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Abstract. The paper discusses the emergence of hybrid diagrams in the context 
of origami practice with respect to the study of the crease pattern, a particular 
diagram that can be associated with any origami model. We introduce the expres-
sion “hybrid diagram” to refer to a 2D diagram that embeds physical parts of the 
origami model and information about transformations occurred in space, or to an 
origami model on which attempts to grasp parts of the crease pattern appear. We 
focus on some university students working with the crease pattern for a given 
origami model. A first analysis of the work of these students allows for a prelim-
inary characterization of hybrid diagrams: they encapsulate relations between the 
3D model and the crease pattern and reveal the entanglement of diagrammatic 
activity with the gestural and the material. Drawing on the cognitive perspective 
of semiotic representations by R. Duval and diagrammatic thinking by C. Peirce, 
we interpret the emergence of hybrid diagrams as relevant to the conversion be-
tween different (mathematical) registers. 
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1 Origami and Diagrams 

In this paper we use the idea of “hybrid diagram” drawing on observations made in the 
context of a teaching experiment that involved a group of university students in activi-
ties with origami models and the crease pattern, a diagram that consists of all or most 
of the creases that are folded in the final origami model.  
The making of an origami consists in repeatedly folding one or more squared sheets of 
paper to obtain other (three-dimensional) shapes which can resemble animals or flow-
ers, as well as recall geometric shapes or patterns. Far from being just a recreational 
activity, in recent years it has had important applications in many fields, like the aero-
spatial and medical field. From an educational perspective, a major interest in paper 
folding lies in the possibility of exploring geometric properties through material activ-
ity. The geometry of origami has its mathematical formalization in a set of seven axi-
oms, which identify the ways in which it is possible to create a fold. These axioms have 
become famous as Huzita-Justin or Huzita-Hatori Axioms [9]. The list is also complete 
[2]. Most of the movements that contribute to the creation of an origami model are 
based on axioms, making the underlying mathematical theory particularly rich and in-
teresting from the didactic point of view for they allow the discovery and study of math-
ematical relations in a concrete context (e.g., [6] and [8]). 
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Most of the available books on origami illustrate the process of making a model 

through instruction diagrams. In such diagrams, the sheet of paper is shown generally 
as a square, and each step of the construction is accompanied by arrows that indicate 
the direction of the movements to be performed and by marks that capture the position 
and type of fold (valley or mountain creases). The instruction diagrams provide an 
iconic representation of the steps in the construction, while the final model incorporates 
all the transformations made by paper folding. The relationships between an origami 
model and the set of transformations undergone by the sheet of paper through the ac-
tivity of folding is captured by another diagram: the crease pattern. Some beautiful 
examples of crease patterns are available on the site of the origamist Robert J. Lang 
[12]. In the initial page of the website, Lang points out how in a crease pattern, one can 
see everything that is hidden in the folded work. 

Intuitively, we can revisit the definition of crease pattern given by Hull [7], intro-
ducing it as the plane diagram that consists of the lines representing the fundamental 
valley and mountain folds, i.e., all the folds that are folded in the origami in its final 
form. An example of an origami model and the relative crease pattern is given in Fig. 
1. 

 

  
Fig. 1. The crease pattern and the model of the Pajarita, a classical origami. The vertexes of the 
crease pattern are circled in the first diagram. 

The crease pattern is therefore a plane diagram that contains important information 
about the nature of the folds composing the final model, but only the expert eye can 
“reconstruct” (or imagine) a model starting from its crease pattern. Even the reverse 
process (i.e., building the crease pattern starting from a folded origami model) is not 
obvious, because it requires a considerable effort of three-dimensional visualization. It 
is not sufficient, indeed, to reopen the origami model and highlight the traces of the 
folds. Two distinctions must be made: (1) fundamental folds must be recognized and 
distinguished from those that are folded in the construction but no longer in the final 
model; (2) these fundamental folds can be valley or mountain creases. Following Hull 
[7], in a crease pattern generally valley folds are represented with dashed lines and 
mountain folds with dash-dot lines. Moreover, when drawing a crease pattern while 
looking at the relative origami model, it is necessary to “always look at the sheet of 
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paper from the same side”, since when the sheet is turned upside down, mountain folds 
become valley folds and vice versa. 

In a crease pattern, which is a square-shaped diagram within which folds are repre-
sented through segments, we call a vertex each point inside the square where at least 
two distinct lines concur (see Fig. 1 again). In our work we have focused our attention 
on the characteristics of particular origami, called flat origami. Intuitively, a flat ori-
gami can be closed in a book without creating further folds and without removing any 
fundamental fold: it is therefore an object that, despite being three-dimensional, since 
it is made up of multiple layers folded over each other, can be treated as two-dimen-
sional. 

Studying the crease pattern is of interest for many reasons. We select here two of 
them, which are relevant to this paper. First, the crease pattern shows what is hidden in 
the model once folded, therefore it opens a different window on the creation process of 
an origami and the relations among folds in the origami. Secondly, properties of a flat 
origami can be illustrated and expressed through the crease pattern, so this is a space 
for rich mathematical explorations. 

In this paper, we will focus on some students working on the task of drawing the 
crease pattern of an origami model, and we will describe the emergence of types of 
diagrams in their activity, which we call hybrid diagrams. We will present a qualitative 
analysis of the students’ activity that shows how such diagrams emerge and sustain the 
mathematical exploration. In the next section we will frame these ideas drawing on 
research in mathematics education on semiotic representation.  

2 Semiotic Representation in Mathematical Thinking 

Duval [5] stresses the importance of semiotic representation for any mathematical ac-
tivity. He introduces semiotic representation in relation to the attempt of better under-
standing the difficulties that students have with comprehension of mathematics, and 
their nature. One specificity of mathematical thinking exactly is the cognitive activity 
required by mathematics, which makes use of semiotic systems of representation. 
Signs, or semiotic systems of representation, play a role not only to designate mathe-
matical objects or to communicate but also to work on, and with, mathematical objects. 
For Duval, no kind of mathematical process is performed without using a semiotic sys-
tem of representation: mathematical processes always involve “substituting some semi-
otic representation for another” (p. 107, emphasis in the original). Therefore, in math-
ematical activity what matters is not representations but the transformation of represen-
tations. Semiotic activity is so relevant to mathematics (and mathematics education) 
because signs and semiotic representations allow access to mathematical objects. Am-
biguity can emerge when learners must distinguish objects and their representations. 
According to Duval, the ability to change from one representation system to another is 
critical to progress and problem solving. Mathematical activity has different semiotic 
representation systems, called registers: the verbal, the numerical, the graphical, the 
symbolic, each providing specific possibilities for performing mathematical processes. 
There are two different types of transformations of semiotic representations: treatments 
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and conversions. Treatments occur within the same register and can be carried out de-
pending on the possibilities of semiotic transformation which are specific to the register 
used. Conversions instead are transformations of representation that consist of changing 
a register without changing the objects, like when we pass from the algebraic notation 
for a function to its graph. Briefly speaking, these transformations capture changes in 
or of register.  

Today, semiotic activity in mathematics is regarded as more complex than just im-
plying treatments of and conversions between the semiotic registers à la Duval and has 
been expanded to incorporating bodily-based signs, like gesture, gazes, tones of voice, 
sketches, tool usages, and so on, so that we speak of multimodal or sensuous mathe-
matical cognition [11], meaning that mathematical cognition involves multiple modal-
ities and senses, besides registers. Thus, we refer to semiotic sets instead of registers. 
Arzarello [1], for example, has introduced the notion of semiotic bundle to capture the 
relationships in and within different semiotic sets. In this paper, we consider diagrams 
as one possible semiotic resource that is activated in mathematical thinking. In so doing, 
we must refer to Peirce’s theory of cognitive activity and his attempt to rescue the im-
port of perception [10]. Peirce considers diagrammatic thinking as central to discovery 
of new conceptual relations, which remained hidden before or beyond the realm of our 
attention and are instead made apparent by perceptual inspection.  

What matters to us in respect to Peirce’s consideration of diagrams is therefore the 
role that they can play in reasoning about mathematical relations. We are not interested 
in the appearance of diagrams but more in their nature (how they emerge) and function 
(why they emerge), because this helps us to better investigate cognitive activity in math-
ematics. In addition, the history of mathematics shows that relevant mathematical ideas 
were discovered or advanced with a productive semiotic activity involving an interplay 
of gestures and diagrams [3]. Borrowing from these ideas, we see diagrams as a semi-
otic set consisting of graphs, sketches, figures, and any form of visual thinking ex-
pressed in the written. Focus is put on the emergence of kinds of diagrams in mathe-
matical activity, which we call hybrid diagrams.  

3 The Emergence of Hybrid Diagrams 

3.1 The Mathematical Activity  

For this paper, whose purpose is to present and discuss the emergence of hybrid dia-
grams in the context of mathematical paper folding, we centre our attention on a spe-
cific task. Some university students were asked to draw the crease pattern correspond-
ing to each step of the construction process of an origami model. This task is relevant 
to the issue of conversion between different registers in mathematics, considering the 
origami model and the crease pattern as two different registers for the same object. The 
teaching experiment was aimed at creating the opportunity for university students to 
engage with origami and their representations and explore the features of flat origami 
regarding the mathematical properties of their crease pattern. The experiment was de-
signed by the authors and carried out during the first semester of the academic year 
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2020/21, when university courses were held online because of the Covid pandemic. It 
engaged 29 master’s degree students in mathematical explorations of origami models 
using 7 worksheets and the Google Meet platform. The conditions of distance teaching 
and learning are relevant to our research study. Initially, main interest was in the crea-
tion and study of mathematical activities involving origami to make the students ex-
plore non-elementary properties of flat origami. Additional interest arose concerning 
the understanding of the way in which the online environment could trigger new strat-
egies for mathematical exploration and communication. Data for the analysis mostly 
consists of the video recordings of the Google Meet rooms in which the students worked 
in groups to face the tasks of the worksheets. Also, the written materials produced by 
the groups were uploaded to online shared folders. Our qualitative analysis employed 
techniques from micro-ethnography [13] to understand how the students make sense of 
the paper folding activities. 

The first two worksheets focused on the creation and analysis of the crease patterns 
of two simple origami: the triangle base and the square base, which generally are the 
basis of folds for more complex origami constructions. In the third worksheet, the focus 
was on the analysis of the crease pattern created by another group and on the concept 
of vertex in the crease pattern. Worksheet 4 was divided into two parts (a and b) and 
centred on the request to create the sequence of crease patterns corresponding to the 
various steps of the construction of the “crane”. The tasks of worksheets 5 to 7 finally 
guided the investigation of flat origami and the exploration and discovery of the theo-
rems of Maekawa and Kawasaki, which advance peculiar properties of the flat ori-
gami’s crease pattern. In this paper, we draw attention to the request given by the first 
part of Worksheet 4. The students were given the instruction diagrams for the origami 
model and a sequence of squares, which each group was asked to fill in with the crease 
pattern at each construction step. The first step was the crease pattern of the square 
base, which the students had already encountered. The last step was the complete crease 
pattern of the crane (Fig. 2). The students were also asked to assign a different role to 
different members of the group, as a folder or sketcher.  

 

 
Fig. 2. The crease pattern (left) of the crane (right). 
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3.2 The Work of Two Groups 

In this section we analyse the work of two groups (1 and 2). Group 1 is made up of 
three female students (S, G, H) and one male student (A). In solving the worksheet, S 
and A create the origami, while G and H create the crease pattern at each step (Fig. 3c).  

Interestingly, S, in addition to building the model, draws the crease pattern directly 
on the model step by step, re-opening it and tracing the basic lines on paper, where it is 
possible to see the trace of the crease and therefore detect both the position and the 
nature of the fold (Fig. 3a). 

To check the correspondence with what the groupmates do on paper, the model is 
often opened and closed again, but only halfway (Fig. 3b), as the model is substantially 
symmetric, for almost the whole process, with respect to the diagonals of the square. 

We see that the group creates a type of hybrid diagram, given by the origami with 
folds added and marked with the same notation used in the crease pattern. We consider 
it hybrid because we recognize that the characteristics of origami are crucially merged 
with those of the crease pattern, and the model then is manipulated with different inter-
est and in new ways (for example, just half-opened). The model thus modified can be 
conceived as a diagram, since the set of relations it contains becomes predominant per-
ceptually other than semiotically, and such information is conveyed through appropri-
ate conventions. The diagram is hybrid also in that it combines the material nature of 
the model with the usual way of representing the nature of the folds in a plane drawing. 

We observe that the diagram is used by the students to operate a conversion between 
the register of the origami model and that of the crease pattern, which entails to check 
relations and modifications in space and in the plane and to discern the fundamental 
folds and their nature. 

 

 
Fig. 3. (a) - (b) The hybrid diagram of group 1, then folded in half; (c) the crease pattern of the 
crane created by group 1. 

Group 2 works in a different manner: a student (M) shares his tablet screen, in par-
ticular the window of a graphic editor software through which he modifies the assigned 
worksheet drawing the crease pattern; the rest of the group work on the origami model. 
The group is convinced that they are not allowed to reopen the model and observe the 
position of the folds with respect to the initial square. Therefore, they all proceed by 
imagining the changes occurred in the ongoing crease pattern, without comparing this 
directly with the folds traced on the paper sheet.  
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Each time the group works on a new crease pattern, M copies and pastes the crease 
pattern created in the previous step and then adds the changes directly on that diagram. 
The new added lines are of a different colour (Fig. 4a; as already done by group 1 in 
the hybrid diagram) and the online worksheet is rotated several times through the editor 
to show the crease pattern in the same position in which the other members of the group 
hold the origami. New folds are often first drawn as segments and, only later, the nature 
of the fold is captured by means of the appropriate marks.  

 

  
Fig. 4. (a) - (b) - (c) Lines and arrows added by group 2 on the crease pattern. 

Other signs are also drawn on the crease pattern to support the students’ conjectures: 
in particular, arrows refer to the folding movement (Fig. 4b) or materialize parts of the 
origami in that passage, as they look like in the 3D space (Fig. 4c). 

We observe the emergence of a “hybrid” diagram also in the case of group 2: the 
crease pattern, phase by phase, incorporates folding movements or captures represen-
tations of elements of the three-dimensional model. 

3.3 Conclusions 

Although at the very end the crease pattern of the crane produced by the groups is not 
entirely correct, we observe that the emergence of hybrid diagrams fosters the students’ 
mathematical reasoning on the conversion between the origami and the crease pattern. 
In this paper, we analyse these diagrams focusing on the work of two groups. The ways 
in which we talk about the hybrid nature of the diagrams for the two groups are dual of 
each other. In the case of the first group, the 3D model incorporates qualities of the 
plane representation. In the case of the second group, during the process of diagram-
ming, the crease pattern is transiently inhabited by arrows that literally bring in folding 
movements or new elements that mirror actual parts of the 3D origami. This seems to 
be an important characteristic of a hybrid diagram, which is provisionally arranged to 
incorporate aspects that usually belong to different registers and do not appear together. 

In this sense, we see hybrid diagrams as semiotic and cognitive tools to operate a 
conversion, borrowing from Duval’s language, between the register of the origami 
model and that of the crease pattern. The crease pattern crystallizes the process of fold-
ing, which essentially is a movement that happens in space but leaves a material trace, 
a material modification on the piece of paper. This is probably the reason why hybrid 
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diagrams either capture movements (group 2) or are manipulated to perform such 
movements while controlling the nature and position of the folds (group 1). This way 
of addressing students’ diagramming and gesturing aligns with de Freitas and Sinclair’s 
[4] vision of them “as inventive and creative acts by which “immovable mathematics” 
can come to be seen as a deeply material enterprise” (p. 134). 

Moreover, a hybrid diagram is nonstandard (does not belong entirely to one system 
of representation or another) and open to new modification and configuration. These 
features fundamentally evoke the dynamic character that Châtelet [3] sees as constitu-
tive of diagrams. Tracing the emergence of hybrid diagrams allows us to better illumi-
nate the semiosis that is at play in the process of conversion in mathematics. 

Despite the huge interest in the field of origami practice and its relationship with 
mathematics, research that focuses on the cognitive side of this relationship is missing. 
Other studies, even in other contexts, might enhance the characterization of hybrid di-
agrams and help elucidate their role in mathematical thinking. Further qualitative re-
search is needed to enlarge understanding of hybrid diagrams and their cognitive and 
didactical relevance. Wider implications could build on these first observations to better 
characterize hybrid diagrams and their cognitive value in mathematical activity.  
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