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Transcription factor EB (TFEB) belongs to the microphthalmia family of

bHLH-leucine zipper transcription factors and was first identified as an onco-

gene in a subset of renal cell carcinomas. In addition to exhibiting oncogenic

activity, TFEB coordinates genetic programs connected with the cellular

response to stress conditions, including roles in lysosome biogenesis, autop-

hagy, and modulation of metabolism. As is the case for other transcription

factors, the activities of TFEB are not limited to a specific cellular condition

such as the response to stress, and recent findings indicate that TFEB has

more widespread functions. Here, we review the emerging roles of TFEB in

regulating cellular proliferation and motility. The well-established and emerg-

ing roles of TFEB suggest that this protein serves as a hub of signaling net-

works involved in many non-communicable diseases, such as cancer,

ischaemic diseases and immune disorders, drug resistance mechanisms, and

tissue generation.
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Transcription factor EB, which was cloned in 1990 as a

transcription factor belonging to the microphthalmia

(MiT) gene family of transcription factors, contains a

bHLH and a leucine zipper motif and an acidic and

proline-rich region [1,2]. It binds E-box (CAYGTG)

sequences in gene promoter regions [1–4]. A new promoter

motif (GTCACGTGAC overlapping the E-box sequence)

has been identified, named the Coordinated Lysosomal

Expression and Regulation Region, and characterized to

be instrumental in regulating the transcription of genes

involved in lysosome functions [4–6]. The TFEB–DNA

interaction requires homodimerization or heterodimeriza-

tion with TFE3 or MITF, each of which is also a member

of the MiT family [2,7,8], but the biological meaning of

this molecular feature is unknown.

In addition to being a key molecule orchestrating

autophagy and a potential therapeutic target in

lysosome storage diseases [9,10] and in pathological

conditions dependent on autophagy dysfunction [11],

recent data clearly indicate that TFEB has wider tran-

scriptional competencies and activities, including roles

in metabolism, immunity, angiogenesis, and inflamma-

tion [11–13]. Here, we briefly summarize the cellular

mechanisms controlling TFEB activation and review

emerging findings suggesting that TFEB might play

crucial roles in cell motility and proliferation indepen-

dent of its activities in the control of autophagic flux.

Cellular control of TFEB nuclear-
cytosolic trafficking

The control of TFEB activity is mainly mediated by

posttranslational modifications, which regulate its

nuclear localization. Currently, the most important
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regulatory mechanism relies on phosphorylation/phos-

phorylation events [6,14–22] (Fig. 1), but other mecha-

nisms, such as acetylation/deacetylation [23–25],
sumoylation [26], and interaction with other cytosolic

proteins, such as the GTPase IRGM and the Atg8

protein [27], refine TFEB nuclear entry.

The general mechanism retaining TFEB in the cyto-

sol and blocking its nuclear translocation is the phos-

phorylation of some specific serine residues (Table 1).

Phosphorylated TFEB is sequestered in the cytosol

through its binding to the 14-3-3 chaperone

[6,14,15,17,28] and is involved in degradation mediated

by the ubiquitin–proteasome pathway [29].

Transcription factor EB phosphorylation by the ser-

ine/threonine protein kinase mammalian target of

rapamycin complex 1 (mTORC1) represents the most

important mechanism occurring at the lysosomal sur-

face, connecting TFEB activation to the nutritional

condition of the cell [14,15,17,19]. When cells have

sufficient amounts of amino acids, the Rag GTPase

system mediates the localization of both mTORC1 and

TFEB on the lysosomal cytosolic surface [15,30–33].
In the absence of amino acids, the Rag GTPase system

is inactivated, and mTORC1 remains in the cytosol in

an inactive state. mTORC1 phosphorylates TFEB at

residues S122, S142, and S211. S211 phosphorylation

is the key mechanism moving TFEB from the lyso-

some to the cytosol [6,14,15,17,28]. Phosphorylation of

S142 and S211 is instrumental in TFEB proteolysis

[29], while phosphorylated S122 enhances the effect of

phosphorylated S211 [17].

The opposite effect on TFEB activity is exerted by

50 AMP-activated protein kinase (AMPK), the sensor

of low-energy status. Phosphorylation of S466, S467,

and S469 by AMPK is essential for the transcriptional

activity of TFEB [34]. Furthermore, AMPK might

indirectly activate TFEB by inhibiting mTORC1 [35].

Transcription factor EB is also recognized and phos-

phorylated by other serine/threonine kinases, which

fine-tune the mechanisms supporting TFEB degrada-

tion, nuclear translocation in stressed conditions, or

TFEB export from the nucleus when transcriptional

activity needs to be blocked (Table 1) [6,14–19,21,36–
38].

The behavior of phosphorylated TFEB is clearly

controlled by dephosphorylation mechanisms. When

activated lysosomes release Ca++ through the calcium

channel mucolipin 1, the calcium- and calmodulin-

dependent serine/threonine protein phosphatase cal-

cineurin binds TFEB and dephosphorylates residues

S211 and S142, thus promoting its nuclear transloca-

tion [20]. This activity is also promoted by the protein

phosphatase 2A (PPA2) [22,39], which dephosphory-

lates TFEB at residues S109, S114, S122, and S211.

Mitogenic and motogenic functions of
TFEB

Proliferating or moving cells have to integrate many

subcellular processes (e.g., cell growth, cell division,

cytoskeleton, and microtubule dynamics) with meta-

bolic pathways fuelling either biomass or ATP genera-

tion. Lysosomes are not just lytic organelles; they also

organize the connection between nutrient availability

and cellular metabolic needs to support biological pro-

cesses, including proliferation and migration [40,41].

Transcription factor EB regulates lysosome-mediated

autophagic flux and lysosome biogenesis, which are

known to be involved in cell growth and motility [42].

Therefore, TFEB may indirectly regulate these cellular

functions by controlling autophagy, but there is accu-

mulating evidence indicating that TFEB regulates

Fig. 1. Schematic representation of the phosphorylation- and

dephosphorylation-based mechanism on regulating TFEB transloca-

tion into nucleus. Phosphorylated TFEB is sequestered in the cyto-

sol. Upon dephosphorylation, it can translocate into the nucleus,

where it fulfills transcriptional activity (see text and Table 1 for fur-

ther details).
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transcriptional programs specifically addressing cell

proliferation and migration (Fig. 2).

Role in cell proliferation

A first indirect indication of the role of TFEB in cell

proliferation was provided by a transcriptome analysis

in a macrophage cell line lacking TFEB [43], which

showed a marked downmodulation of genes involved

in the cell cycle. This observation was later confirmed

in endothelial cells [3]. However, this cellular model

demonstrated that TFEB binds the cyclin-dependent

kinase 4 (CDK4) promoter, and in the absence of

TFEB, the CDK4 transcriptional rate and in vitro cell

proliferation were reduced [3]. Interestingly, endothe-

lial TFEB-null mice were characterized by reduced
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Fig. 2. Effects of TFEB on the cell cycle and cell migration. (A)

TFEB promotes the transcription of CDK4 and CDK7: the former

activity is restricted to the G1/S phase, the latter contributes to the

regulation of the G2/M and S/G2 transitions. Furthermore, TFEB

upregulates p21 (CDKN1A) expression, which inhibits the activity

of the cyclin-CDK1, cyclin-CDK2, cyclin-CDK4, cyclin-CDK6 com-

plexes. (B) TFEB regulates cell motility by an indirect effect on inte-

grin trafficking mediated by its activity on lipid metabolism and by

regulating the transcription of myosin motor proteins.
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proliferation leading to defects in embryo angiogenesis

[3]. In TFEB-silenced endothelial cells, the cell cycle

was blocked at the level of the G1–S cycle transition,

as also reported in hepatoblasts [44]. The reduced

activity of CDK4 resulted in a lack of retinoblastoma

protein phosphorylation, which interferes with the

nuclear translocation of E2F, a key transcription fac-

tor that regulates the expression of genes involved in

S-phase. A similar observation was made in HeLa

cells: TFEB deletion resulted in reduced Rb phospho-

rylation, and a TFEBS142A active mutant increased

the expression of CDK4 and CDK7 [43]. Interestingly,

CDK4 itself and CDK6 phosphorylate TFEB on S142

in the nucleus, thereby favoring its nuclear export.

Consequently, inhibition of CDK4/6 reduces the nucle-

ocytoplasmic shuttling of TFEB and enhances its acti-

vation [38]. Collectively, these results indicate the

integrating role of TFEB between the cell cycle and

lysosome functions (Fig. 2A).

In addition to cyclin-dependent kinases, TFEB

directly controls CDKN1A (p21 cyclin kinase inhibitor)

by interacting with its promoter [45], and it has been

reported that the genotoxic effect of doxorubicin

results in TFEB activation, which contributes to cell

cycle arrest by increasing the expression of CDKN1A

[45].

A further interaction between the cell cycle and

TFEB is mediated by CDK inhibitor 1B (p27). This

protein can localize to the cytosolic surface of lyso-

somes and block mTORC1 activation, causing TFEB

to translocate into the nucleus to exert its transcrip-

tional function [46].

Role in cell motility

The data suggesting the role of TFEB in controlling

cell movement are in their infancy but might provide

interesting insights for deciphering the complexity of

this process and its connection with metabolism. In

endometrial, lung, pancreatic and prostate cancer cells,

and in endothelial cells, it has been recently reported

that overexpression and deletion of TFEB enhance

and reduce cell motility, respectively [47–51]. These

observations do not clearly tackle whether the effect of

TFEB on migratory phenotype should be dependent

on or independent of autophagy [52]. In endometrial

cells, the effect of motility is likely mediated by the

influence of TFEB on lipid metabolism and the subse-

quent changes in membrane fluidity contributing to

the mesenchymal transition of these cancer cells [47].

According to these data, TFEB silencing in pancreatic

cancer cell lines reduces motility induced by transform-

ing growth factor b, promoting integrin a5b1

endocytosis and focal adhesion disassembly [50]. Simi-

larly, in endothelial cells, TFEB connects mechano-

contractive and metabolic signalling pathways that

control integrin-mediated cell adhesion to the extracel-

lular matrix. It has been reported that in the absence

of TFEB, cell adhesion to the extracellular matrix is

increased with defects in the turnover of focal adhe-

sions. In addition, TFEB-silenced endothelial cells

show defects in endogenous cholesterol synthesis and

are characterized by inhibition of the cholesterol-

dependent clustering of plasma membrane caveolin-1,

the association of b1 integrins with caveolae and inter-

nalization of the caveolae [53] (Fig. 2B).

Knockdown of the microRNA let-7 in migrating

neuroblasts prevents radial migration, and this effect is

blunted by TFEB overexpression [54]. The activation

of TFEB has also been demonstrated to restore the

migration of neural stem cells impaired by the deletion

of tuberous sclerosis complex 1 (TSC1) [55]. Finally, it

has been reported that AdipoRon, a small molecule

that activates the adiponectin receptor, inhibits vascu-

lar smooth muscle cell migration and in vitro angio-

genic sprouting. These effects are abrogated by

deletion of TFEB, supporting its role in cell migration

[56].

Mechanistically, in endothelial cells, TFEB binds to

the promoter and enhances the transcription of myosin

1c (MYO1C) [3], which contributes to G-actin delivery

to the leading edge and optimal cell migration [57].

Furthermore, TFEB promotes the activation of myo-

sin light-chain kinase, which is responsible for phos-

phorylation of the motor protein myosin II at the

dendritic cell rear, triggering directional motility

[58,59].

The role of TFEB in controlling cell motility has

also been supported by recent observations [60] that

oestradiol analogues block the Ca++ channel mucolipin

1 and consequently block calcineurin-mediated TFEB

nuclear translocation [20]. Interestingly, these mole-

cules inhibit breast cancer cell invasion and migration

by a mechanism strictly dependent on the inhibition of

mucolipin 1 on the surface of lysosomes [60]. The rela-

tionship between mucolipin 1-mediated mechanisms

and cell migration is further suggested by results show-

ing that the small GTPase Rab7b interacts with

mucolipin1, allowing the localization of the motor pro-

tein myosin II at the surface of lysosomes accumulated

at the migrating cell rear [59].

Furthermore, a role of TFEB in controlling cell

motility activity can be inferred from emerging evi-

dence of the activity of TFEB in epithelial–mesenchy-

mal transition (EMT), a process characterized by the

transition of static and polarized epithelial cells to a

1976 FEBS Letters 596 (2022) 1973–1980 � 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

TFEB and cell cycle and cell movement E. Astanina et al.

 18733468, 2022, 16, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14442 by C

ochraneItalia, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



motogenic and mesenchymal phenotype [61]. The role

of TFEB in establishing the equilibrium between

epithelial and mesenchymal phenotypes was discovered

in 2005 [62] but has not been studied in depth since.

Transcription factor EB overexpression in fibroblasts

directly activates the E-cadherin promoter. Transcrip-

tion factor EB also increases the expression of WNT

[62], which regulates both EMT and the inverse pro-

cess, mesenchymal-epithelial transition [63]. Finally, in

gastric cancer, TFEB regulates EMT and cell migra-

tion through the Wnt pathway [64].

Conclusions

This short review summarizes new perspectives on the

genetic programs regulated by TFEB, envisaging novel

functions relevant to many chronic and degenerative

diseases, such as cancer, ischaemic diseases, and immune

disorders. For many years, transcription factors were

considered to be without any significant pharmacologi-

cal properties of interest. However, recent discoveries

on the mechanisms of DNA–protein interactions, post-

translational modifications of transcription factors, and

their epigenetic control have led to the generation of

specific inhibitors, including some for TFEB [11].

Answers to relevant open questions are clearly required

to better understand the roles of TFEB in cell motility

and proliferation and to consider this molecule a puta-

tive and realistic therapeutic target. The most crucial

issue is defining the tissue-specific genetic programs reg-

ulated by TFEB. While strong overexpression of TFEB

is certainly able to promote transcription of genes

involved in lysosome functions and autophagy in all tis-

sues, it is relevant to understand the impact of subtle

variations in TFEB activation on the control of gene

transcription. Elucidation of this crucial issue will sup-

port an improved understanding of the biochemical

mechanisms regulating the synthesis, degradation, acti-

vation, and nuclear import–export of TFEB, as well as
the tissue specificity thereof. While it is well established

that posttranslational modifications, such as phosphory-

lation of certain Ser residues, are crucial for preventing

nuclear translocation of TFEB, further questions

remain. What are the mechanisms mediating TFEB

degradation? What are the roles of speficic phosphory-

lated residues in the nuclear activity of TFEB [12]? In

addition to phosphorylation, are there other biologically

relevant posttranslational modifications? Furthermore,

the cellular stress conditions that lead to TFEB activa-

tion need to be understood in more detail. For instance,

which molecular sensors connect extracellular cues to

TFEB-mediated cellular responses? How do they mod-

ify TFEB cellular homeostasis? Finally, TFEB

activation is a promising target for the treatment of

lysosomal storage diseases [9,10] and pathological con-

ditions involving the aggregation of abnormal proteins

[11]. This relies on TFEB’s ability to increase autopha-

gic flux and to favor clearance of engulfed molecules.

Interpretation of the data showing that mucolipin 1 is

associated with TFEB in both the regulation of autop-

hagy [20] and cell migration [58–60] requires under-

standing of how the motogenic and mitogenic activity

of TFEB interferes with therapeutic strategies aimed at

increasing the autophagic flux. In summary, TFEB is

likely to be a promising therapeutic target, but addi-

tional research is needed to firmly establish this fact.
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