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Multivariate statistical 
approach and machine 
learning for the evaluation 
of biogeographical ancestry 
inference in the forensic field
Eugenio Alladio1,3, Brando Poggiali2, Giulia Cosenza2 & Elena Pilli2*

The biogeographical ancestry (BGA) of a trace or a person/skeleton refers to the component of 
ethnicity, constituted of biological and cultural elements, that is biologically determined. Nowadays, 
many individuals are interested in exploring their genealogy, and the capability to distinguish 
biogeographic information about population groups and subgroups via DNA analysis plays an 
essential role in several fields such as in forensics. In fact, for investigative and intelligence purposes, 
it is beneficial to inference the biogeographical origins of perpetrators of crimes or victims of unsolved 
cold cases when no reference profile from perpetrators or database hits for comparative purposes are 
available. Current approaches for biogeographical ancestry estimation using SNPs data are usually 
based on PCA and Structure software. The present study provides an alternative method that involves 
multivariate data analysis and machine learning strategies to evaluate BGA discriminating power of 
unknown samples using different commercial panels. Starting from 1000 Genomes project, Simons 
Genome Diversity Project and Human Genome Diversity Project datasets involving African, American, 
Asian, European and Oceania individuals, and moving towards further and more geographically 
restricted populations, powerful multivariate techniques such as Partial Least Squares-Discriminant 
Analysis (PLS-DA) and machine learning techniques such as XGBoost were employed, and their 
discriminating power was compared. PLS-DA method provided more robust classifications than 
XGBoost method, showing that the adopted approach might be an interesting tool for forensic 
experts to infer BGA information from the DNA profile of unknown individuals, but also highlighting 
that the commercial forensic panels could be inadequate to discriminate populations at intra-
continental level.

Inference of individual biogeographic ancestry plays an essential role in several genetics fields, from popula-
tion/anthropological studies with the interpretation of genetic admixture in populations or human population 
expansion, movement, and interaction (e.g.1) to medical applications with the evaluation of disease susceptibility 
(e.g.2). Moreover, other disciplines including epidemiology, pharmacogenomics, and forensics, can benefit from 
biogeographic ancestry testing. In addition, ancestry analysis is of increasing relevance to crime investigations. 
Identifying perpetrators of crimes or victims of unsolved cold cases by DNA analysis may be hindered by few 
or no investigative leads and the consequent absence of reference profiles from perpetrators or database hits. In 
such cases, there is a need for additional genetic information, such as biogeographical ancestry (BGA), that left 
the trace sample at the crime scene. The best way to assign an individual into a particular population via genetic 
testing is to use ancestry informative markers (AIMs) –markers characterized by essential differences in allele 
frequencies between populations3–5. As proposed by several studies (for example6–25), short tandem repeats 
(STRs), single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (InDels), and microhaplo-
types can be used as AIMs for ancestry inference. However, autosomal single nucleotide polymorphisms are the 
best choices due to their inherent stability, high density of genome-wide distribution, and pronounced frequency 
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variation among populations. Recently, the application of massively parallel sequencing technologies for BGA 
tool developments allowed the simultaneous analysis of a significant number of SNPs than the SNaPshot-based 
minisequencing technology as attested by the development for forensics of commercial and non-commercial 
panels26–29. To date, the statistical clustering methods most used for the inference of the biogeographical ances-
try of a person or trace relies on are PCA, STRU​CTU​RE8,30 and GenoGeographer31,32. However, although they 
provide easy ways to visualize data clustering, these methods are empirical and not adequate for ancestry infer-
ence in the forensic field.

In the last decades, analysts have gradually started to take into account all the variables/predictors simultane-
ously (i.e., in a multivariate way)33–42, since this approach allows to extract from the datasets more information 
than just looking at them in a univariate way, mainly when large amounts of noisy or redundant data occur. One 
of the attempts to use a multivariate statistical approach to identify clusters of genetically structured popula-
tions was described by Jombart et al.43 in 2010. In their paper, Discriminant Analysis of Principal Components 
(DAPC) was applied to simulated data and the performance of their approach was compared to that obtained 
using STRU​CTU​RE. Multivariate data analysis techniques can be roughly divided into two main categories: (i) 
pattern recognition techniques; (ii) regression/calibration models. Very concisely, pattern recognition models 
can be again divided into two categories: (i) unsupervised models (where the information about the a priori 
classification of each of the individuals/instances/samples under exam is missing); (ii) supervised/classification 
models (where the a priori classification of each of the instances under exam is known). One of the most known 
unsupervised methodologies (also known as exploratory analyses) is Principal Components Analysis (PCA)44. 
On the other hand, supervised/classification modeling techniques can present an important family of strategies 
known as discrimination models, such as Partial Least Squares-Discriminant Analysis (PLS-DA)45, that aim to 
calculate specific boundaries in the multidimensional space that allow separating the different objects within 
their corresponding classes46. Therefore, for the first time, we decided to adopt a multivariate methodology in the 
present study, such as Partial Least Squares-Discriminant Analysis (PLS-DA) on several SNPs datasets involv-
ing instances of different populations showing different BGA. Our main aim was to build robust multivariate 
models to interpret the results of BGA inference by using different BGA panels that have been developed for 
this purpose. The PLS-DA approach has been already adopted by Alladio et al.30 on DNA STRs data to infer the 
biogeographical ancestry of unknown individuals, and the developed models provided interesting performances 
in terms of sensitivity, specificity, and accuracy. However, there are no examples of using such machine learning 
tool on the more informative SNPs data, especially in terms of ancestry, so that the authors decided to extend 
this approach on a large amount of data and individuals, too.

Simultaneously, a second and very popular supervised learning algorithm named XGBoost (eXtreme Gradient 
Boosting) was tested on the collected data to evaluate the performance of another machine learning approach 
and compare its results with PLS-DA. As well as PLS-DA, no example of this approach for BGA inference have 
been reported in literature dealing with SNPs data.

The BGA panels evaluated in this study are EUROFORGEN Global AIMs SNP (128 AISNPs here, EURO-
FORGEN)28, Verogen® ForenSeq™ DNA Signature Prep Kit (55 AISNPs here, ForenSeq)27, MAPlex—Multiplex 
for the Asia–Pacific (144 AISNPs here, MAPlex)29, and Thermo Fisher HID Ion AmpliSeq™ Ancestry Panel (165 
AISNPs here, Thermo Fisher)26.

Methods
Datasets.  The SNPs dataset evaluated in this study was composed of 3,557 individuals from 1,000 Genomes 
project (2,504 individuals from 26 populations)47, Simons Genome Diversity Project (SDGP) (279 individu-
als from 130 populations) (https://​www.​simon​sfoun​dation.​org/​simons-​genome-​diver​sity-​proje​ct/) and Human 
Genome Diversity Project (HGDP) (929 individuals from 54 populations)48.

The individuals shared from the three projects were removed.
All the tested multivariate models were calculated in two steps:

•	 the first models involved the evaluation of the whole data available by evaluating the different BGA categories 
in the form of “continental” ancestry, such as African, American, Asian (combining Central, East, North, and 
South Asia populations), European (involving Middle East populations, too), and Oceanian individuals;

•	 the following models were built on each continent separately (i.e., Asia, Africa, America, Europe, and Oceania 
by considering the most represented populations (i.e., 80 individuals, at least).

Multivariate modeling.  PCA, PLS-DA, and XGBoost models were applied on the collected data derived 
from the different BGA panels. The AIMs profile of each individual (instance) was transformed into a row of 
zeros and ones by using a one-hot encoding strategy developed in the R environment (version 4.0.2)49. In detail, 
for all the tested subjects, a value equal to 1 was reported for the n SNP recorded for each specific AIM, while 
a value equal to 0 was reported for the other available SNPs of the previously cited AIM. Consequently, each 
instance’s AIMs profile consisted of a string of 0 and 1 (i.e., one-hot encoding). As similarly reported in30, PCA 
and PLS-DA approaches were used to obtain trustworthy and cross-validated models to infer the BGA informa-
tion of the available instances. The following R packages were exploited for this purpose: correlationfunnel50, 
dplyr51, ggplot252, mdatools53, mixOmics54, mlr55, plotly56, pls, plsVarSel57 and xgboost58.

Principal components analysis (PCA, also known as eigenvector analysis) was preliminarily employed to 
perform exploratory analyses and dimension reduction studies on the available data59–61. It is commonly used to 
graphically represent the acquired data by evaluating any subgroup or cluster within the instances and assessing 
the correlation among the collected features44,62. Starting from the original dataset (consisting of a matrix X), 
PCA aims to eliminate redundant and noisy information by selecting a small number of variables, leading to a 
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better understanding of the data structure. PCA calculates new orthogonal (i.e., uncorrelated) variables, named 
Principal Components (PCs), that represent a linear combination of the original variables aimed to reproduce 
the structure of the original data (X), but in an optimal and interpretable way. In practice, PCA approach decom-
poses the original matrix X into the product of two new matrixes, named T and P, plus a matrix of residuals E, 
as follows:

where n is the number of instances (here, the genotyped subjects), p is the number of predictors (features, here 
the measured AIMs), and f represents the number of selected principal components. The first PC is oriented in 
the direction of the maximum variance. Afterward, the second PC is oriented towards the maximum residual 
variance, chosen among the infinite orthogonal directions regarding the first component, etcetera. T matrix 
contains the objects’ coordinates (called scores) in the new multivariate space delimited by a f-number of PCs 
(i.e., scores plot). P matrix gives the variable vector coordinates (called loadings) in the new multivariate system 
(i.e., loadings plot). These linear functions are calculated according to specific weighting coefficients represent-
ing the linkage between the original variables and the new components. The loadings are the elements of the 
eigenvector of the variance–covariance matrix of the original X matrix. Each eigenvector has a corresponding 
eigenvalue that indicates the amount of variance explained (EV) by each PC. In the present study, only the first 
f PCs were selected to account for a specific percentage (around 80% of cumulative explained variance, CEV) 
of the system’s overall variance.

Since the PCA approach is primarily an exploratory (unsupervised) data analysis approach, further PLS-DA 
and XGBoost models were calculated to build properly supervised classification algorithms. These models were 
evaluated to develop tools capable of predicting and inferring the BGA of new (i.e., unknown) samples and 
individuals, together with classification probabilities and scores. The adoption of classification models in BGA 
inference should overcome PCA only since supervised models maximize the covariance between the independent 
variables (i.e., the SNPs data) and the dependent response (i.e., the BGA of the collected individuals). Moreover, 
the supervised approaches are particularly suitable for forensic tasks like the one examined in this study since 
they are appropriately made to predict new unknown samples.

Subsequently, PLS-DA was adopted to investigate the covariance between a matrix X of predictors (i.e., the 
measured AIMs) and the BGA responses included in a matrix Y. In particular, the main point of multivariate 
classification models like PLS-DA is to investigate the relationships between X and Y and build a model capable 
of predicting the BGA responses of new samples whose genotypes will be measured in future caseworks. PLS 
again calculates new components, called latent variables (LV), computed by evaluating X and Y matrixes simul-
taneously. In particular, from a geometric point-of-view, the latent variables represent a slightly rotated version 
of the Principal Components63–66. While PCA maximizes the X matrix variance, the PLS approach iteratively 
maximizes the covariance between X and Y. For this purpose, the components calculated on Y are rotated to 
maximize the covariance concerning the components calculated on X. The iterative process ends when no more 
helpful information can be extracted from X and Y matrices. Briefly, PLS algorithms can be summarized by the 
following steps:

1.	 Calculating two matrices E (= X) and F (= Y) whose columns are centered and normalized;
2.	 Initializing a vector u is with random values before starting the iterative process;
3.	 Calculating w ~ ETu, where w represents the weights (coefficients) relative to X and the symbol ~ means “to 

normalize the result of the operation”, as suggested by64;
4.	 Calculating t ~ Ew, where t represents the new scores of X;
5.	 Calculating q ~ FTt, where q represents the weights (coefficients) relative to Y;
6.	 Calculating u ~ Fq, where u represents the new scores of Y;
7.	 If t has not converged, then the iterative algorithm moves back to step 3. Otherwise, if t has converged, a b 

value is computed. This value allows predicting Y from t by following the equation b = tTu. Simultaneously, 
the loadings of X are computed by following the equation p = ETt.

8.	 Finally, the effect of t is subtracted from both E and F matrixes, as follows: Efinal = E-tpT and Ffinal = F-btcT. In 
particular, the scalar b values are represented by a diagonal matrix B.

The sum of squares of X (Y) explained by the latent vector is computed as pTp (b2 for Y), and the percentage 
of the variance explained (EV) by the PLSR model is obtained by dividing the explained sum of squares by the 
corresponding total sum of squares64. The discriminant version of PLS (PLS-DA) is computed by classifying the 
objects through X’s regression (PLS) and a matrix Y that contains binary responses. In particular, Y consists of 
G columns equal to the number of categories (i.e., BGA classes). Each column contains the class membership 
information of the corresponding n individuals (instances). Since the response is binary (or one-hot encoded), if 
an instance belongs to a specific g-th category, it shows a response equal to 1 within the g-th column. Otherwise, 
its response is coded as 0.

Finally, the XGBoost algorithm, reported in58, was tested since it has become a viral classification algorithm, 
mainly when data are expressed in a one-hot encoded format (i.e., binary data involving only 0 and 1 values). 
It frequently shows improved performances compared to the well-known supervised classification approaches. 
It shows several strengths typical of the tree-based algorithms, such as the capability of handling categorical 
features (in terms of one-hot encoding) and the possibility of making no assumptions about the distributions 
of the collected data. The main computational weakness of XGBoost algorithm is the necessity of setting many 
parameters (hyperparameters) before obtaining the best (robust and cross-validated) models. In particular, a grid 
search approach was used in this study to optimize several hyperparameters such as eta (i.e., the learning rate, a 

X(n,p) = T(n,f ) × P(f ,p) + E(n,p)
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number between 0 and 1), gamma (i.e., the minimum number of splitting for a node, from 0 up to 14), max_depth 
(i.e., a number that indicates how deeply each evaluated tree can grow, from 1 up to 5), min_child_weight (i.e., 
a value defining the level of impurity sustainable for a node, between 1 and 9), subsample (i.e., a value describ-
ing the proportion of samples to be randomly sampled during the evaluation of each tree, between 0 and 1), 
colsample_bytree (i.e., a number describing the proportion of features selected by each tree, between 0.5 and 1), 
and nrounds (i.e., the number of trees that can be sequentially built within the model55,67. XGBoost models were 
computed on all the available SNPs collected in this study at inter-continental and continental levels. All XGBoost 
models (as well as the PLS-DA ones) were expressed in terms of sensitivity, specificity, and accuracy. Confusion 
matrixes and AUC values of the calculated Receiver operating characteristic (ROC) curves were evaluated, too. 
AUC values equal to 0.5 suggest no discrimination. In contrast, AUC values between 0.7 and 0.8 indicate that 
the model has acceptable discrimination and AUC values between 0.8 and 0.9 suggest an excellent capacity of 
discrimination and values equal to or greater than 0.9 indicate outstanding discrimination68.

The hyperparameters’ tuning of all the developed models (PLS-DA and, mainly, XGBoost) was performed 
using a grid search approach and employing a fivefold cross-validation approach with venetian blinds sampling 
design. The models reported in this study are, therefore, the best we obtained from tuning our models on the 
data obtained for the different panels (the values of the hyperparameters are not reported). Root Mean Square 
Error in Cross Validation (RMSECV) was evaluated when building the PCA and PLS-DA models to define the 
optimal number of components for the developed models.

All experiments were achieved in accordance with relevant guidelines and regulations.

Results and discussion
PCA, PLS‑DA and XGBoost models at inter‑continental level.  As proposed in different papers28,69–71, 
PCA was first performed to preliminary investigate the available datasets involving the four selected AIMs pan-
els for BGA inference. As expected, for the first level of BGA (i.e., inter-continental BGA) inference, several sep-
arate clusters corresponding to African, American, Asian, European, and Oceanian individuals were observed 
in the space of the first two PCs (Fig. 1). This result turned straightforward for all the evaluated AIMs panels.

After an initial PCA analysis with the Asian continent in its entirety, the Asian was subdivided into its regions 
due to its breadth -within our dataset, individuals were belonging to different regions of Asia- and the fact that 
the prediction of the biogeographical origin within the Asian continent has been and is a subject extensively 
studied in the forensic field25,72–76.

Figure 1.   PCA Scores plots showing the PCA models obtained for the different evaluated AIMs panels.
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As in our dataset, if considering Asia composed by Central, East, North, and South Asia populations, PCA plot 
highlights that African, East Asian, Oceanian, and (partially) North Asian and European individuals showed a 
better differentiation from the other tested individuals, while American, South Asian, Central Asian, and Middle 
East subjects provided an overlap in the PCA space. In addition, better separation of the evaluated populations 
can be observed in Additional file 1: Fig. S1 also involving three principal components (for a total amount of 
CEV% equal to 83%).

All the evaluated AIMs panels show a similar degree of separation among individuals belonging to different 
continental areas. However, only the African individuals reveal a separate cluster in all the panels, presumably 
due to the history of humans in Africa that is complex and includes demographic events that influenced pat-
terns of genetic variation across the continent, and the fact that modern humans first appeared in Africa roughly 
250,000–350,000 years before present and subsequently migrated to other parts of the world77.

As shown in Additional file 1: Fig. S1a,b, the African individuals generate an elongated cluster (dark yellow) 
that extends towards the gray one corresponding to the Middle East region. By evaluating the African individu-
als closest to the Middle East cluster, we observed that they belong to the populations of northern Africa. The 
Middle East cluster is in the middle of the European and South Asian clusters and partly overlaps. The light 
blue cluster that corresponds to the admixed and non-admixed American population is projected toward the 
European cluster and partly overlaps with it, suggesting that admixed American individuals have an important 
proportion of European ancestry78.

As it can be observed in Fig. 1 and in Additional file 1: Fig. S1, the distribution of the populations in the 
space of the PCs perfectly reflects the distribution of the populations in the globe: indeed, geographically distant 
populations are located distantly in the PCA plot, while geographically close populations, regardless of whether 
they belong to a continent or another, are close in the PCA plot.

Similar PCA plots were obtained by Glusman et al.79 and Haber et al.80 using a significantly greater number 
of SNPs, 300,000 and 240,000 respectively than those tested in all the forensic panels. Therefore, as previously 
highlighted28,69,70, despite the limited number of SNPs, the performance of each panel across populations was 
generally consistent even if some genetic markers performed more than others.

However, although PCA analysis allows us to assign an individual to his/her population of origin through a 
visual, intuitive, and easy to interpret approach, it does not provide significant divergence between populations, 
and obviously, it cannot be used alone in forensic context because it does not provide an accurate statistical 
estimate of the weight of the evidence69.

PLS-DA was then applied to the same experimental sets based on PCA modeling results to develop more 
reliable discrimination models to classify the variables. As a result, for the first level of BGA (i.e., inter-conti-
nental BGA) inference, African, American, East Asian, South Asian, Central Asian, North Asian, European, and 

Figure 2.   PLS-DA Scores plots showing the models obtained for the different evaluated AIMs panels.
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Oceanian individuals were effectively separated using models involving two latent variables (LVs) (Fig. 2). This 
result turned noteworthy for all the evaluated panels.

Even if the PCA and PLS-DA plots may seem similar, the obtained Receiver Operating Characteristic (ROC) 
curves, together with the values of sensitivity, specificity, and AUC highlight the importance of a statistical tool 
to infer BGA. PLS-DA models for African, American, Asian, European, and Oceanian individuals provided 
optimal predictions with the CEV% values higher than 98% for all populations in all panels investigated except 
Oceania—Euroforgen (CEV% 88%), ForenSeq (CEV% 79%), MAPlex (CEV% 86%) and Thermo Fisher (CEV% 
79%), and America in ForenSeq (CEV% 95%) panel-. The Oceania population results might be affected by the 
small number of individuals in the dataset showing this ancestry. All the developed models provided a CEV% 
higher than 80%, and all the tested AIMs panels proved reliable results that remarked the necessity to use a proper 
classification model, rather than PCA modeling, to infer BGA robustly.

In addition, through the PLS-DA model, the MaPlex panel ability to differentiate the set of individuals from 
South Asian to others was estimated with a high degree of accuracy (AUC = 0.9828). As expected from the pre-
liminary assessment of MaPlex29, no other panel considered in this study was found to be comparable with it in 
enhancing South Asian differentiation (Fig. 3). Outstanding discrimination was obtained for East Asian popula-
tions in all panels considered associated with less discrimination for Central and North Asian probably due to 
the limited number of Asian population samples in our dataset, the use of unsuitable markers to discriminate 
these areas, and the fact that Asia has been a critical hub of human migration and population admixture81–83.

As shown in Fig. 3, there are some populations showing poor sensitivity and specificity values. As an example, 
South Asian individuals have low values for EUROFORGEN, ForenSeq and Thermo Fisher panels, while they 
are classified with promising results using the MAPlex panel. Similar behaviours are also observed for Middle 
East and Oceania individuals. These results reflect the fact that some panels, like MAPlex, have been developed 
to deeply investigate specific populations (i.e., Asia–Pacific populations) and their classification might be prone 
to better identify such individuals29. On the other hand, some populations (like Oceanian and Middle East 
subjects) showed a lower number of available individuals, compared to the other tested populations, so that the 
classification performance are not optimal and might be improved by raising the number of investigated subjects.

In accordance with Phillips et al.29, our results indicated enhanced South Asian differentiation (AUC = 0.98) 
using MaPlex panel compared to other forensic panels (Fig. 4), but no increased differentiation between West 
Eurasian and East Asian populations was detected.

Afterward, the best XGBoost model obtained after the grid search approach provided the following per-
formances (Table 1) in terms of sensitivity, specificity, and AUC. XGBoost algorithm was tested to compare its 

Figure 3.   ROC curves, sensitivity, specificity, and AUC values for the tested continental populations.
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performances with those from PLS-DA to evaluate another ML model aimed to obtain optimal and feasible 
inference models for BGA prediction.

As it can be seen by the values reported in Table 1, XGBoost model provides interesting results, but slightly 
lower than those of PLS-DA models, especially when comparing the AUC values (Fig. 4).

As shown in Fig. 4, optimal AUC values (close to 1) were observed for African, American, East Asian, and 
European populations using PLS-DA method, while lower results (around 0.8) were obtained for Central Asia, 
Middle East, North Asia, Oceania, and South Asia (with the exception of MAPlex panel involving a PLS-DA 
model) areas. The best results were achieved when using PLS-DA modeling, showing AUC values substantially 
higher than those obtained by XGBoost. The worst predictions were those involving the South Asian populations 
overall with AUC values around 0.6. In parallel, STRU​CTU​RE software was tested as a benchmark comparison. 
The AUC of STRU​CTU​RE was calculated by comparing the ancestry predictions from STRU​CTU​RE software 
with the real ancestry origins of the tested populations and individuals. Firstly, the number of K clusters (i.e., 
populations) we selected for our comparison with STRU​CTU​RE was equal to the number of ancestry populations 
we tested for the different PLS-DA and XGBoost models at inter-continental and inter-continental levels. Then, 
using CLUMPP together with STRU​CTU​RE, we were able to obtain the Q-matrices containing the membership 
coefficients for each individual in each cluster. Therefore, each individual was assigned to the ancestry (k-th 
cluster) showing the highest membership coefficient: this approach allowed us to obtain ROC curves and AUC 
values for comparing STRU​CTU​RE approach to the predictions and the performance provided by PLS-DA and 
XGBoost models.

Comparison between AUC values of different populations obtained from PLS-DA, XGBoost and STRU​CTU​
RE model at inter-continental level is reported in the Fig. 5. As it can be observed in Fig. 5, better performance 

Figure 4.   Comparison between AUC values of different populations obtained from PLS-DA and XGBoost 
model at inter-continental level considering Asian divided into regions.

Table 1.   Sensitivity, specificity, and AUC values of the optimal XGBoost model built at inter-continental level 
for all panels investigated.

Populations

EUROFORGEN ForenSeq MAPlex Thermo Fisher

Sensitivity Specificity AUC​ Sensitivity Specificity AUC​ Sensitivity Specificity AUC​ Sensitivity Specificity AUC​

Africa 0.53 0.77 0.65 0.51 0.78 0.64 0.48 0.76 0.62 0.47 0.76 0.61

America 0.46 0.86 0.66 0.48 0.86 0.67 0.48 0.87 0.67 0.44 0.87 0.66

Central Asia 0.70 0.73 0.71 0.72 0.72 0.72 0.71 0.78 0.75 0.73 0.80 0.76

East Asia 0.78 0.91 0.84 0.83 0.88 0.86 0.79 0.88 0.84 0.84 0.93 0.89

Europe 0.63 0.89 0.76 0.58 0.89 0.74 0.63 0.85 0.74 0.58 0.88 0.73

Middle East 0.72 0.83 0.77 0.62 0.79 0.70 0.68 0.79 0.74 0.71 0.73 0.72

North Asia 0.56 0.82 0.69 0.61 0.73 0.67 0.59 0.74 0.66 0.57 0.82 0.70

Oceania 0.70 0.73 0.72 0.70 0.77 0.73 0.70 0.77 0.73 0.71 0.77 0.74

South Asia 0.50 0.73 0.62 0.55 0.75 0.65 0.49 0.73 0.61 0.55 0.75 0.65
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was achieved when using PLS-DA modeling rather than STRU​CTU​RE for diverse continents such as Africa, 
America, Europe and most of Asia (central, east and north Asian) for all panels investigated. Different results were 
observed in south Asia, Middle East and Oceania where STRU​CTU​RE model seems to work best in almost all 
panels investigated with the exception of MaPlex panel in South Asia. The worst predictions were those involv-
ing XGBoost with AUC values on average lower than STRU​CTU​RE except for Central Asian and North Asia.

PCA, PLS‑DA and XGBoost models at intra‑continental level.  PCA model was assessed to infer 
BGA at continental level and, as expected28,69, unsatisfactory separations were observed (an example is shown in 
Fig. 6 for MAPlex panel). In particular, the following countries and populations were evaluated for the different 
geographical areas:

•	 Africa: African Caribbeans, Gambia, Kenya, Nigeria, Sierra Leone;
•	 America: Colombia, Mexican Ancestry from Los Angeles, Mexico, Peru, Puerto Rico;
•	 Asia: Bangladesh, China, India, Japan, Pakistan, Sri Lanka;
•	 Europe: Finland, France, Great Britain, Italy, Spain, Israel.

These countries and populations were selected since they showed more than 80 genotyped individuals in the 
analyzed dataset; therefore, Oceanian individuals were not considered since the number of genotyped subjects 
was too limited. As observed in Fig. 6, no significant differences or clusters were detected when using PCA 
exploratory strategy. Considering Asian population plot, Japan and China provided a different cluster when 
compared to the other Asian countries but despite the MAPlex panel was specifically developed to provide dif-
ferentiation of Asian population, can discriminate South from East Asian populations but the sub-populations 
in these geographical areas cannot be separated from each other. Similar results were observed for all the other 
BGA AIMs panels (Additional file 1: Figs. S2, S3, S4, S5).

In summary, if this traditional multivariate approach allows us to suggest the BGA of known individuals 
at the inter-continental level, it fails at intra-continental level, presumably due to the statistical method that is 
incapable to classify the variables.

Therefore, the application of the PCA model can be considered inadequate for forensic BGA inference goals. 
For this reason, we adopted proper classification models, such as PLS-DA and XGBoost, to improve our models’ 
performance and obtain adequate separations among the populations.

Therefore, PLS-DA and XGBoost models were evaluated at intra-continental level. Figure 7 reports the models 
and the performance results of the PLS-DA model built to discriminate among the African population.

In the African scenario, the best results were achieved by EUROFORGEN and Thermo Fisher panels, but 
also MAPlex panel provided interesting results.

The AUC values of the EUROFORGEN panel (Fig. 7) between 0.8 and 0.9 for two out of five populations 
analyzed and greater than 0.9 for the remaining three, suggest an excellent capacity of discrimination and 

Figure 5.   Comparison of AUC values of different populations obtained from PLS-DA, XGBoost, and STRU​
CTU​RE at inter-continental level considering Asian divided into regions.
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Figure 6.   PCA Scores plots showing the PCA models obtained for the different countries and populations 
tested using the Maplex panel.

Figure 7.   ROC curves, sensitivity, specificity, and AUC values for African countries and populations.
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outstanding discrimination, respectively, of the SNPs in the panel. Thermo Fisher and MaPlex panel obtained 
similar results.

Presumably, due to the limited numbers of markers in the panel, the worst classification performances were 
provided by the ForenSeq panel with an average AUC value of 0.798, the lowest value compared to the other 
panels. These results can also be assessed from the scores plots reported in Additional file 1: Fig. S6 where several 
clusters are visible from the PLS-DA models built using the different AIMs panels.

The AUC value very close to 100% observed for the African population in all panels tested (Fig. 3) highlights 
their outstanding discrimination at the inter-continental level and a slightly less capability, albeit excellent in 
most of the panels, at intra-continental level (Fig. 7). Indeed, the average AUC values for all panels in African 
population range from an acceptable discrimination for Forenseq panel (average AUC value = 0.798) to an out-
standing discrimination for MaPlex and Thermo Fisher panel with the average AUC values equal to 0.92 and 
0.91 respectively.

The XGBoost model was also performed, and Tables S1 in Additional file 1 shows the sensitivity, specificity, 
and AUC values for African populations.

AUC values of PLS-DA and XGBoost model were compared (Fig. 8).
Interesting AUC values (around 0.9) were observed for African Carribean, Gambian, Kenyan, and Nigerian 

individuals, while the worst results (0.8 for PLS-DA, 0.6 for XGBoost) were obtained for the subjects from Sierra 
Leone presumably influenced by the lower number of individuals in the population. Again, the best performances 
were achieved using PLS-DA modeling.

In the American framework (Fig. 9), no specific panel or model outperformed the others. Good discrimina-
tion results were observed using EUROFORGEN and MAPlex panels for the individuals from Mexico and Peru, 
and Puerto Rico (in all cases, AUC value is higher than 0.97), and Colombia (for MAPlex only with an AUC value 
of 0.85). On the other hand, the Thermo Fisher panel showed the best results in discriminating the individual of 
Mexican ancestry living in Los Angeles (US) (AUC value of 0.88), but also ForenSeq panel provided remarkable 
results (AUC value of 0.84). Thermo Fisher panel also provided reliable classification results (AUC value of 0.98) 
when dealing with subjects from Puerto Rico (as well as EUROFORGEN (0.97) and MAPlex (0.99) panels). These 
results can also be observed from the scores plots reported in Additional file 1: Fig. S7, showing several clusters 
among the tested countries and populations.

In addition, in the American scenario, all panels investigated except MaPlex show AUC values higher than 
0.95 at inter-continental level (Fig. 3), and a very slightly less capability of discrimination was observed at inter-
continental level with the average AUC values higher than 0.90 for all panels (Fig. 9). Therefore, particular atten-
tion should be paid with the MaPlex panel. In this case, the AUC value at inter-continental level is much lower 
(AUC = 0.77) than the average value obtained at intra-continental level (AUC mean = 0.93), showing a better 
discrimination at intra-continental level rather than at inter-continental one. This might be because there is a 
lower variability in the analyzed data (as well as in the number of tested populations) and, in this scenario, the 
algorithms are capable of predicting and inferring BGA with improved performances.

Tables S2 in additional file 1 shows the sensitivity, specificity, and AUC values of XGBoost model for American 
population. AUC values of PLS-DA and XGBoost models were compared (Fig. 10).

As shown in Fig. 10, optimal AUC values (around 1 for PLS-DA) were observed when inferring the BGA 
for individuals from Mexico, Peru, and Puerto Rico, while lower performances (around 0.8 for PLS-DA) were 

Figure 8.   Comparison of AUC values obtained fromPLS-DA and XGBoost model for African population.
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obtained when evaluating Colombian and Mexican Ancestry from Los Angeles individuals. Again, the best 
performances were achieved using PLS-DA modeling.

In the Asian framework (Fig. 11), similar results were obtained. On average, the best results were obtained 
when evaluating the Thermo Fisher and MAPlex panels, especially for the individuals from China, Japan, and 
Pakistan with AUC values equal to 0.99, 0.98 and 0.95, respectively, for Thermo panel and 0.98, 0.98 and 0.86 for 
MaPlex panel. Excellent discrimination was achieved also for India, Bangladesh and Sri Lanka with AUC greater 
than 0.80, showing the ability of these two panels to differentiate sub-populations.

The scores plot provided two separated clusters; the first one consists of China and Japan, while the second 
cluster reported the individuals from Bangladesh, India, Pakistan, and Sri Lanka (Additional file 1: Fig. S8).

Tables S3 in additional file 1 shows the sensitivity, specificity, and AUC values of XGBoost model for Asian 
population. AUC values of PLS-DA and XGBoost models were compared (Fig. 12).

Figure 9.   ROC curves, sensitivity, specificity, and AUC values for American countries and populations.

Figure 10.   Comparison of AUC values obtained from PLS-DA and XGBoost model for American population.
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The best AUC values (around 1 for PLS-DA) were obtained when inferring the BGA for individuals from 
China, Japan, and Puerto Rico, while lower results (around 0.8 for PLS-DA) were obtained when evaluating 
individuals from Bangladesh, India, and Sri Lanka. The lowest results were showed by the XGBoost model on 
Bangladesh subjects and, once again, the best performances were achieved with PLS-DA modeling.

Finally, no specific AIMs panel or model outperformed the others when evaluating the European countries 
and populations except for the ForenSeq panel that presents the worst results, presumably due to the low numbers 

Figure 11.   ROC curves, sensitivity, specificity, and AUC values for Asian countries and populations.

Figure 12.   Comparison of AUC values obtained from PLS-DA and XGBoost model for Asian population.
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of markers analyzed. The scores plot provided several separate clusters for all the evaluated populations, and 
these results can also be observed from the scores plots reported in Additional file 1: Fig. S9.

As shown in Fig. 13, the best discrimination result was achieved for Finland populations (AUC ≥ 0.93) for 
all panels investigated. It has to be noted that the best results for the French individuals were obtained with 
EUROFORGEN and MAPlex AIMs panels, while for the other groups (Italians, English, Spanish, and Finns) 
the results are comparable.

Tables S4 in additional file 1 shows the sensitivity, specificity, and AUC values of XGBoost model for European 
population. AUC values of PLS-DA and XGBoost models were compared (Fig. 14).

Optimal AUC values (around 0.9–1) were observed for all the PLS-DA models in this scenario, instead of the 
XGBoost models showing significantly lower results.

Figure 13.   ROC curves, sensitivity, specificity, and AUC values for European countries and populations.

Figure 14.   Comparison of AUC values obtained from PLS-DA and XGBoost model for European population.
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STRU​CTU​RE approach was also compared with PLS-DA and XGBoost model at intra-continental level by 
evaluating the populations selected for the Africans, as an example. The results in terms of comparison of the 
AUC values are reported in the Fig. 15. As already observed at inter-continental level, PLS-DA, and in most 
cases XGBoost, provided, on average, better performance in terms of accuracy when compared to STRU​CTU​
RE approach also at intra-continental level.

Comparing the ROC curves of all forensic panels both at inter-continental level and at intra-continental 
level, a decrease in the accuracy in inferring BGA at intra-continental level was observed. This decrease may be 
explained by the natural geographical distribution of some populations: “populations that share geographical bor-
ders and cultural practices are closely related genetically and these populations show similar genetic patterns”72, 
by the SNPs in forensic panels, selected with the aim of discriminating populations at continental level28,69,73, and 
by their number which is relatively low compared to that used in other genetic fields through NGS technology.

PLS-DA and XGBoost at intra-continental level provided, on average, better performance in terms of accuracy 
when compared to STRU​CTU​RE approach. In particular, the obtained results showed that PLS-DA performed 
better than STRU​CTU​RE at both inter- and intra-continental level. Similar results were achieved by Jombart 
et al.43 when using a supervised classification approach like DAPC in comparison with STRU​CTU​RE. Further-
more, both PLS-DA and STRU​CTU​RE methods provide graphical outputs for interpreting the results of the 
obtained classification models. STRU​CTU​RE provides the results in form of bar plot (being extremely helpful, 
for instance, when interpreting admixtures) while PLS-DA modelling shows a scatter plot for the tested popula-
tions, aimed to evaluate the goodness of the developed classification and allowing to project new individuals into 
the calculated Scores plots. On the other hand, GenoGeographer approach shows a brilliant use of Likelihood 
Ratio modelling, since it allows to compare the tested populations and the predictions in terms of Log10LR. 
Similarly, our XGBoost and PLS-DA approaches provide numerical results for the performance of the models 
(in terms of ROC curves) and the classifications of new individuals (in terms of probability of classification for 
the new tested individuals).

Conclusions
Ancestry analysis is of increasing relevance to crime investigations in all situations in which few or no investiga-
tive leads are available and genetic information about the donor of the trace or skeleton found at the crime-scene 
could be of help to police investigations to find unknown perpetrators of crime or identify missing persons. 
Therefore, the present study investigated the application of multivariate data analysis modelling to discriminate 
and predict the BGA of several populations by evaluating the AIMs markers and panels available in the market 
for forensic purposes. PLS-DA and XGBoost supervised models drastically improved the traditionally used 
PCA approach, by supplying satisfactory classification results and showing a capability of BGA discrimination 
of the diverse forensic panels. Moreover, the comparison between these models with STRU​CTU​RE approach 
highlighted a better BGA prediction of PLS-DA than STRU​CTU​RE at both inter- and intra-continental level. 
Different results were observed at inter-continental level only in south Asia, Middle East, and Oceania where 

Figure 15.   Comparison of AUC values obtained from PLS-DA, XGBoost and STRU​CTU​RE model for African 
population.
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STRU​CTU​RE model seems to work best in almost all panels investigated with the exception of MaPlex panel in 
South Asia. Despite the high classification performances of PLS-DA, a decrease in the accuracy in inferring BGA 
was observed for all panels investigated when moving to more geographically restricted populations presumably 
due to the type of selected SNPs and their limited number in all forensic panels. In addition, particular attention 
should be paid to the database. Since the analysis of ancestry inference is performed by comparing the sample 
genotype with one or more known reference population groups, well-characterized databases with high-quality 
genotyping results of well-defined reference populations are critical. This work represents a proof-of-concept 
study suggesting the possibility to use supervised algorithms such as PLS-DA or XGBoost (and, eventually, 
other multivariate models) as a tool for the investigative police forces to estimate the BGA of suspects and 
persons of interests. Despite the findings, our work does not aim to suggest the use of PLS-DA and XGBoost as 
improved alternative methods to those involving likelihood-ratio computations and further investigations will 
be conducted to fully investigate the performance of these approaches and their use for forensic purposes. Future 
perspective will involve the evaluation of class-modelling ML approaches like SIMCA (Soft-Independent Model 
of Class Analogy) and the computation of likelihood ratios for each classification; these approaches will allow 
the forensic expert to obtain interesting information to interpret the results of critical unknown individuals such 
as admixtures and the cases where AIMs profiles do not belong to any of the included reference populations.

Data availability
All data generated or analysed during this study are included in this article and its supplementary information 
files.
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