% and tied with fault density as the second most
significant factor in the jackknife test with most significance as the only variable. A total of
35% of the 93 buffered events had from two to seven different soil types. Figure 4 depicts
the soil types within each buffered event in a partial view of western Europe, highlighting
events 560 and 6381, Table 6 presents their point value soil types versus the range of values
found within their buffered locations.

Figure 4. Events 560 and 6381 buffered by location uncertainty, with soil overlay within each buffer.
Background of soil types, outside buffers, was filter out for better display. Base map is from ArcGIS®,
the intellectual property of Esri, used herein under license. Copyright© Esri.

Table 6. Impact of location uncertainty (buffered area) values vs. point values in soil class determina-
tion, sample events 560 and 6831.

Event ID 560 6381

Soil class at point Podzol Cambisol

Locational Uncertainty Buffer 50 km 50 km

Number of different soil
classes within buffer 5 7

Soil classes within buffer Cambisol, Gleysol, Lithosol,
Podzol, Rendzina

Cambisol, Gleysol, Lithosol,
Luvisol, Planosol, Podzol,

Rendzina

4.4. Impact of Factor Uncertainties on Susceptibility Results

Numerous debris flow susceptibility classifications are found within the location un-
certainty buffers in the “Original” model, as highlighted for events 560 and 6381, Figure 5.
All susceptibility classifications, from Very Low to Very High, are found within both
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of the 50 km sample buffered areas. Even within a 5 km area of these points, the sus-
ceptibility ranges from Low to Very High (event 560) and Low to Moderate (event 6381),
Table 7. A susceptibility classification for these, and other events with location uncertainties,
is inconclusive.

Figure 5. “Original” susceptibility model highlighting numerous susceptibility classifications within
5 to 50 km buffers for events 560 and 6381.

Table 7. “Original” susceptibility results for events 560 and 6381, within location uncertainty buffers
from 5 to 50 km.

Uncertainty buffer Event 560 Event 6381

50 km Very Low to Very High Very Low to Very High
10 km Low to Very High Low to High
5 km Low to Very High Low, Moderate

Debris flow susceptibility results are shown for the “Original”, “93 Random”, “LTE
5km”, and “LTE 1km” models, Figure 6A–D, respectively, with the AUC and factor contri-
butions for each model presented in Table 8.

Table 8. AUC and factor contributions (gain) for each of the five MaxEnt models.

Variable/Model
“Original” Factor

Contribution
(99 Events)

“93 Random” Factor
Contribution
(93 Events)

“LTE 5km” Factor
Contribution (55

Events)

“LTE 1km” Factor
Contribution (24

Events)

“EXACT” Factor
Contribution

(5 Events)

AUC 0.891 0.893 0.896 0.921 0.93
precipitation 42 37.4 30.2 11.9 3
fault density 27.6 29.7 24.8 10.3 0.1

soil type 8.6 10.5 13.6 25.8 75.3
landcover 4.7 7.9 8.9 18.8 2.3

climate 4.5 2.8 8.1 11.1 1.4
lithology 2.1 1.6 4.1 3.1 0.5

soil thickness 2.4 1.8 3.3 4 13.3
landform 4.9 3.2 3.1 10.4 2.2
elevation 0.2 1.6 2.1 1.1 1.5
drainage 2.3 2.9 1.6 1.5 0.2

topsoil percent clay 0.1 0.2 0.1 1.5 0.2
depth to bedrock 0.0 0.1 0.1 0.4 0.0

aridity 0.5 0.3 0.1 0.1 0.0
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Figure 6. Debris flow susceptibility maps. (A). “Original”, (B). “93 Random”, (C). “LTE 5km”, (D).
“LTE 1km”. Warmer colors represent higher susceptibilities. Base maps are from ArcGIS®, the
intellectual property of Esri, used herein under license. Copyright© Esri.

The “Random” model was developed merely as a view on the integrity of the “Origi-
nal” model, in comparison. So, it is noteworthy that the “Original” model does not perform
as well as a model built on randomly generated locations. Although the “Exact” model has
verified locations and the highest AUC, results cannot be used to represent the European
continent due to the statistically small number of such events (five) and their localized
distribution, Figure 7, hence the “Exact” model is not further considered.

For precipitation, soil type, soil thickness, topsoil percent clay, and landform factors,
there is concurrence in the factor classes associated with susceptibility among the four
models, within a reasonable margin. There are significant differences for fault density,
landcover, climate, elevation, drainage, depth to bedrock, and aridity. In most of these
cases there is reasonable agreement in three of the four models, Table 9.
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Figure 7. Distribution of the five European debris flow events with a location accuracy of “exact”. Base
map is from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright© Esri.

Table 9. Comparison of factor classes with highest significance to susceptibility in four models.
Italicized factors are those with closest agreement.

Factor/Model “Original” “93 Random” “LTE 5km” “LTE 1km”

precipitation (monthly
average mm 1970–2000) 275–300 300–325 260–280 275–300

fault density (km/sq km) 0.02–0.14 0.01–0.02 0.13–0.14 0.01–0.14

soil type Gleysol Fluvisol, Gleysol Fluvisol, Gleysol Gleysol

landcover urban urban urban sparse vegetation

Climate (Köppen-Geiger)
Dfa—hot summer
humid continental

climate

BSk—semi arid
steppe

Csa—Mediterranean
hot summer climate
and Cfc—subpolar

oceanic climate

Csa—Mediterranean
hot summer climate

lithology unconsolidated
sedimentary (su)

intermediate volcanic
(vi)

unconsolidated
sedimentary (su) basic plutonic (pb)

soil thickness (m) 0–2.5 0–1 0–2 0–2.5

landform Plains on sedimentary
lithology

Humid plains on
sedimentary lithology

Plains on sedimentary
lithology Plains in alpine system

elevation (m) 3250–3500 3200–3500 0–500 3250–5000

drainage “Very poor” “Imperfectly” “Imperfectly” “Moderately well”

topsoil percentclay 5–18 20 20 0–22

depth to bedrock (cm) 0 114 0 0–2000

aridity (dimensionless index) ~1300 (Arid) ~1300 (Arid) ≥60,000 (Humid) ~15,000 (Humid)
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Next, three pairwise comparison maps were produced with pixel differencing of the
susceptibility values. The first comparison is the “Original” model minus “93 Random”, the
second comparison is the “Original” model minus “LTE 5km”, and the third is “Original”
minus “LTE 1km”, Figure 8A–C, respectively. The results of each map are displayed with a
ten-break Natural Break (Jenks) classification. Figure 8D provides an enlarged view of the
susceptibility differences for the two sample events 560 and 6381.

Figure 8. Model susceptibility differences. (A). Pixel difference between “Original” and “93 Random”
models. (B). Pixel difference between “Original” and “LTE 5km” models. (C). Pixel difference between
“Original” and “LTE 1km” models. Warmer colors represent areas of higher susceptibility values in
“Original” model. (D). Map 9B zoomed into area around the Italian Alps for visual enhancement of
susceptibility disparities. Base maps are from ArcGIS®, the intellectual property of Esri, used herein
under license. Copyright© Esri.

5. Discussion

Identifying specific factor classes that have a dominant association with past debris
flow events is essential in preparing debris flow susceptibility maps across an area of
study [28] at any scale. The impact of locational uncertainty in accurately selecting those
predisposing factor classes varies depending on the scale at which one is performing the
analysis, the scale of lateral change of the factor itself, the extent of location uncertainty of
the debris flow events being used, and the risk associated with an incorrect model [21,22].
A total of 88.8% of this study’s Europe debris flow inventory has a locational uncertainty
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from 1 to 50 km, with 6% defined as “unknown”. A total of 82.5% of the complete inventory
(all continents, all landslide types) have a locational uncertainty from 1 to 250 km, with
4.9% unknown. Noteworthy differences arise in factor and factor class determinations and
susceptibility results among five MaxEnt models, each using data with different location
uncertainties. Within their buffered areas, 35% of the original inventory of debris flow
events were found to have from two to seven different soil types, an average of 5.8 different
precipitation values, and fault densities with high values from 1.75 to 4.2 times the low
values within a buffered event. The “Original” model with the most uncertainty, and the
“Exact” model with no uncertainty, provide end limits on a spectrum for model comparisons.
Of the five models, “Original” model has the largest Very High susceptibility classification
area (Figure 6A and Table 9), five times larger than the “Exact” model, and the lowest AUC
(0.891). The “93 Random” model has a slightly higher AUC (0.893) than the “Original”
model, and an area of Very High susceptibility three times the size of the “Exact” model.
The better performance of a random model adds to the questionability of the original
dataset as satisfactory input to susceptibility modeling. “LTE 1km” (24 points with good
distribution) has the smallest Very High susceptibility area (Figure 6D and Table 9), and the
second highest AUC (0.921). The “LTE 5km” model, with 55 points well distributed across
the continent, has an intermediate AUC (0.896) and an intermediate areal coverage of Very
High susceptibility (Figure 6C and Table 10), two times larger than the “Exact” model.

Table 10. Percent area of land in the Very High susceptibility classification, for each of five models.

Model # Events Percent Area in Very
High Susceptibility AUC

“Original” 99 0.5 0.891
“93 Random” 93 0.3 0.893

“LTE 5km” 55 0.2 0.896
“LTE 1km” 24 0.1 0.921

“Exact” 5 0.1 0.930

Due to the small number of points in the “Exact” model (five) and localized distribu-
tion, this model is not further considered as a viable model.

Commonly, 2D model uncertainty visualization methods rely on gray scale gradations;
hue, saturation, intensity coloration; fill grain density; and crispness versus fuzziness of
classes, to convey model uncertainty [43,44]. These representations do not lend them-
selves to complex displays at large geographic extents, such as continental debris flow
susceptibility. As an enhanced view on susceptibility model choices and with an attempt
to better convey the ‘uncertainties’ to model users, mean and standard deviation overlay
maps were produced based on a combination of the two best models, “LTE 5km” and
“LTE 1km” (Figure 9), and with the “Original” and “LTE 5km” models (Figure 10). The
former may favor the error of omission, while the latter may favor the error of commission.
The better model for further investigation is dependent on the intended use. These result
sets provide the end user with a novel model representation by providing the ability to
select areas for further detailed study based on areas with a high mean and low standard
deviation, from two models with the least location uncertainty, high AUC, and a sufficient
and well-distributed sampling size. The purpose of a study, the use of a model, and the
risks associated with the results, will guide a determination as to whether an error of com-
mission (maximizing susceptibility area) or error of omission (minimizing susceptibility
area) is favored.
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Figure 9. Overlay of susceptibility standard deviation and mean for two combined models (“LTE
5km” and “LTE 1km”) zoomed into western Europe for detail. Standard deviation is represented
by a scalar (blue arrows), small arrows = low values, etc. Warmers colors represent higher mean
susceptibility. Base map is from ArcGIS®, the intellectual property of Esri, used herein under license.
Copyright© Esri.

Figure 10. Overlay of susceptibility standard deviation and mean of two combined models (“Original”
and “LTE 5km”). Standard deviation is represented by a scalar (black arrows), smaller arrows = lower
values, etc. Warmers colors represent higher mean susceptibility. Base map is from ArcGIS®, the
intellectual property of Esri, used herein under license. Copyright© Esri.
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6. Conclusions

The central hypothesis of this study is the principle that locational uncertainties may
be present in any landslide inventory whose data is gathered by means other than direct
field survey or detailed remote sensing identification tools with a known significance
level of accuracy and ground control. This study confirms that the existence of locational
uncertainties has a significant impact on the resulting debris flow susceptibility analyses. It
is imperative that landslide inventories include a location accuracy (uncertainty) attribute,
as is true in the NASA inventory used for this study. How to approach a landslide analysis
based on data without an exact known location or measure of uncertainty is beyond the
scope of this study, but one which warrants further research.

In this study, a MaxEnt debris flow susceptibility model was developed utilizing
the full inventory of data that has varying levels of location uncertainty. The resulting
predisposing factors with the highest contribution to the model (precipitation, fault density,
soil class), were investigated to identify and demonstrate the scope of impact of location
uncertainty on factor class determinations and ultimately on debris flow susceptibility clas-
sification. The resulting susceptibility map demonstrated the significance of the problem
of multiple susceptibility classifications within the buffered areas of uncertainty, whereby
it is not possible to determine a single susceptibility for a given debris flow event, be-
yond those with a known “exact” location. In search for an alternative to using the full
inventory, additional models were developed based on subsets of event data with differing
location uncertainties.

When uncertainty is known, it is suggested to share this information with the end user
in a manner that will facilitate the use of the model for subsequent more detailed analyses.
“It is critical to identify, assess, and quantify uncertainty in spatial data and analysis because
not accounting for uncertainty can lead to overconfidence in the conclusions” [45]. The
validity and limitations of a spatial model are best understood graphically yet representing
uncertainty “remains a persistent and relevant challenge” in the spatial information sciences
“particularly as it applies to decision making and analysis” [46].

Therefore, a novel visual representation was developed, which allows model users
to identify and use susceptibility areas of least uncertainty impact, according to their
intended use.

Additional sources of data uncertainty may be inherent in other attributes of the in-
ventory, as well as uncertainties associated both with the spatial assignment and attributes
of the environmental factors, and the modeling processes. This research exclusively demon-
strates the importance of event location accuracy and the impact of its uncertainty. Location
uncertainty is not the only uncertainty associated with landslide susceptibility modeling
but it is a fundamental one. To adequately highlight the impact, it is treated singularly, ig-
noring other potential uncertainty variables. Modeling all possible uncertainties is outside
the scope of this study, and we believe it is unlikely that additional uncertainties would
lessen the impact of locational uncertainty.

The cause, nature, and handling of mapping errors (uncertainties) has been the sub-
ject of extensive research [17–19,47–50]. Uncertainty and uncertainty handling is context
dependent. The combination of uncertainties in data, analytical methods, and the overlay
processes, may be additive, multiplicative, and non-linear [51]. If a susceptibility map, at
any scale, is to be used to direct further research or mitigation efforts, a confidence level
associated with the results is desirable [52]. This confidence will be dependent upon many
facets of the model, one of which is the reliability of the location of the events used to train
the model.

Increasingly, dataset producers are including accuracy (uncertainty) attributions, such
as the ‘location accuracy’ attribute in the NASA landslide inventory [15], used for this study,
and the ‘epistemic quality’ and ‘activity confidence’ attributes of the GEM Active Faults
data [34]. Utilizing these attributes, when available, provides the researcher with insight as
to how or if to utilize the data and/or the uncertainty, based on the context of their project.
This study does not propose how to handle the use of events whose locations are not known
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with certainty, but rather provides a cautionary example as to the potential limitations of
the validity of the results. However, based on this study, events with unknown accuracy
may be addressed by creating buffers of various (arbitrary) distances around each of the
event points during modeling, which can provide an awareness of the potential scope of
result variances.

According to Goodchild et al. 1993 as cited in [53] there are three options for handling
uncertainty: (1) omit all reference to it; (2) attach a descriptor to the output; and (3) show
samples from the range of possible maps. The latter approach was chosen in this study, that
is, to present different models of the susceptibility and choose that which is most reasonable
for the project at hand.
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