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Abstract In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs.
However, the efficacy of these therapies is significantly limited by primary and acquired resistance, that
relies not only on cell-autonomous mechanisms but also on tumor microenvironment cues. Cancer-
associated fibroblasts (CAFs) are extremely plastic cells of the tumor microenvironment. They not only
produce extracellular matrix components that build up the structure of tumor stroma, but they also
release growth factors, chemokines, exosomes, and metabolites that affect all tumor properties, including
response to drug treatment. The contribution of CAFs to tumor progression has been deeply investigated
and reviewed in several works. However, their role in resistance to anticancer therapies, and in particular
to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs in
driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to
improve patient survival.
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REVIEW

The importance of being CAFs (in cancer 
resistance to targeted therapies)
Sabrina Rizzolio1, Silvia Giordano1,2 and Simona Corso1,2*    

Abstract 

In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs. However, the 
efficacy of these therapies is significantly limited by primary and acquired resistance, that relies not only on cell-
autonomous mechanisms but also on tumor microenvironment cues. Cancer-associated fibroblasts (CAFs) are 
extremely plastic cells of the tumor microenvironment. They not only produce extracellular matrix components that 
build up the structure of tumor stroma, but they also release growth factors, chemokines, exosomes, and metabolites 
that affect all tumor properties, including response to drug treatment. The contribution of CAFs to tumor progression 
has been deeply investigated and reviewed in several works. However, their role in resistance to anticancer therapies, 
and in particular to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs 
in driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to improve patient 
survival.
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Background: being CAFs
Fibroblasts and their activated counterpart resident 
inside the tumor mass, named cancer-associated fibro-
blasts (CAFs), are very enigmatic cells. Fibroblasts are 
extremely versatile: they are usually quiescent, but upon 
tissue damage and wound healing response they can be 
reversibly activated (‘myofibrobasts’) (reviewed in [1]). 
In cancers (the ‘wounds that never heal’ [2]), this acti-
vated status becomes exacerbated and irreversible, as 
consequence of epigenetic changes [3, 4]. Compared 
to normal fibroblasts, CAFs show increased prolifera-
tion and motility, as well as elevated secretion of growth 
factors, chemokines, and extracellular matrix (ECM)-
degrading enzymes such as metalloproteases. Thus, in 
many experimental contexts, CAFs appear as positive 
regulators of tumorigenesis and metastasis [5, 6]. CAFs 

also contribute to the generation and maintenance of 
the cancer stem cell ‘niche’ through the active remod-
eling of ECM and secretion of morphogens [7, 8]. CAFs 
regulate ferroptosis in surrounding tumor cells [9] and 
they also develop metabolic symbiosis with cancer cells, 
mutually and dynamically reprogramming their basal 
metabolism- comprising lipid metabolism [10, 11] - in 
surrounding tumor cells to generate a pro-tumorigenic 
ecosystem [12]. CAFs do not only interact with tumor 
cells, but they are functionally connected also with other 
cells in the tumor microenvironment, including vas-
cular endothelial cells and immune cells. Indeed, CAFs 
secrete factors that modulate vascular network forma-
tion/ remodeling [13–15] and they deeply influence 
the functions of several immune cell types, including 
macrophages,neutrophils and T cells [16]. In this con-
text, several authors reported that CAFs can promote an 
immunosuppressive environment, both directly, through 
the secretion of several chemokines or other negative 
immune-regulators [17, 18], and indirectly, by regulating 
the stiffness of the ECM, which decreases immune cell 
infiltration or immune cell extravasation [19].

Open Access

*Correspondence:  simona.corso@unito.it

2 Department of Oncology, University of Torino; Candiolo Cancer Institute, 
FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Torino, Italy
Full list of author information is available at the end of the article

AQ1

AQ2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

http://orcid.org/0000-0002-5069-1503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13046-022-02524-w&domain=pdf


UNCORRECTED PROOF

Journal : BMCTwo 13046 Dispatch : 28-10-2022 Pages : 16

Article No : 2524 ¨  LE ¨  TYPESET

MS Code : ﻿ þ   CP þ   DISK

Page 2 of 16Rizzolio et al. J Exp Clin Cancer Res _#####################_

Interestingly, it is emerging that CAFs (as well as myofi-
broblasts) are highly heterogeneous cells with distinct 
gene expression patterns and different, sometimes oppo-
site, biological functions inside the tumor microenviron-
ment (TME) [20–23]. Even in the same tumor, different 
CAF subpopulations can be present. In PDAC, Öhlund 
et  al. have identified two spatially separated, revers-
ible, and mutually exclusive subtypes of CAFs: myCAFs 
(myofibroblastic CAFs), closely bound to cancer cells 
and characterized by high αSMA expression, and iCAFs 
(inflammatory CAFs), located more distantly from neo-
plastic cells, which are characterized by significantly 
lower αSMA levels and elevate expression of cytokines 
with known roles in cancer progression, such as IL-6 and 
IL-1 [20]. Moreover, a third CAF subtype has been identi-
fied, named apCAFs (antigen-presenting CAFs), express-
ing MHC II genes [24], deriving from mesothelial cells 
[25] and promoting or suppressing immune response, 
depending on the tumor context ([25, 26]. Accordingly, 
recent studies have shown that, in certain contexts, CAFs 
may act as negative regulators of tumor progression, 
restraining, rather than supporting, pancreatic ductal 
adenocarcinoma growth [27, 28]. This has been clearly 
shown in two different experimental models: (i) trans-
genic mice developing spontaneous pancreatic ductal 
adenocarcinoma (PDAC) crossed with alpha smooth 
muscle actin (αSMA)-tk transgenic mice to selectively 
target αSMA+ myofibroblasts upon ganciclovir admin-
istration [27] or ii) conditional deletion of Sonic Hedge-
hog, the key factor driving formation of a fibroblast-rich 
desmoplastic stroma in PDAC [28]. The derived pan-
creatic tumors, bearing a reduced stromal content, were 
more undifferentiated, vascularized, and aggressive. The 
increased aggressiveness was either due to suppressed 
immune surveillance [27] or to altered angiogeneisis 
[28], suggesting that CAF can negatively control tumor 
growth by negatively controlling the Treg repertoire, 
and restraining tumor angiogenesis. Recently, through 
single-cell mass cytometry, Hutton et al. [29] uncovered 
two fibroblast lineages with opposite effects on PDAC 
progression. The two cell subsets, identified both in nor-
mal and in cancer tissues, were stably demarked by the 
expression CD105, a co-receptor for the TGFb family 
ligands: CD105 positive fibroblasts gave rise to tumor 
permissive CAFs, while CD105 negative fibroblasts dif-
ferentiated into CAFs with tumor suppressive proper-
ties, by supporting anti-tumor immunity. Similarly, two 
distinct CAF populations with opposing roles in the pro-
gression and immune landscape were identified in PDAC, 
as, in this context, depletion of fibroblast activation pro-
tein (FAP)+ CAFs increased survival, while depletion of 
αSMA+ CAFs decreased survival [30]. Also the TGFβ-
driven expression of the leucine-rich-repeat-containing 

protein 15 (LRRC15) in CAFs, characterizes a pro-tumo-
rigenic CAF subpopulation, as the depletion of LRRC15+ 
CAFs in PDAC models slowed tumor growth and 
restored CD8+ T cell functions, increasing response to 
immunotherapy [31]. Why CAFs are so heterogeneous is 
not clear. One possible explanation is the source of ori-
gin: indeed, studies performed in genetically modified 
animals suggest that CAF can derive not only from res-
ident fibroblasts, but also from bone marrow cells [32], 
adipocytes [33] or epithelial cells undergone mesenchy-
mal transition [34].

Finally, robust evidence has indicated that CAFs play 
a major role in drug resistance. In this review we will 
focus on CAF role in resistance to targeted agents, while 
stroma-mediated resistance to chemo-, radio-, or immu-
notherapies has been nicely reviewed elsewhere [16, 35].

Limitation of preclinical models to understand CAF biology
A general and important premise concerning studies of 
CAF-mediated drug resistance is the limitation of reli-
able preclinical models. In vitro models frequently used 
to evaluate the CAF activity include direct co-culture 
of tumor cells and CAFs, indirect co-culture systems 
(i.e., co-culture separated by a filter), or treatment with 
conditioned media. Notably, murine CAFs can be easily 
obtained and propagated in culture from human xeno-
grafts. Diphtheria toxin, that selectively kills human but 
not mouse cells, can be used to isolate the mouse CAF 
population [36, 37]. It is more difficult to obtain human 
CAFs stably growing in vitro, especially from very small 
samples. Hu et  al. recently succeeded in establishing a 
large collection of CAFs derived from non-small cell 
lung cancer (NSCLC) biopsies by immortalizing early 
derived CAF cultures with human telomerase reverse 
transcriptase, thereby preventing senescence [38]. The 
authors demonstrate that these immortalized CAFs 
maintain the expression profile of their parental coun-
terparts and can be efficiently used in preclinical stud-
ies [38]. The use of established CAF cultures allows for 
molecular perturbations, such as CRISPR gene editing 
and reliable repetition of experiments. However, while 
working with CAFs in vitro, particular attention should 
be paid to the culture conditions, as both serum and 
stiff substrates are able to modulate fibroblast activation, 
possibly changing the original CAF features. 3D culture 
models, that is organoids containing fibroblasts and 
immune components (‘organoids 2.0’) have been recently 
developed and recapitulate TME diversity, offering great 
promise for in vitro modelling of personalized immuno-
therapy [39, 40]. However, it should be considered that in 
these 3D models, the basement membrane preparations 
in which they are embedded often contain a standard 
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growth factor mix, in addition to matrix components, 
that may alter CAF biology.

The models that best recapitulate the crosstalk between 
CAFs and tumor cells are those in vivo, namely geneti-
cally engineered mouse models (GEMM), tumor xeno-
grafts and patient-derived xenografts (PDXs). In these 
last two models, human CAF functions can be explored 
in vivo through co-injection of CAFs and tumor cells. 
However, in this case tumors contain human CAFs mixed 
with mouse-derived fibroblasts, that usually outgrow the 
injected CAFs, making it difficult to test long-term bio-
logical properties such as responses to therapy.

All these issues should be carefully evaluated when 
considering the real clinical relevance of studies on CAF-
mediated resistance.

How do CAFs mediate resistance to anti‑cancer therapy?
In addition to the well-studied cell-autonomous resist-
ance escape routes (e.g., oncogene mutations, activation 
of bypass signaling pathways, epigenetic modifications), 
in the last decade also ‘non-cell-autonomous’ mecha-
nisms of drug resistance have emerged, with CAFs often 
being crucial mediators of resistance to targeted agents. 
How do they mediate resistance to molecular therapies? 
It is clear that they can do it in several ways, through 
the ECM components they produce, the soluble factors 
and extracellular vesicles they release, and even their 
metabolism. Besides the direct effects that CAFs directly 
exert on tumor cells, we have to consider that CAFs can 
also indirectly modulate drug response through a com-
plex network of interactions with other cells of the TME, 
for example through modulation of tumor angiogenesis 
and immune response. Concerning the effect on vessels, 
CAFs have been reported to induce chemoresistance 
by promoting microvessel leakiness in ovarian cancer 
[41], opening the possibility that this mechanism might 
alter the delivery of molecular compounds as well. Con-
cerning the effect on the immune compartment, CAFs 
not only influence response to immunotherapy [18, 42] 
but might indirectly influence the response to targeted 
therapies, as many targeted compounds have additional 
effects on the immune system that contribute to their 
therapeutic efficacy [43].

The role of the extracellular matrix
Stiffness is a biophysical property of the ECM that affects 
several cellular functions, including proliferation, inva-
sion, differentiation, and also therapeutic responses. The 
increased production of ECM components characterizes 
the transition from normal to activated fibroblasts, thus 
representing a typical trait of CAFs. Indeed, the biophysi-
cal properties of the tumor matrix progressively change 
during tumor progression and can be further modulated 

by cancer therapies. In particular, both chemotherapy 
and radiotherapy can drive strong matrix remodeling, 
pushing local CAFs to revise their secretion of fibers, gly-
coproteins, fibronectin or enzymes responsible for ECM 
post-translational modifications, eventually leading to 
tumor desmoplasia that blunts therapeutic efficacy [44]. 
Changes in the biochemical and biomechanical matrix 
properties can also contribute to resistance to targeted 
agents (Fig. 1). For example, intra-vital imaging of BRAF-
mutant melanoma cells containing an ERK/MAPK bio-
sensor revealed how the extracellular matrix affected 
the response to the BRAF inhibitor PLX4720 [45]. Even 
though at first melanoma cells responded to PLX4720, 
rapid MAPK signaling reactivation was observed in areas 
of high stromal density. This was linked to fibroblast 
“paradoxical” activation by PLX4720 and the subsequent 
promotion of matrix production and remodeling, result-
ing in elevated integrin β1/FAK/Src signaling in mela-
noma cells. Indeed, fibronectin-rich matrices were able to 
elicit PLX4720 tolerance and, conversely, addition of FAK 
inhibitors to PLX4720 prevented the onset of resistance 
to the BRAF inhibitor. Thus, activated fibroblasts and the 
rigidity of the matrix provide a sanctuary for melanoma 
cells to survive BRAF targeting [45].

Increased matrix rigidity induced by YAP/TAZ activa-
tion also led to resistance to the HER2 tyrosine-kinase 
inhibitor (TKI) lapatinib in HER2-amplified breast can-
cer cells when cultured on substrates engineered to 
mimic different levels of matrix rigidity [46]. Using a 
three-dimensional co-culture model, Marusyk et  al. 
demonstrated that the spatial proximity of breast ductal 
carcinoma cells to CAFs contributes to lapatinib resist-
ance, which is partly mediated by hyaluronan [47]. 
Indeed, when tumor cells were embedded in Matrigel 
in the presence of CAFs and treated with lapatinib, drug 
accumulation was reduced compared to tumor cells cul-
tured without CAFs; these results were validated in in 
vivo models as well. Consistent with the reduced intra-
cellular accumulation of the drug, the effect of lapatinib 
on HER2, EGFR, and AKT phosphorylation was less 
pronounced, and apoptosis was attenuated, as shown by 
reduced cleaved caspase-3 levels. Notably, protection 
from lapatinib requires close physical proximity between 
fibroblasts and carcinoma cells, and hyaluronidase treat-
ment completely abolished the protective effect of stro-
mal fibroblasts both in vitro and in vivo, indicating that, 
in this context, hyaluronan is essential for sustaining 
resistance to lapatinib [47].

In addition to hyaluronan, other ECM components, 
such as laminin, may affect the sensitivity of breast ductal 
carcinoma to lapatinib. Indeed, tumor cells in niches 
with laminin-enriched ECM express more anti-apoptotic 
Bcl-2 family proteins and exhibit resistance to lapatinib 
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[48]. Similarly, elevated deposition of laminin-5 in breast 
tumors conferred resistance to anti-HER2 compounds 
(lapatinib and the HER2 monoclonal antibody trastu-
zumab), through the activation of an integrin-CD151-
FAK mediated pathway [49].

Collagen type I, one of the major tumor ECM com-
ponents, was also involved in resistance to molecular 
therapies. In triple-negative breast cancer, the efficacy 
of the multi-kinase inhibitor sorafenib, was reduced in 
collagen-rich microenvironments, due to JNK signal-
ing activation [50]. In another model, collagen was also 
responsible for resistance to EGFR inhibitors, even if 
through a different mechanism [51]. Indeed, in this con-
text, collagen I was internalized by tumor cells through 
RAC1-mediated micropinocytosis, and catabolized. The 
derived aminoacids, mainly prolin and hydroxyprolin, 
affected cellular metabolism and induced mTOR acti-
vation and drug resistance. Consistently, both macro-
pinocytosis and RAC1 inhibitors prevented resistance 
to the EGFR TKI gefitinib [52]. Since other major ECM 
components, such as laminin and fibronectin, are usu-
ally uptaken by cancer cells [53, 54] this could represent a 
more general mechanism of drug resistance.

Integrin β1-overexpressing cells showed increased 
adhesion to collagen or fibronectin [55], and the recip-
rocal activation of integrin β1 and EGFR was reported 
to mediate resistance to EGFR TKIs in several con-
texts [56, 57]. Even if, in the majority of the above-cited 

works, the Authors did not formally demonstrate the 
involvement of CAFs in the production of the ECM 
components driving resistance, the role of the CAFs is 
at least highly probable, since they are the main source 
of these components in the TME. Finally, given the role 
of ECM composition in drug response, it is expected 
that matrix metalloproteinases (MMPs) could play a 
role in resistance as well, as they are the main enzymes 
involved in ECM remodeling [58]. However, while 
many authors reported a role of MMPs in resistance to 
chemotherapy, few data are currently available for tar-
geted therapy. In particular, in head and neck squamous 
cancers, response to the EGFR monoclonal antibody 
cetuximab was influenced by CAF-produced matrix 
metalloproteinase1 (MMP1) [59]. When co-cultured, 
both tumor cells and fibroblasts upregulated MMP1, 
while MMP1 inhibitors/silencing restored the response 
to cetuximab, further supporting the importance of 
proper matrix stiffness for the optimal response to 
molecular therapies.

Altogether, it appears that the composition of ECM can 
alter the response to targeted therapies in several manners 
(summarized in Fig.  1): i) through the physical impair-
ment of optimal drug delivery due to increased matrix 
rigidity; ii) by integrin-mediated activation of pro-mito-
genic and/or anti-apoptotic pathways (‘mechanotrans-
duction’) or iii) through metabolic changes in tumor 
cells due to internalization of ECM components. These 

Fig. 1  Matrix-mediated resistance to targeted therapies. Major mechanisms of resistance to molecular therapies mediated by CAF matrix are 
depicted. ECM: extracellular matrix; MMPs: matrix metalloproteinases; FAK: focal adhesion kinase
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mechanisms have been reported in separate models, but 
it is conceivable that they could act also simultaneously.

The role of soluble factors
CAFs release an abundant secretome, mainly consist-
ing of growth factors and cytokines that either directly 
or indirectly regulate tumor growth, survival, and drug 
response (Fig. 2 and Table 1). Recently, through in vitro 
and in vivo experiments, Hu et al. identified three func-
tionally distinct subtypes of lung CAFs that are differ-
entially able to affect the therapeutic efficacy of EGFR 
or ALK inhibitors in NSCLCs [38]. These three sub-
types are mainly defined by the expression levels of 
two growth factors: hepatocyte growth factor (HGF), 
the ligand of the MET receptor, and fibroblast growth 
factor 7 (FGF7), whose major receptor is FGFR2. Sub-
type I CAFs secrete high levels of HGF (with or without 
FGF7 overexpression) and confer resistance to EGFR 
and ALK inhibitors; subtype II CAFs release low lev-
els of HGF but high levels of FGF7 and confer mod-
est resistance to EGFR and ALK inhibitors; subtype 
III CAFs, that produce low levels of these two growth 
factors, lack any protective activity against EGFR/
ALK inhibitors and are associated with immune cell 
recruitment, suggesting a possible tumor response to 

immunotherapy. Notably, FGF family members and 
HGF were identified as the most abundant factors in 
CAF supernatants, and were able to confer resistance 
to lapatinib treatment to advanced esophageal squa-
mous cell carcinoma (ESCC) cells [60], extending their 
role beyond lung cancer. HGF is one of the growth fac-
tors most implicated in resistance onset via stromal 
regulation. In two pivotal studies published 10 years 
ago, HGF was shown to mediate resistance to different 
molecular therapies in tumor cells of different origins 
[61, 62]. In particular, in BRAF-mutated melanomas, 
CAF-produced HGF was able to activate the MAPK 
and AKT pathways in tumor cells, thus compensat-
ing for BRAF switch-off and sustaining resistance. 
Immunohistochemical (IHC) analysis of BRAF V600E 
melanoma patient-derived biopsies highlighted that 
patients with abundant stromal HGF showed a poorer 
response to BRAF inhibitors than those lacking stromal 
HGF [61]. In agreement with this finding, an increase 
in plasma HGF was associated with worse outcomes 
in a cohort of patients with BRAF-mutant metastatic 
melanoma [62]. However, in subsequent studies, IHC 
detection of stromal or tumor HGF in pre-therapy mel-
anoma specimens failed to predict patient response to 
BRAF inhibitors [63]; therefore, the power of HGF as a 

Fig. 2  Resistance to targeted therapies: the role of soluble factors. Main mechanisms of resistance to molecular therapies mediated by 
CAF-produced soluble factors and exosomal vescicles are represented. HGF: Hepatocyte Growth Factor; FGF: Fibroblast Growth Factor; IGFs: 
Insulin-like Growth Factors; PDGF-C: Platelet-Derived Growth Factor C; NRG1b: Neuregulin-1b; IL-6: interleukin 6; sFRP2: secreted frizzled related 
protein 2; EV: exosomal vesicles; CSC: cancer stem cellAQ3
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negative predictor of response to BRAF-targeted thera-
pies needs to be further investigated.

In a screening of tumor cell lines derived from breast, 
kidney, liver, and tongue carcinomas, HGF conferred 
resistance to EGFR inhibitors by inducing the stabiliza-
tion/upregulation of multiple EGFR binding partners 
such as Axl, EphA2, CUB domain-containing protein1 
(CDCP1), JAK1 and integrin Beta-4 [64]. Importantly, 
the combined use of gefitinib and an anti-HGF antibody 
or antagonist successfully overcame fibroblast-induced 

EGFR-TKI resistance both in vitro and in vivo. Similarly, 
HGF secreted by fibroblasts was implicated in lung can-
cer resistance to irreversible EGFR inhibitors [65] and 
protected tumor cells from EGFR inhibitors in breast 
cancer cells bearing EGFR overexpression [66].

A recent study by our group revealed a HGF-medi-
ated metabolism-based mechanism of non-cell-autono-
mous secondary resistance to MET and EGFR inhibitors 
[37]. In in vivo models of adaptive resistance to MET 
or EGFR TKIs, we found that resistant cells underwent 

Table 1  CAF secreted soluble factors involved in resistance to targeted therapies

CAF-secreted soluble factors Mechanism of resistance to targeted therapies Clinical application of inhibitors: 
representative agents in phase2/3 
clinical trials

Hepatocyte Growth Factor (HGF) Activation of MET anti-apoptotic and pro-mitogenic down-
stream pathways in tumor cells
Induction of stabilization/upregulation of multiple EGFR bind-
ing partners such as Axl, EphA2, CDCP1, JAK1 and integrin 
Beta-4

MET (HGFR) TKIs:
Foretinib (GSK1363089)
Crizotinib (PF-02341066)
Cabozantinib (BMS-907351)
Capmatinib (INC280)
Tepotinib (EMD 1214063)
HGF targeting mAbs:
Rilotumumab (AMG 102)
Ficlatuzumab (AV-299)
L2G7 (TAK-701)

Fibroblast Growth Factors (FGFs) Activation of FGF Receptors (mainly FGFR2) and their anti-
apoptotic and pro-mitogenic downstream pathways in tumor 
cells

Pan-FGFR TKIs:
Erdafitinib (JNJ-42756493)
Derazantinib (ARQ087)
Rogoratinib (BAY1163877)
Dovitinib (TKI258)
AZD4547
Futibatinib (TAS-120)
Zoligratinib (Debio-1347)
Infigratinib (BGJ398)

Transforming Growth Factorβ (TGFβ) Upregulation of lncRNAs, including the lncRNA HOTAIR, able 
to activate estrogen receptor function in the absence of 
estrogens

TGFβ Receptor inhibitors:
Galunisertib (LY2157299)
TGFβ Receptor mAbs:
Fresolimumab (GC1008)
TGFβ antisense oligonucleotides:
Trabedersen (AP 12009)

Neuregulin-1b (NRG-1b) Increased expression of FOXA1 and HER3 in cancer cells; HER3 
activation.

No inhibitors in phase 2/3 trials

Insulin Growth Factor 2 (IGF2) Activation of IGF1R anti-apoptotic and pro-mitogenic down-
stream pathways in tumor cells

IGF-1R TKIs:
Linsitinib (OSI-906)
Ceritinib (LDK378)
Brigatinib (AP26113)

Platelet-Derived Growth Factor C (PDGF-C) Activation of PDGFR and promotion of angiogenesis PDGFR-α inhibitors:
Imatinib (STI571)
Ponatinib (AP24534)
Nintedanib (BIBF 1120)
Crenolanib (CP-868596)
Masitinib (AB1010)

IL-6 family members Expansion of the stem cell pool via JAK1/STAT3 signaling
Activation of NF-kB and AKT pathways in cancer cells

IL-6 targeting mAb:
Siltuximab (CNTO 328)
JAK1/2 inhibitors:
Ruxolitinib (INC424, INCB1842)

Chemokine (C-X-C motif ) ligand 13 (CXCL13) Recruitment of B lymphocytes that produce pro-survival 
cytokines

No inhibitors in phase 2/3 trials

Secreted Frizzled Related Protein 2 (sFRP2) Wnt Antagonist, Loss Of The Key Redox Effector APE1 And 
Attenuated Response To ROS-Induced DNA Damage

No inhibitors in phase 2/3 trials
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metabolic reprogramming towards aerobic glyco-
lysis, resulting in increased lactate production. This 
instructed CAFs to over-secrete HGF, that activated the 
MET pathway in tumor cells, thus favoring their escape 
from MET or EGFR targeting. Consistently, either phar-
macological or genetic targeting of lactate metabolism, 
as well as concomitant MET-EGFR blocking, were able 
to overcome resistance. Accordingly, increased produc-
tion of stromal HGF was detected in the stroma of lung 
cancer patients upon the emergence of resistance to 
EGFR TKIs, thus corroborating the clinical relevance of 
the reported findings [37].

CAF-derived HGF is also causally involved in resist-
ance to anti-EGFR monoclonal antibodies. In colorectal 
‘xenospheres’ treated with cetuximab, CAF-produced 
HGF significantly protected colon cancer stem-like cells 
from the effect of the drug, by preserving cell viability 
and inhibiting apoptosis; in vivo, the concomitant inhibi-
tion of EGFR and MET resulted in a more pronounced 
tumor regression compared to cetuximab monotherapy 
[67]. Consistently, in a public dataset of human, KRAS 
wt, metastatic colorectal cancer patients, HGF expres-
sion was significantly higher in cetuximab non-respond-
ers than in responders [67]. Notably, in a prospective 
trial evaluating genomic and transcriptomic determi-
nants of resistance to cetuximab, Woolston et  al. found 
no genetic driver of acquired resistance in a large fraction 
(9 out of 14, 64%) of metastases biopsied from relapsed 
patients. However, the majority of these biopsies showed 
a transcriptional switch towards a fibroblast- and growth 
factor-rich subtype, further supporting the idea that 
adaptive non-cell-autonomous mechanisms could play a 
relevant role in the onset of mAb resistance. Notably, also 
in this case, the growth factors upregulated in cetuximab-
resistant biopsies were HGF and FGFs, as well as TGF-
β1 and -β2 [68]. TGFβ is another cytokine abundantly 
released by CAFs that regulates several cancer-related 
pathways and plays an important role in tumor progres-
sion [69]. TGFβ also drives the upregulation of several 
long non-coding RNAs (lncRNAs), including the lncRNA 
HOTAIR, that is upregulated in tamoxifen-resistant 
breast cancer, where it activates estrogen receptor func-
tion in the absence of estrogen, leading to tamoxifen 
resistance [70]. In breast cancer, CAF-produced FGF5 
was causally involved in resistance to HER2 targeted 
therapies (both TKIs and monoclonal antibodies) by 
activating FGFR2 and c-Src downstream pathways. In 
agreement with these preclinical data, combined elevated 
expression of FGF5 and phospho-HER2 correlated with 
a reduced pathologic response in patients treated with 
trastuzumab-based neoadjuvant therapy [71].

In addition to HGF and FGFs, other soluble fac-
tors secreted by CAFs have been implicated in tumor 

resistance to molecular therapies. In agreement with 
what was previously shown by Wilson et  al. [62], in 
HER2+ breast cancers, Neuregulin-1b suppressed the 
response to anti-HER2 compounds through increased 
expression of the transcription factor forkhead box 
protein A1 (FOXA1) and HER3 [72]. A role of CAF-
derived Neuregulin 1 (NRG1) in drug resistance was 
also reported by Zhang et  al, who demonstrated that 
this soluble molecule conferred anti-androgen resist-
ance in prostate cancer, again through HER3 activation, 
and that patients with increased tumor NRG1 activity 
showed a lower response to second-generation antian-
drogen therapy [73].

In cholangiocarcinomas treated with EGFR inhibitors, 
a positive loop between CAF-produced IGF2 and IGF1R 
expressed by tumor cells was responsible for resistance 
to the EGFR TKI erlotinib; in line, a combined regimen 
of EGFR and IGF1R inhibitors overcame resistance in 
cholangiocarcinoma xenografts and reduced their stro-
mal content [74]. Interestingly, IGF1 is also a key player 
in mediating crosstalk between KRAS G12D mutated 
pancreatic cancer cells and their surrounding stroma. 
Indeed, KRAS mutated tumor cells induced stromal cells 
to secrete IGF1 and GAS6 that in turn activated IGF1R 
and AXL signaling in tumor cells, leading to increased 
mitochondrial performance, proliferative capacity, and 
resistance to apoptotic stimuli [75]. Finally, CAFs medi-
ated resistance to VEGF inhibitors in lymphoma xeno-
grafts models, by reactivating angiogenesis through 
platelet-derived growth factor C (PDGF-C) signaling, 
and PDGF-C targeting showed additive effects with anti-
VEGFA antibodies [76].

CAFs are known to produce a number of cytokines 
and chemokines [27, 77] whose causative relationship 
with resistance to cancer therapies is well established. 
For example, Shein K. and colleagues found that CAF-
released IL-6 family members mediated NSCLC acquired 
resistance to EGFR TKIs in a JAK1/STAT3–dependent 
manner [78]. In breast cancer, CAF-produced IL-6 acts 
in a paracrine manner on cancer cells, inducing expan-
sion of the stem cell pool via JAK1/STAT3 signaling and 
evasion from targeted therapy [79] . IL-6 sustains resist-
ance also through the NF-kB and AKT pathways. Gene 
set analysis in patients showed that high IL-6 and NF-kB 
expression levels correlated with poor overall survival 
[79]. CAF-produced cytokines could also indirectly 
mediate resistance; for example, CAF derived CXCL13 
promotes the recruitment of B lymphocytes into andro-
gen-deprived prostate tumors; these prostate-cancer 
infiltrating lymphocytes produce other cytokines, such 
as lymphotoxin, promoting survival and proliferation of 
castration-resistant prostate cancer initiating cells, ulti-
mately resulting in hormone resistance [80]. The ability 
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of CAFs to confer drug resistance might be also related 
to their age. Spheroids treated with medium derived 
from ’young’ fibroblasts (i.e derived from <35-year-old 
donors) were more sensitive to BRAF inhibitors than 
those exposed to ‘aged’ fibroblasts (i.e from >55-year-old 
donors) medium. In vivo, tumors grown in 8-week-old 
mice responded to PLX4720 more robustly than those 
developed in 52-week-old mice. The molecular interpre-
tation is that aged fibroblasts secrete a Wnt antagonist, 
sFRP2, which activates a multistep signaling cascade 
in melanoma cells, resulting in a decrease in β-catenin/
MITF activity and in loss of the key redox effector APE1. 
Loss of APE1 attenuates the response of melanoma cells 
to ROS-induced DNA damage, rendering them more 
resistant to targeted therapy [81].

Finally, recent studies have shown that the CAF 
‘secretome’ also includes exosomal vesicles that can con-
vey paracrine signals to cancer cells, eventually regulating 
drug response (Fig.  2). CAF exosomes can incorporate 
miRNAs, functional DNA fragments, cytokines and 
growth factors, that are responsible for tumor progres-
sion and resistance to chemotherapy in several contexts 
(reviewed in [82, 83]). Concerning their role in resist-
ance to molecular therapies, Sansone and colleagues 
demonstrated that CAFs can sustain hormonal therapy 
resistance in luminal breast cancer through the release 

of miR-221 containing exosomes; the horizontal transfer 
of this microRNA to cancer cells pushed them towards 
a cancer stem cell (CSC) phenotype, resistant to therapy. 
In line, CAF depletion restored sensitivity to hormo-
nal therapy, with a concurrent reduction in CSCs [84]. 
In general, CAF paracrine signaling through exosomes 
seems to promote the expansion of subpopulations with 
stem cell features, resistance to therapy, and re-initiation 
of tumor growth [85]. We can foresee that the role of 
exosomes in resistance to targeted therapies will emerge 
more and more in the near future.

The role of metabolic changes
As previously mentioned, most studies on the recipro-
cal interaction between CAFs and tumor cells focused on 
the structural support provided by the CAF matrix and 
the pro-mitogenic/anti-apoptotic properties conferred 
by CAF-released growth factors. However, several stud-
ies have also highlighted the functional role of CAF/can-
cer cell metabolic coupling in regulating different tumor 
properties, including drug resistance (Fig. 3).

During tumor progression, CAFs frequently undergo a 
metabolic switch towards aerobic glycolysis (the so-called 
Reverse Warburg Effect [86]), resulting in the secretion of 
energy-rich metabolites that are then captured by cancer 
cells to fuel their anabolic metabolism [87–89].

Fig. 3  Metabolic resistance to targeted therapies. Main mechanisms of resistance to molecular therapies based on CAF/tumor cell metabolic 
coupling are reported
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As previously mentioned, we demonstrated that dur-
ing treatment with MET or EGFR TKIs, cancer cells 
underwent a metabolic switch and increased lactate pro-
duction, thus instructing CAFs to produce resistance-
promoting growth factors [37]. In the same resistant 
tumors, we observed that the metabolic switch was not 
restricted to cancer cells but also occurred in CAFs, that 
showed features of enhanced glycolytic metabolism. This 
‘Reverse Warburg metabolism’ allowed CAFs to indefi-
nitely maintain HGF overexpression in culture, even in 
the absence of cancer cells [37].

CAF metabolism also affects the response to tamox-
ifen in ER+ breast cancers. When ER+ breast cancer 
cells were co-cultured with fibroblasts, reactive oxygen 
species (ROS) produced by tumor cells in response to 
tamoxifen treatment drove aerobic glycolysis in fibro-
blasts; the excess of lactate produced by CAFs induced 
mitochondrial biogenesis in the adjacent tumor cells, 
forcing them to switch towards an oxidative state; this 
metabolic state, with glycolytic CAFs fueling the oxida-
tive tumor cells, sustained anabolic growth and tumor 
survival in the presence of tamoxifen [90]. Interestingly, 
Eckert et  al. identified methyltransferase nicotinamide 
N-methyltransferase (NNMT) as a master metabolic 
regulator of CAFs in ovarian cancer, epigenetically con-
trolling widespread gene expression changes in the TME 
during tumor progression [91]. In prostate adenocarci-
noma cells, increased CAF glutamine production due 
to epigenetic silencing of the RAS inhibitor RASAL3 
serves as a source of energy and as a mediator of neu-
roendocrine differentiation, ultimately leading to resist-
ance to androgen signaling deprivation therapy (ADT). In 
agreement with these findings, prostate cancer patients 
resistant to ADT showed elevated blood glutamine lev-
els compared with those with therapeutically responsive 
disease; antagonizing stromal glutamine uptake was suf-
ficient to restore ADT sensitivity in castration-resistant 
xenograft models [92].

The ‘Reverse Warburg’ could be induced in CAFs by 
breast cancer cells through the abnormal activation of an 
estrogen/GPER/cAMP/PKA/CREB signaling axis; glyco-
lytic CAFs, in turn, fed tumor cells with extra pyruvate 
and lactate, increasing mitochondrial activity and con-
ferring breast cancer cells with drug resistance to several 
conventional clinical treatments, including endocrine 
therapy, HER2 targeting and chemotherapy [93].

Finally, CAF metabolism directly influences ECM 
composition: the production of massive amounts of col-
lagens by activated fibroblasts requires increased proline 
synthesis from circulating glutamine, and this relies on 
increased expression of pyrroline-5-carboxylate reduc-
tase 1 (PYCR1) in CAFs, which is in turn epigenetically 
regulated by histone acetyl-transferase EP300 and by 

acetyl-CoA levels [94]. This was demonstrated in detail in 
breast cancer models, but PYCR1 and collagen upregu-
lation co-occurs in many tumor types [94], suggesting 
that this mechanism might have a broader relevance. As 
collagen abundance and ECM stiffness drive therapeutic 
resistance, these findings might represent another way by 
which metabolic cues influence drug response.

Therapeutic opportunities
Given their relevant role in mediating or accelerating 
the onset of drug resistance, their abundance in the 
tumor microenvironment, and their genetic stability, 
CAFs are now considered appealing targets for antican-
cer therapeutic strategies. However, several challenges 
are currently present in our attempts to modulate 
CAFs for therapeutic benefit, in primis the shortage of 
CAF-specific markers. Even the most widely used CAF 
markers, such as fibroblast activating protein (FAP) 
and α-Smooth Muscle Actin (αSMA) are not exclu-
sive of CAFs; indeed, FAP is expressed also in smooth 
muscle and epithelial cells while αSMA is present in 
smooth muscle cells, pericytes and myoepithelial cells. 
Another big challenge is represented by the hetero-
geneity of CAF functions, which, as described above, 
can be either tumor-promoting or tumor suppressive, 
depending on the context [20, 25–28]. Also in relation 
to drug resistance, different CAF types can drive tumor 
sensitivity or resistance to the same therapy. Brechbuhl 
et al. demonstrated that in ER+ breast cancers, CD146- 
CAFs suppressed ER expression, thus decreasing tumor 
cell sensitivity to estrogen and increasing resistance to 
tamoxifen, whereas CD146+ CAFs promoted ER expres-
sion, sustaining estrogen-dependent tumor proliferation 
and tamoxifen sensitivity [95].

In this scenario, indiscriminate targeting of the whole 
CAF population could be ineffective or even harmful, 
thus making it necessary and urgent to identify reliable 
markers of the two subpopulations. In this context, two 
recent works offered great expectations [29, 31]. Hut-
ton et al., showed that the expression of a single protein, 
CD105, can easily and stably identify pro-tumorigenic 
CAFs, at least in PDAC [29]. However, as CD105 expres-
sion varies between cancer types [29], further studies 
are needed to elucidate whether CD105-negative CAFs 
are also a marker of immune response in tumors other 
than PDAC. Krishnamurty and colleagues identified the 
leucine-rich-repeat-containing protein 15 (LRRC15) as 
a promising, highly restricted marker of a subpopulation 
of CAFs with pro-tumorigenic, immunity-suppressing 
properties [31].

Despite these obstacles, an increasing number of pre-
clinical studies have focused on CAF targeting as a way 
to improve anti-cancer strategies, and some clinical 
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trials involving CAF targeting agents are already ongoing 
(reviewed in [96]).

CAF depletion
Some groups have developed strategies to deplete CAFs 
(Fig. 4A). The genetic CAF depletion in transgenic mice 
using fibroblast activating protein (FAP) promoter-driven 
diphtheria toxin receptor [97] or αSMA-thymidine 
kinase [27] led to contradictory results as in the first case 
pancreatic ductal adenocarcinoma growth was slowed 
down [97] while, in the second case, it became more 
aggressive and invasive, leading to shorter animal sur-
vival [27]. It has to be noted that, based on the results 
obtained by Öhlund et al., αSMA targeting might prefer-
entially eliminate myCAFs, while leaving other more pro-
tumorigenic CAF populations unaffected [20]. However, 
in both these studies [27, 97], CAF depletion allowed a 
better immune control of tumor growth and synergized 
with immunotherapy, opening the possibility for a clini-
cally relevant window of opportunity with anti-CAF 
compounds. Similarly, McAndrews et al. recently showed 
that genetic depletion of FAP+ CAFs increased PDAC 
survival, while depletion of αSMA+ CAFs decreased it 
[30]. Always using transgenic mice models, Krishnamurty 
and colleagues selectively depleted the LRRC15+ CAF 
subpopulation in PDAC, and this was sufficient to signifi-
cantly slow tumor growth and restore CD8+ T cell func-
tions, increasing response to immunotherapy [31]. Since 
LRRC15+ CAF formation depends on TGFβ receptor 2 
signaling [21], this opens the attractive possibility to use 
of TGFβ inhibitors to overcome CAF-mediated resist-
ance to cancer immunotherapy.

Different pharmacological CAF-targeting treatments 
have been developed, such as anti-FAP monoclonal anti-
bodies conjugated with a tubulin-binding maytansinoid 
[98], anti-FAP antibodies labeled with β-emitting radio-
nuclides [99] or FAP-targeting immunotoxins [100, 101]. 
Despite promising results in the preclinical setting, where 
anti-FAP antibodies reduced tumor growth [99] and 
overcame resistance to chemotherapy in animal mod-
els [101], these strategies failed in early phase II studies 
due to limited ability of the sole anti-FAP antibody of 
reducing metastatic colorectal cancer burden in patients 
[102]. DNA vaccines against FAP [103] and FAP-specific 
CAR-T cells are under development [104, 105] even if, so 
far, only in the preclinical setting and with contradictory 
results [106, 107]. In a different perspective, monoclonal 
antibody targeting FAP have also been developed as anti-
cancer drugs for the delivery of bioactive compounds, 
such as pro-inflammatory cytokines, not aimed at deplet-
ing CAFs but to exploit CAFs as ‘TME specific antigen’ to 
locally boost the immune response. An example of these 
antibody-cytokine fusion molecules is represented by the 

anti-human FAP monoclonal antibody 7NP2 linked to 
interleukin (IL)-12, which showed encouraging preclini-
cal results [108]. Concerning the recent identification of 
CD105 as a marker of pro-tumorigenic CAFs in PDAC 
[29], further research will be required to determine the 
best way to target the CD105-positive CAFs, thereby spe-
cifically depleting the pro-tumorigenic CAF subpopula-
tion while still preserving the tumor-restraining one.

CAF normalization
Another strategy to target CAF pro-tumorigenic func-
tions is to revert CAFs from the active to a quiescent 
state or even to switch their pro-tumorigenic phenotype 
to a tumor-suppressive one (Fig.  4B). Currently, CAF 
pharmacological reprogramming has been achieved 
in specific tumor contexts only, such as in pancreatic 
ductal adenocarcinoma (PDAC). In PDAC models, treat-
ment with retinoic acid or with the vitamin D receptor 
ligand calcipotriol induced quiescence of pancreatic stel-
late cells and profound stromal remodeling, leading to 
decreased aggressiveness of the surrounding cancer cells 
and increased response to chemotherapy [109, 110]. CAF 
normalization would likely provide preferable and safer 
therapeutic opportunities than CAF depletion, but fur-
ther preclinical evaluation is required to test its feasibility 
and clinical translatability.

Targeting the CAF secretome
Given the difficulties associated with CAF depletion 
or reprogramming, at present the most feasible strat-
egy is the targeting of CAF-released factors function-
ally involved in tumorigenesis and drug resistance 
(Fig. 4C, D). The broadest approach in this sense is that 
reported by Duluc and colleagues, who pharmacologi-
cally inhibited global protein synthesis in CAFs using a 
somatostatin analog that, binding the sst1 somatosta-
tin receptor selectively expressed by CAFs, targeted the 
mTOR-4E-BP1 pathway in these cells, overcoming in this 
way chemotherapy resistance in PDAC models [111].

Concerning the production of ECM proteins, some 
attempts have been made to reduce the release of col-
lagen or hyaluronan: the angiotensin receptor blocker 
losartan, primarily used to treat high blood pressure, was 
repurposed as a modulator of the tumor extracellular 
matrix and reduced matrix stiffness in PDAC and breast 
cancer models, thereby improving drug delivery [112]. 
Increased chemotherapy efficacy has also been obtained 
through enzymatic ablation of hyaluronan by recombi-
nant hyaluronanidase [113, 114] or through iodine-131 
labeled antibodies targeting tenascin-C [115]. As sonic 
hedgehog signaling promotes CAF matrix production, 
sonic hedgehog targeting decreased PDAC desmopla-
sia and increased tumor response to chemotherapy, 
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Fig. 4  Targeting CAF-mediated resistance. Possible strategies for targeting CAFs comprise: A CAF depletion; B CAF differentiation towards 
fibroblasts; C targeting growth factors or chemokines released by CAFs; D targeting ECM components; E interrupting (dashed red line) the 
metabolic interplay between CAFs and tumor cells. FAP: fibroblast activating protein; ATRA: all-trans-retinoic acid; SST: somatostatin; GF: growth 
factors; RTKs: receptor tyrosine kinases; TKIs: tyrosine kinase inhibitors; mAbs: monoclonal antibodies; ECM: extracellular matrix; SHH: sonic 
hedgehog; SMO: smoothened; LDH: lactate dehydrogenase; MCTs: monocarboxylate transporters
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anti-angiogenic therapies [116] and cetuximab [117]. As 
concerns matrix-metalloproteinases targeting, despite 
several promising results in preclinical models, all the 
phase III clinical trials performed so far have failed to 
reach their primary endpoints, even if novel compounds 
are emerging [118].

Another possibility is to block CAF-produced 
chemokines, such as CXCL12 [97], or to target growth 
factors released by CAFs or their receptors on tumor 
cells. Given the large amount of preclinical data convinc-
ingly proving the causative role of HGF in drug resistance, 
targeting stromal HGF (or its tyrosine-kinase receptor 
MET expressed on tumor cells) is predicted to counter-
act tumor resistance. MET inhibition has been evaluated 
in several clinical trials because MET gene amplification 
is a predictor of response to anti-MET compounds [119]. 
However, none of these trials were designed to block 
HGF/MET-driven resistance to other therapies. Despite 
the encouraging results of a phase II trial [120], a large, 
randomized phase III trial evaluating onartuzumab (a 
MET monoclonal antibody affecting HGF-MET binding) 
in combination with erlotinib in NSCLCs bearing MET 
overexpression did not confirm the findings of an earlier 
phase II study [121]. These negative results might be at 
least partially explained by the fact that patients were not 
selected for EGFR mutational status, which is required to 
identify patients sensitive to erlotinib [121].

Targeting CAF metabolism
In CAF-mediated breast cancer resistance to tamoxifen, 
the altered metabolic cross-talk sustaining drug resist-
ance was overcome by targeting CAFs with dasatinib, a 
multi-tyrosine kinase inhibitor blocking, among the oth-
ers, PDGFR signaling (from which CAFs are strongly 
dependent). The combination of tamoxifen plus dasatinib 
normalized both tumor glucose uptake and mitochon-
drial activity, reducing ROS formation, and thus inter-
rupting the vicious metabolic cycle in which resistant 
tumor cells exploit oxidative stress to extract nutrients 
and high-energy metabolites from adjacent CAFs [90] 
(Fig. 4E).

As previously mentioned, also lactate mediates adap-
tive resistance to certain targeted agents, by inducing 
HGF overproduction in CAFs [37]; accordingly, genetic 
or pharmacological targeting of molecules involved in the 
lactate axis, such as lactate dehydrogenase (LDH) or the 
lactate importer MCT1, overcame resistance in animal 
models [37]. These preclinical data may have important 
therapeutic implications, as compounds targeting lactate 
metabolism have been investigated in several preclinical 
trials and are currently in clinical development (reviewed 
in [122]), as well as MCT1 inhibitors (NCT01791595). In 
the near future, new possible applications for LDH and 

MCTs inhibitors, in combination with targeted agents, 
might be investigated to bypass the onset of resistance 
(Fig.  4E). Finally, as reported above, Kay et  al. recently 
demonstrated that proline synthesis via PYCR1 is a cru-
cial regulator of enhanced collagen production by CAFs. 
Targeting PYCR1 in CAFs reduced tumour collagen dep-
osition in vitro and in vivo and was sufficient to reduce 
tumour growth and metastasis [94]. PYCR1 is a particu-
larly promising metabolic vulnerability, as it is among the 
most overexpressed genes across tumor types [123]. Even 
if not directly evaluated by the authors, we can foresee 
that PYCR1 targeting could be a useful strategy to bypass 
collagen-mediated resistance (Fig. 4D, E).

Conclusions
Based on the numerous pro-tumorigenic functions of 
CAFs, many preclinical and clinical studies have focused 
on targeting these stromal cells to directly impact on 
tumor growth and disease progression. However, the 
vast majority of these studies failed. Which are the pos-
sible reasons of this failure? On one side, we still lack 
specific biomarkers of CAFs to exclusively target them. 
Another explanation could rely in the high heterogeneity 
of CAF functions, that sometimes are even anti-tumor-
igenic. If both pro- and anti-tumorigenic CAFs are pre-
sent in the same tumor and we indiscriminately target 
them, the treatment could be inefficient, if not deleteri-
ous. Finally, hitting CAFs alone might be insufficient to 
obtain a significant clinical benefit, as pro-tumorigenic 
CAFs can favor tumor progression but, likely, they are 
not strictly required for tumor growth and survival, i.e 
tumor cells are not ‘addicted’ to CAF presence. On the 
contrary, a possible window of opportunity might rely 
on the role played by CAFs in drug resistance. Indeed, 
the best results obtained so far by CAF targeting were 
those in combination with other drugs (that, until now, 
have mostly been chemo- and immune-therapies). In this 
context, investigating the combined effect of molecular 
therapies directed against cancer cells and CAF-targeting 
drugs might help overcome the big issue of primary and 
acquired drug resistance, eventually improving patient 
survival. To this aim, ad hoc clinical studies should be 
designed, including endpoints that specifically and objec-
tively evaluate CAF status during therapy.
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