
26 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Timed Games with Bounded Window Parity Objectives

Publisher:

Published version:

DOI:10.1007/978-3-031-15839-1_10

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1881421 since 2023-12-04T13:17:10Z

Timed Games with Bounded Window Parity
Objectives
James C. A. Main
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Jeremy Sproston
Università degli Studi di Torino, Italy

Abstract
The window mechanism, introduced by Chatterjee et al. [17] for mean-payoff and total-payoff
objectives in two-player turn-based games on graphs, refines long-term objectives with time bounds.
This mechanism has proven useful in a variety of settings [14, 12], and most recently in timed
systems [30].

In the timed setting, the so-called fixed timed window parity objectives have been studied. A
fixed timed window parity objective is defined with respect to some time bound and requires that,
at all times, we witness a time frame, i.e., a window, of size less than the fixed bound in which the
smallest priority is even. In this work, we focus on the bounded timed window parity objective.
Such an objective is satisfied if there exists some bound for which the fixed objective is satisfied.
The satisfaction of bounded objectives is robust to modeling choices such as constants appearing in
constraints, unlike fixed objectives, for which the choice of constants may affect the satisfaction for
a given bound.

We show that verification of bounded timed window objectives in timed automata can be
performed in polynomial space, and that timed games with these objectives can be solved in
exponential time, even for multi-objective extensions. This matches the complexity classes of the
fixed case. We also provide a comparison of the different variants of window parity objectives.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases window objectives, timed automata, timed games, parity games

Funding James C. A. Main: F.R.S.-FNRS Research Fellow.
Mickael Randour : F.R.S.-FNRS Research Associate, member of the TRAIL Institute.

1 Introduction

Real-time systems. Timed automata [2] are a means of modeling systems in which the
passage of time is critical. A timed automaton is a finite automaton extended with a set
of real-valued variables called clocks. All clocks of a timed automaton increase at the same
rate and measure the elapse of time in a continuous fashion. Clocks constrain transitions in
timed automata and can be reset on these transitions.

Timed automata provide a formal setting for the verification of real-time systems [2, 4].
When analyzing timed automata, we usually exclude some unrealistic behaviors. More
precisely, we ignore time-convergent paths, i.e., infinite paths in which the total elapsed time
is bounded. Even though timed automata induce uncountable transition systems, many
properties can be checked using the region abstraction, a finite quotient of the transition
system.

Timed automata can also be used to design correct-by-construction controllers for real-
time systems. To this end, we model the interaction of the system and its uncontrollable
environment as a timed automaton game [31], or more simply a timed game. A timed game

ar
X

iv
:2

20
5.

04
19

7v
1

 [
cs

.G
T

]
 9

 M
ay

 2
02

2

2 Timed Games with Bounded Window Parity Objectives

is a two-player game played on a timed automaton by the system and its environment for an
infinite number of rounds. At each round, both players propose a real-valued delay and an
action, and the play progresses following the fastest move.

The notion of winning in a timed game must take time-convergence in account; fol-
lowing [23], we declare as winning the plays that are either time-divergent and satisfy the
objective of the player, or that are time-convergent and the player is not responsible for
convergence.

Parity conditions. Parity conditions are a canonical way of specifying ω-regular conditions,
such as safety and liveness. A parity objective is defined from a priority function, which
assigns a non-negative integer to each location of a timed automaton. The parity objective
requires that the smallest priority witnessed infinitely often is even.

The window mechanism. A parity objective requires that for all odd priorities seen infinitely
often, there is some smaller even priority seen infinitely often. However, the parity objective
does not enforce timing constraints; the parity objective can be satisfied despite there being
arbitrarily large delays between odd priorities and smaller even priorities. Such behaviors
may be undesirable, e.g., if odd priorities model requests in a system and even priorities
model responses.

The window mechanism was introduced by Chatterjee et al. for mean-payoff games in
graphs [17] and later applied to parity games in graphs [14] and mean-payoff and parity
objectives in Markov decision processes [12]. It is a means of reinforcing the parity objective
with timing constraints. A direct fixed timed window parity objective for some fixed time
bound requires that at all times, we witness a good window, i.e., a time frame of size less
than the fixed bound in which the smallest priority is even. In other words, this objective
requires that the parity objective be locally satisfied at all times, where the notion of locality
is fixed in the definition. This window parity objective and a prefix-independent variant
requiring good windows from some point on were studied in [30].

The main focus of this article is another variant of timed window parity objectives called
direct bounded timed window parity objectives, which extend the bounded window parity
objectives of [14]. This objective is satisfied if and only if there exists some time bound
for which the direct fixed objective is satisfied. While this objective also requires that
the parity objective be locally satisfied at all times, the notion of locality is not fixed a
priori. In particular, unlike the fixed objective, its satisfaction is robust to modeling choices
such as the choice of constants constraining transitions, and depends only on the high-level
behavior of the system being modeled. In addition to this direct objective, we also consider
a prefix-independent variant, the bounded timed window parity objective, which requires that
some suffix satisfies a direct bounded objective.

Contributions. We study conjunctions of (respectively direct) bounded timed window parity
objectives in the setting of timed automata and of timed games. We show that checking
that all time-divergent paths of a timed automaton satisfy a conjunction of (respectively
direct) bounded timed window parity objectives can be done in PSPACE (Theorem 13).
We also show that if all time-divergent paths of a timed automaton satisfy a (respectively
direct) bounded timed window parity objective, then there exists a bound for which the
corresponding fixed objective is satisfied (Corollaries 8 and 10).

In timed games, we show that in the direct case, the set of winning states can be computed
in EXPTIME (Theorem 18) by means of a timed game with an ω-regular request-response

J. C. A. Main, M. Randour and J. Sproston 3

objective [37, 19]. We show that, assuming a global clock that cannot be reset, finite-memory
strategies suffice to win, and if a winning strategy for a direct bounded objective exists,
there exists a finite-memory winning strategy that is also winning for a direct fixed objective
(Theorem 17). In the prefix-independent case, we provide a fixed-point algorithm to compute
the set of winning states that runs in EXPTIME (Theorem 23). We infer from the correctness
proof that, assuming a global clock, finite-memory strategies suffice for winning and if a
winning strategy exists, then there exists a finite-memory winning strategy that is also
winning for some fixed objective (Theorem 22).

We complement all membership results above with lower bounds and establish PSPACE-
completeness for timed automata-related problems and EXPTIME-completeness for timed
games-related problems (Theorem 24).

Comparison. Window objectives strengthen classical objectives with timing constraints; they
provide conservative approximations of these objectives (e.g., [17, 14, 12]). The complexity of
window objectives, comparatively to that of the related classical objective, depends on whether
one considers a single-objective or multi-objective setting. In turn-based games on graphs,
window objectives provide polynomial-time alternatives to the classical objectives [17, 14]
in the single-objective setting, despite, e.g., turn-based parity games on graphs not being
known to be solvable in polynomial time (parity games were recently shown to be solvable
in quasi-polynomial time [16]). On the other hand, in the multi-objective setting, the
complexity is higher than that of the classical objectives; for instance, solving a turn-
based game with a conjunction of fixed (respectively bounded) window parity objectives
is EXPTIME-complete [14], whereas solving games with conjunctions of parity objectives
is co-NP complete [20]. In the timed setting, we establish that solving timed games with
conjunctions of bounded timed window parity objectives is EXPTIME-complete, i.e., dense
time comes for free, similarly to the fixed case in timed games [30].

Timed games with classical parity objectives can be solved in exponential time [23, 22],
i.e., the complexity class of solving timed games with window parity objectives matches
that of solving timed games with classical parity objectives. Timed games with parity
objectives can be solved by means of a reduction to an untimed parity game played on a
graph polynomial in the size of the region abstraction and the number of priorities [22].
However, most algorithms for games on graphs with parity objectives suffer from a blow-up
in complexity due to the number of priorities. Timed window parity objectives provide an
alternative to parity objectives that bypasses this blow-up; in particular, we show in this
paper that timed games with a single bounded timed window objective can be solved in time
polynomial in the size of the region abstraction and the number of priorities.

In timed games, we show that winning for a (respectively direct) bounded timed window
parity objective is equivalent to winning for a (respectively direct) fixed timed window parity
objective with some sufficiently large bound that depends on the number of priorities, number
of objectives and the size of the region abstraction. Despite the fact that this bound can
be directly computed (Theorems 17 and 22), solving timed games with (respectively direct)
fixed timed window parity objectives for a certain bound takes time that is polynomial in
the size of the region abstraction, the number of priorities and the fixed bound. This bound
may be large; the algorithms we provide for timed games with (respectively direct) bounded
timed window parity objectives avoid this additional contribution to the complexity.

Related work. The window mechanism has seen numerous extensions in addition to the
previously mentioned works, e.g., [5, 3, 11, 15, 28, 35, 8]. Window parity objectives, especially

4 Timed Games with Bounded Window Parity Objectives

bounded variants, are closely related to the notion of finitary ω-regular games, e.g., [18], and
the semantics of prompt-ltl [29]. The window mechanism can be used to ensure a certain
form of (local) guarantee over paths; different techniques have been considered in stochastic
models [10, 13, 7]. Timed automata have numerous extensions, e.g., hybrid systems (e.g., [9]
and references therein) and probabilistic timed automata (e.g., [32]); the window mechanism
could prove useful in these richer settings. Finally, we recall that game models provide a
framework for the synthesis of correct-by-construction controllers [34].

Outline. Section 2 presents all preliminary notions. Window objectives, relations between
them and a useful property of bounded window objectives are presented in Section 3. The
verification of bounded window objectives in timed automata is studied in Section 4. Section 5
presents algorithms for timed games with bounded window objectives. Lower bounds for
completeness of the verification and realizability problems for bounded window objectives
are provided in Section 6. Finally, in Section 7, we compare the untimed and timed settings,
and the fixed and bounded objectives. Appendix A expands upon the preliminaries and
discusses winning strategies in timed games with ω-regular objectives.

2 Preliminaries

Notation. We denote the set of non-negative real numbers by R≥0, and the set of non-
negative integers by N. Given some non-negative real number x, we write ⌊x⌋ for the integral
part of x and frac(x) = x− ⌊x⌋ for its fractional part. Given two sets A and B, we let 2A

denote the power set of A and AB denote the section of functions B → A.

Timed automata. A clock variable, or clock, is a real-valued variable. Let C be a set
of clocks. A clock constraint over C is a conjunction of formulae of the form x ∼ c with
x ∈ C, c ∈ N, and ∼∈ {≤,≥, >, <}. We write x = c as shorthand for the clock constraint
x ≥ c ∧ x ≤ c. Let Φ(C) denote the set of clock constraints over C.

We refer to functions v ∈ RC
≥0 as clock valuations over C. A clock valuation v over a

set C of clocks satisfies a clock constraint of the form x ∼ c if v(x) ∼ c and v satisfies a
conjunction g ∧ h of two clock constraints g and h if it satisfies both g and h. Given a clock
constraint g and clock valuation v, we write v |= g if v satisfies g.

For a clock valuation v and δ ≥ 0, we let v + δ be the valuation defined by (v + δ)(x) =
v(x) + δ for all x ∈ C. For any valuation v and D ⊆ C, we define resetD(v) to be the
valuation agreeing with v for clocks in C \D and that assigns 0 to clocks in D. We denote
by 0C the zero valuation, assigning 0 to all clocks in C.

A timed automaton (TA) is a tuple (L, ℓinit, C, Σ, I, E) where L is a finite set of locations,
ℓinit ∈ L is an initial location, C a finite set of clocks containing a special clock γ which
keeps track of the total time elapsed, Σ a finite set of actions, I : L → Φ(C) an invariant
assignment function and E ⊆ L × Φ(C) × Σ × 2C\{γ} × L a finite edge relation. We only
consider deterministic timed automata, i.e., we assume that in any location ℓ, there are no
two different outgoing edges (ℓ, g1, a, D1, ℓ1) and (ℓ, g2, a, D2, ℓ2) sharing the same action
such that the conjunction g1∧g2 is satisfiable. For an edge (ℓ, g, a, D, ℓ′), the clock constraint
g is called the guard of the edge.

A TA A = (L, ℓinit, C, Σ, I, E) gives rise to an uncountable transition system T (A) =
(S, sinit, M,→) with the state space S = L × RC

≥0, the initial state sinit = (ℓinit, 0C), set of
transition system actions M = R≥0 × (Σ ∪ {⊥}) and the transition relation →⊆ S ×M × S

defined as follows: for any action a ∈ Σ and delay δ ≥ 0, we have that ((ℓ, v), (δ, a), (ℓ′, v′)) ∈

J. C. A. Main, M. Randour and J. Sproston 5

→ if and only if there is some edge (ℓ, g, a, D, ℓ′) ∈ E such that v + δ |= g, v′ = resetD(v + δ),
v + δ |= I(ℓ) and v′ |= I(ℓ′); for any delay δ ≥ 0, ((ℓ, v)(δ,⊥), (ℓ, v + δ)) ∈→ if v + δ |= I(ℓ).
Let us note that the satisfaction set of clock constraints is convex: it is described by a
conjunction of inequalities. Whenever v |= I(ℓ), the above condition v + δ |= I(ℓ) (the
invariant holds after the delay) is equivalent to requiring v + δ′ |= I(ℓ) for all 0 ≤ δ′ ≤ δ (the
invariant holds at each intermediate time step).

A move is any pair in R≥0 × (Σ ∪ {⊥}) (i.e., an action in the transition system). For
any move m = (δ, a) and states s, s′ ∈ S, we write s

m−→ s′ or s
δ,a−−→ s′ as shorthand for

(s, m, s′) ∈→. Moves of the form (δ,⊥) are called delay moves. For any move m = (δ, a),
we let delay(m) = δ. We say a move m is enabled in a state s if there is some s′ such that
s

m−→ s′. There is at most one successor per move in a state, as we do not allow two guards
on edges labeled by the same action to be simultaneously satisfied.

A path in a TA A is a finite or infinite sequence s0m0s1 . . . ∈ S(MS)∗ ∪ (SM)ω such that
for all j ∈ N, sj is a state of T (A) and sj

mj−−→ sj+1 is a transition in T (A). A path is initial
if s0 = sinit. For clarity, we write s0

m0−−→ s1
m1−−→ · · · instead of s0m0s1

A state s is said to be reachable from a state s′ if there exists a path from s′ to s. Similarly,
a set of states T ⊆ S is said to be reachable from some state s′ if there is a path from s′ to a
state in T . We say that a state is reachable if it is reachable from the initial state.

An infinite path π = (ℓ0, v0) m0−−→ (ℓ1, v1) m1−−→ . . . is time-divergent if the sequence
(vj(γ))j∈N is not bounded from above. A path that is not time-divergent is called time-
convergent; time-convergent paths are traditionally ignored in analysis of timed automata
[1, 2] as they model unrealistic behavior. This includes ignoring Zeno paths, which are
time-convergent paths along which infinitely many actions appear.

Regions. The transition system induced by a TA is infinite. Qualitative properties of TAs
can nonetheless be analyzed using the region abstraction [2], a quotient of the transition
system by an equivalence relation of finite index. Fix a TA A = (L, ℓinit, C, Σ, I, E). For
each clock x ∈ C, let cx denote the largest constant to which x is compared to in guards and
invariants of A.

We define an equivalence relation over clock valuations of C: we say that two clock
valuations v and v′ over C are clock-equivalent for A, denoted by v ≡A v′, if the following
properties are satisfied: (i) for all clocks x ∈ C, v(x) > cx if and only if v′(x) > cx; (ii)
for all clocks x ∈ {z ∈ C | v(z) ≤ cz}, ⌊v(x)⌋ = ⌊v′(x)⌋; (iii) for all clocks x, y ∈ {z ∈ C |
v(z) ≤ cz} ∪ {γ}, v(x) ∈ N if and only if v′(x) ∈ N, and frac(v(x)) ≤ frac(v(y)) if and only if
frac(v′(x)) ≤ frac(v′(y)). When A is clear from the context, we say that two valuations are
clock-equivalent rather than clock-equivalent for A.

An equivalence class for this relation is referred to as a clock region. We denote the
equivalence class for ≡A of a clock valuation v as [v]. We let Reg denote the set of all
clock regions. The number of clock regions is finite, and exponential in the number of
clocks and the encoding of the constants cx, x ∈ C. More precisely, we have the bound
|Reg| ≤ |C|! · 2|C| ·

∏
x∈C(2cx + 1).

We extend the equivalence defined above to states as well. We say that two states
s = (ℓ, v) and s′ = (ℓ′, v′) are state-equivalent, denoted s ≡A s′, whenever ℓ = ℓ′ and v ≡A v′.
An equivalence class for this relation is referred to as a state region. Given some state s ∈ S,
we write [s] for its equivalence class. We identify the set of state regions with the set L×Reg
and sometimes denote state regions as pairs (ℓ, R) ∈ L× Reg in the sequel.

The satisfaction of clock constraints that appear in A is uniform inside of a clock region.
For a clock region R ∈ Reg and a clock constraint g of A, we write R |= g to denote

6 Timed Games with Bounded Window Parity Objectives

that v |= g for some v ∈ R. This does not hold for arbitrary clock constraints, e.g., it
does not hold for clock constraints involving constants larger than those in A. The reset
operator also respects regions, in the sense that for any clock valuation v and D ⊆ C,
[resetD(v)] = {resetD(v′) | v′ ∈ [v]}. Let R, R′ be two clock regions. We say that R′ is a
successor region of R if for all valuations v ∈ R, there exists some delay δv ≥ 0 such that
v + δv ∈ R′.

We now have all of the notions required to define the region abstraction of T (A). The
region abstraction of T (A) is the finite transition system (L × Reg, [sinit], {τ},→′) where
L × Reg is the state space, elements of which are state regions, with the state region of
the initial state as its initial state, a unique move τ (we abstract the actions of the TA
away), and a transition relation →′ defined as follows. For any two state regions (ℓ, R),
(ℓ′, R′) ∈ L× Reg, (ℓ, R) τ−→

′
(ℓ′, R′) holds if and only if one of the two following conditions

hold: (i) there exists some edge (ℓ, g, a, D, ℓ′) ∈ E and some successor region Rsucc of R such
that Rsucc |= g ∧ I(ℓ), R′ = {resetD(v) | v ∈ Rsucc} and R′ |= I(ℓ′), or (ii) ℓ = ℓ′ and R′ is a
successor region of R such that R′ |= I(ℓ). These conditions respectively abstract transitions
that use edges and delay transitions in T (A).

Any (finite or infinite) path s0
m0−−→ s1

m1−−→ . . . of T (A) induces a path [s0] τ−→
′

[s1] τ−→
′
. . .

in the region abstraction. Conversely, for any path (ℓ0, R0) τ−→
′

(ℓ1, R1) τ−→
′

. . . and any
v0 ∈ R0, one can find a path of T (A) (ℓ0, v0) m0−−→ (ℓ1, v1) m1−−→ . . . such that vn ∈ Rn for
all n ∈ N. Due to this relation between paths, qualitative properties that depend only on
locations or regions can be verified using the region abstraction.

Priorities. A priority function is a function p : L→ {0, . . . , D− 1} with D ≤ |L|+ 1. We
use priority functions to express parity objectives. A K-dimensional priority function is
a function p : L → {0, . . . , D − 1}K which assigns vectors of priorities to locations. Given
a K-dimensional priority function p and a dimension k ∈ {1, . . . , K}, we write pk for the
priority function given by p on dimension k.

Timed games. We consider two player games played on TAs. We refer to the players as
player 1 (P1) for the system and player 2 (P2) for the environment. We use the notion of
timed automaton games of [23].

A timed (automaton) game (TG) is a tuple G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ, I, E)
is a TA and (Σ1, Σ2) is a partition of Σ. We refer to actions in Σi as Pi actions for i ∈ {1, 2}.

Recall that a move is a pair (δ, a) ∈ R≥0 × (Σ ∪ {⊥}). Let S denote the set of states of
T (A). In each state s = (ℓ, v) ∈ S, the moves available to P1 are the elements of the set
M1(s) where

M1(s) =
{

(δ, a) ∈ R≥0 × (Σ1 ∪ {⊥}) | ∃s′, s
δ,a−−→ s′}

contains moves with P1 actions and delay moves that are enabled in s. The set M2(s) is
defined analogously with P2 actions. We write M1 and M2 for the set of all moves of P1 and
P2 respectively.

At each state s along a play, both players simultaneously select a move m(1) ∈ M1(s)
and m(2) ∈ M2(s). Intuitively, the fastest player gets to act and in case of a tie, the
move is chosen non-deterministically. This is formalized by the joint destination function

J. C. A. Main, M. Randour and J. Sproston 7

JD : S ×M1 ×M2 → 2S , defined by

JD(s, m(1), m(2)) =

{s′ ∈ S | s m(1)

−−−→ s′} if delay(m(1)) < delay(m(2))

{s′ ∈ S | s m(2)

−−−→ s′} if delay(m(1)) > delay(m(2))

{s′ ∈ S | s m(i)

−−−→ s′, i = 1, 2} if delay(m(1)) = delay(m(2)).

For m(1) = (δ(1), a(1)) ∈ M1 and m(2) = (δ(2), a(2)) ∈ M2, we write delay(m(1), m(2)) =
min{δ(1), δ(2)} to denote the delay occurring when P1 and P2 play m(1) and m(2) respectively.

A play is defined similarly to an infinite path: a play is an infinite sequence of the form
s0(m(1)

0 , m
(2)
0)s1(m(1)

1 , m
(2)
1) . . . ∈ (S(M1 ×M2))ω where for all indices j ∈ N, m

(i)
j ∈Mi(sj)

for i ∈ {1, 2} and sj+1 ∈ JD(sj+1, m
(1)
j+1, m

(2)
j+1). A history is a finite prefix of a play ending

in a state. A play or history s0(m(1)
0 , m

(2)
0)s1 . . . is initial if s0 = sinit. For any history h =

s0(m(1)
0 , m

(2)
0) . . . (m(1)

n−1, m
(2)
n−1)sn, we set last(h) = sn. For a play π = s0(m(1)

0 , m
(2)
0)s1 . . .,

we write π|n = s0(m(1)
0 , m

(2)
0) . . . (m(1)

n−1, m
(2)
n−1)sn. Plays of G follow paths of A. For a play,

there may be several such paths: if at some point of the play both players use a move with
the same delay and successor state, either move can label the transition in a matching path.

Similarly to paths, a play π = (ℓ0, v0)(m(1)
0 , m

(2)
0) · · · is time-divergent if and only if

(vj(γ))j∈N is not bounded from above. Otherwise, we say a play is time-convergent. We
define the following sets: Plays(G) for the set of plays of G; Hist(G) for the set of histories of
G; Plays∞(G) for the set of time-divergent plays of G. We also write Plays(G, s) to denote
plays starting in state s of T (A).

We will deal with objectives that require properties in the limit. For this purpose, we intro-
duce a notation for suffixes of plays. For any n ∈ N and any play π = s0(m(1)

0 , m
(2)
0)s1 . . . ∈

Plays(G), we let πn→ = sn(m(1)
n , m

(2)
n)sn+1 . . . denote the suffix of π starting at index n.

Strategies. A strategy for Pi is a function describing which move a player should use based
on a history. Formally, a strategy for Pi is a function σi : Hist(G) → Mi such that for all
π ∈ Hist(G), σi(π) ∈ Mi(last(π)). This last condition requires that each move given by a
strategy be enabled in the last state of a play.

A play or history s0(m(1)
0 , m

(2)
0)s1 . . . is said to be consistent with a Pi-strategy σi

if for all indices j, m
(i)
j = σi(π|j). Given a Pi strategy σi, we define Outcomei(σi)

(resp. Outcomei(σi, s)) to be the set of plays (resp. set of plays starting in state s) con-
sistent with σi.

In general, strategies can exploit full knowledge of the past, and need not admit some
finite representation. In the sequel, we focus on a subclass of finite-memory strategies. A
strategy is a finite-memory strategy if it can be encoded by a finite Mealy machine, i.e., a
deterministic automaton with outputs. A Mealy machine (for a strategy of P1) is a tuple
M = (M,minit, αup, αmov) where M is a finite set of states, minit ∈ M is an initial state,
αup : M× S →M is the memory update function and αmov : M× S →M1 is the next-move
function.

Let M = (M,minit, αup, αmov) be a Mealy machine. We define the strategy induced
by M as follows. Let ε denote the empty word. We first define the iterated update
function α∗

up : S∗ → M inductively as α∗
up(ε) = minit and for any s0 . . . sn ∈ S∗, we let

α∗
up(s0 . . . sn) = αup(α∗

up(s0 . . . sn−1), sn). The strategy σ induced byM is defined by σ(h) =
αmov(α∗

up(s0 . . . sn−1), sn) for any history h = s0(m(1)
0 , m

(2)
0) . . . (m(1)

n−1, m
(2)
n−1)sn ∈ Hist(G).

A strategy σ is said to be finite-memory if it is induced by some Mealy machine.

8 Timed Games with Bounded Window Parity Objectives

We will exploit a subclass of finite-memory strategies that are well-behaved with respect
to regions. We say that some strategy σ is a finite-memory region strategy if it can be
encoded by a Mealy machine the updates of which depend only on the current region (rather
than the state itself) and such that, in a given memory state, the moves proposed in two state-
equivalent game states traverse the same state regions during the proposed delay and then
move to the same region. Formally, a strategy is a finite-memory region strategy it is induced
by some Mealy machine M = (M,minit, αup, αmov) where for any memory states m ∈M and
any two state-equivalent states s = (ℓ, v), s′ = (ℓ′, v′) ∈ S, αup(m, s) = αup(m, s′) and the
moves (δ, a) = αmov(m, s) and (δ′, a′) = αmov(m, s′) are such that a = a′, [v + δ] = [v′ + δ′]
and {[v + δmid] | 0 ≤ δmid ≤ δ} = {[v′ + δmid] | 0 ≤ δmid ≤ δ′}. We view the update function of
Mealy machines inducing finite-memory region strategies as functions αup : M×L×Reg→M.

Objectives. An objective represents the property we desire on paths of a TA or a goal of a
player in a TG. Formally, we define an objective as a set Ψ ⊆ Sω of infinite sequences of states.
An objective Ψ is a region objective if given two sequences of states s0s1 . . ., s′

0s′
1 . . . ∈ Sω

such that for all j ∈ N, sj ≡A s′
j , we have s0s1 . . . ∈ Ψ if and only if s′

0s′
1 . . . ∈ Ψ. Intuitively,

the satisfaction of a region objective depends only on the witnessed sequence of state regions.
An ω-regular region objective is a region objective recognized by some deterministic parity

automaton. A (total) deterministic parity automaton (DPA) is a tuple H = (Q, qinit, A, up, p),
where Q is a finite set of states, qinit ∈ Q is the initial state, A is a finite alphabet, up : Q×A→
Q is a total transition function and p : Q → {0, . . . , D − 1} is a priority function over the
states of the DPA.

Let w = a0a1 . . . ∈ Aω be an infinite word. The execution of H over w is the infinite
sequence of states q0q1 . . . ∈ Qω that starts in the initial state of H, i.e., q0 = qinit and
such that for all n ∈ N, qn+1 = up(qn, an), i.e., each step of the execution is performed by
reading a letter of the input word. An infinite word w ∈ Aω is accepted by H if the smallest
priority appearing infinitely often along the execution q0q1 . . . ∈ Qω over w is even, i.e. if
(lim infn→∞ p(qi)) mod 2 = 0. We denote by L(H) the set of words accepted by H.

We use DPAs to encode ω-regular objectives over state regions. A DPA H = (Q, qinit, L×
Reg, up, p) formally encodes the objective {s0s1 . . . ∈ Sω | [s0][s1] . . . ∈ L(H)}.

In the sequel, we use the following ω-regular region objectives in addition to the window
objectives studied in this work. The window objectives we consider later on are derived
from the parity objective. The parity objective for a one-dimensional priority function
p : L → {0, . . . , D − 1} requires that the smallest priority seen infinitely often is even.
Formally, we define Parity(p) = {(ℓ0, v0)(ℓ1, v1) . . . ∈ Sω | (lim infn→∞ p(ℓn)) mod 2 = 0}.
For hardness arguments, we rely on safety objectives. A safety objective, defined with respect
to a set of locations F ⊆ L, requires that no location in F be visited. Formally, the safety
objective for F is defined as Safe(F) = {(ℓ0, v0)(ℓ1, v1) . . . ∈ Sω | ∀n, ℓn /∈ F}.

For the sake of brevity, given some path π = s0m0s1 . . . of a TA or a play of a TG
π = s0(m(1)

0 , m
(2)
0)s1 . . . and an objective Ψ ⊆ Sω , we write π ∈ Ψ to mean that the sequence

of states s0s1 . . . underlying π is in Ψ, and say that π satisfies the objective Ψ.

Winning conditions. In games, we distinguish objectives and winning conditions. We adopt
the definition of [23]. Let Ψ be an objective. It is desirable to have victory be achieved
in a physically meaningful way: for example, it is unrealistic to have a safety objective be
achieved by stopping time. This motivates a restriction to time-divergent plays. However,
this requires P1 to force the divergence of plays, which is not reasonable, as P2 can stall
using delays with zero time units. Thus we also declare winning time-convergent plays where

J. C. A. Main, M. Randour and J. Sproston 9

P1 is blameless. Let Blameless1 denote the set of P1-blameless plays, which we define in the
following way.

Let π = s0(m(1)
0 , m

(2)
0)s1 . . . be a play or a history. We say P1 is not responsible (or

not to be blamed) for the transition at step k in π if either δ
(2)
k < δ

(1)
k (P2 is faster) or

δ
(1)
k = δ

(2)
k and sk

δ
(1)
k

,a
(1)
k−−−−−→ sk+1 does not hold in T (A) (P2’s move was selected and did not

have the same target state as P1’s) where m
(i)
k = (δ(i)

k , a
(i)
k) for i ∈ {1, 2}. The set Blameless1

is formally defined as the set of infinite plays π such that there is some j such that for all
k ≥ j, P1 is not responsible for the transition at step k in π.

Given an objective Ψ, we set the winning condition WC1(Ψ) for P1 to be the set of plays

WC1(Ψ) = (Plays(G, Ψ) ∩ Plays∞(G)) ∪ (Blameless1 \ Plays∞(G)),

where Plays(G, Ψ) = {π ∈ Plays(G) | π ∈ Ψ}. Winning conditions for P2 are defined by
exchanging the roles of the players in the former definition.

We consider that the two players are adversaries and have opposite objectives, Ψ and
Sω \Ψ. Let us note that WC1(Ψ) ∪WC2(Sω \Ψ) ̸= Plays(G). While this union subsumes all
time-divergent plays and time-convergent plays that are blameless for one player, it omits
the time-convergent plays that are blameless for neither player.

A winning strategy for Pi for an objective Ψ from a state s0 is a strategy σi such that
Outcomei(σi, s0) ⊆WCi(Ψ). We say that a state is winning for P1 for an objective Ψ if P1
has a winning strategy from this state.

Winning for ω-regular region objectives. Let us consider a DPA H = (Q, qinit, L×Reg, up, p)
with p : Q→ {0, . . . , D− 1} specifying an ω-regular region objective in the TG G. Let D′ = D
if D is odd and D′ = D− 1 otherwise. The set of winning states for the objective L(H) is a
union of state regions and is computable in exponential time [24, 23].

▶ Theorem 1. The set of winning states of P1 in the TG G for the objective given by H is
a union of state regions and is computable in time O((4 · |L| · |Reg| · |Q| · D)D′+2).

Furthermore, in TGs with ω-regular objectives, finite-memory region strategies suffice for
winning. We can even obtain winning finite-memory region strategies for which all delays
are bounded by some constant. Intuitively, if one replaces moves of P1 of a winning strategy
by delay moves with durations that are bounded by some constant, one still has a winning
strategy. The broad justification is any outcome of the modified finite-memory region strategy
shares its sequence of states with an outcome of the original strategy obtained by having P2
interrupt the moves of P1 that have a large delay. We therefore have the following, which is
elaborated upon in Appendix A.

▶ Theorem 2. There exists a finite-memory region strategy with 2 · |Q| · D states proposing
delays of at most 1 that is winning for the objective specified by H from any state that is
winning for P1.

Decision problems. We consider two different problems for an objective Ψ. The first is the
verification problem for Ψ, which asks given a TA whether all time-divergent initial paths
satisfy the objective. Second is the realizability problem for Ψ, which asks whether in a TG,
P1 has a winning strategy from the initial state.

10 Timed Games with Bounded Window Parity Objectives

3 Bounded window objectives

The main focus of this paper is a variant of timed window parity objectives called bounded
timed window parity objectives. These are defined from the fixed timed window parity
objectives studied in [30], where these are referred to as timed window parity objectives.
The definitions of the different variants of timed window parity objectives are provided in
Section 3.1. Section 3.2 presents the relationships between the different variants and the
original parity objective. Finally, Section 3.3 introduces a technical result used to simplify
paths and plays witnessing the violation of a bounded window objective.

For this entire section, we fix a TG G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E)
and a one-dimensional priority function p : L→ {0, . . . , D− 1}.

3.1 Objective definitions
Fixed objectives. Fixed window objectives depend on a fixed time bound λ ∈ N. The
first building block for the definition of window objectives is the notion of good window.
A good window for the bound λ is intuitively a time interval of length strictly less than λ

for which the smallest priority of the locations visited in the interval is even. We define
the timed good window (parity) objective as the set of sequences of states that have a good
window at their start. Formally, we define TGW(p, λ) =

{
(ℓ0, v0)(ℓ1, v1) . . . ∈ Sω | ∃n ∈

N, min0≤j≤n p(ℓj) mod 2 = 0 and vn(γ)− v0(γ) < λ
}

.
The direct fixed timed window (parity) objective for the bound λ, denoted by DFTW(p, λ),

requires that the timed good window objective is satisfied by all suffixes of a sequence.
Formally, we define DFTW(p, λ) as the set {s0s1 . . . ∈ Sω | ∀n ∈ N, snsn+1 . . . ∈ TGW(p, λ)}.

Unlike the parity objective, DFTW(p, λ) is not prefix-independent. Therefore, a prefix-
independent variant of the direct fixed timed window objective, the fixed timed window
(parity) objective FTW(p, λ), was also studied in [30]. Formally, we define FTW(p, λ) =
{s0s1 . . . ∈ Sω | ∃n ∈ N, snsn+1 . . . ∈ DFTW(p, λ)}.

Bounded objectives. A sequence of states satisfies the (respectively direct) bounded timed
window objective if there exists a time bound λ for which the sequence satisfies the (respec-
tively direct) fixed timed window objective. Unlike the fixed case, this bound depends on
the sequence of states, and need not be uniform, e.g., among all sequences of states induced
by time-divergent paths of a TA or among all sequences of states induced by time-divergent
outcomes of a strategy in a TG.

We formally define the (respectively direct) bounded timed window (parity) objective
BTW(p) (respectively DBTW(p)) as the set BTW(p) = {s0s1 . . . ∈ Sω | ∃λ ∈ N, s0s1 . . . ∈
FTW(p, λ)} (respectively DBTW(p) = {s0s1 . . . ∈ Sω | ∃λ ∈ N, s0s1 . . . ∈ DFTW(p, λ)}).
The objective BTW(p) is a prefix-independent variant of DBTW(p).

In the sequel, to distinguish the prefix-independent variants from direct objectives, we may
refer to the fixed timed window or bounded timed window objectives as indirect objectives.

Multi-objective extensions. In addition to the direct and indirect bounded objectives, we
will also study some of their multi-objective extensions. More precisely, we assume for these
definitions that p is a multi-dimensional priority function, i.e., p : L→ {0, . . . , D− 1}K, and
define a multi-dimensional objective as the conjunction of the objectives derived from the
component functions p1, . . . , pK.

Multi-dimensional extensions are referred to as generalized objectives. Formally, in the
fixed case, for a bound λ ∈ N, we define the generalized direct fixed timed window objective

J. C. A. Main, M. Randour and J. Sproston 11

as GDFTW(p, λ) =
⋂

1≤k≤K DFTW(pk, λ) and the generalized fixed timed window objective
as GFTW(p, λ) =

⋂
1≤k≤K FTW(pk, λ). In the bounded case, we define the generalized direct

bounded timed window objective as GDBTW(p) =
⋂

1≤k≤K DBTW(pk) and the generalized
bounded timed window objective as GBTW(p) =

⋂
1≤k≤K BTW(pk).

3.2 Relationships between objectives
We discuss the relationships between the different timed window parity objectives and the
parity objective in this section. We discuss both inclusions and differences between the
different objectives.

The inclusions are induced by the fact that a direct objective is more restrictive than
its prefix-independent counterpart, and similarly, by the fact that a fixed objective is more
restrictive than its bounded counterpart. Parity objectives, on the other hand, are less
restrictive than any of the timed window objectives, as they require no time-related aspect
to hold.

▶ Lemma 3. The following inclusions hold for any λ ∈ N:
DFTW(p, λ) ⊆ FTW(p, λ) ⊆ BTW(p) ⊆ Parity(p) and
DFTW(p, λ) ⊆ DBTW(p) ⊆ BTW(p) ⊆ Parity(p).

Proof. We only argue that BTW(p) ⊆ Parity(p), as all other inclusions are straightforward.
Let π = s0s1 . . . ∈ BTW(p). It follows that π has some suffix π′ = snsn+1 . . . such that
π′ ∈ DFTW(p, λ) for some λ ∈ N. Every suffix of π′ satisfies TGW(p, λ). This implies that
any odd priority in π′ is followed by a smaller even priority. It follows that the smallest
priority appearing infinitely often in π is even, as there are finitely many priorities. ◀

It can be shown that in some TAs, these inclusions may be strict. In other words, the
relations presented in Lemma 3 are the most general relationships for timed window parity
objectives. We use the TA used to show that fixed objectives are a strict refinement of parity
objectives in [30] to exemplify this.

▶ Lemma 4. There exists a TA in which all time-divergent paths satisfy the parity objective,
all of the inclusions of Lemma 3 are strict and in which FTW(p, λ) ⊈ DBTW(p) and
DBTW(p) ⊈ FTW(p, λ) hold for any value of λ.

Proof. Consider the TA B depicted in Figure 1 and let pB denote its priority function. It is
easy to see that all time-divergent paths satisfy the parity objective: if the TA remains in
location ℓ1 after some point, letting time diverge, the only priority seen infinitely often is 2;
if location ℓ2 is visited infinitely often, the smallest priority seen infinitely often is 0.

We will only consider sequences of states induced by initial paths of B in the following
arguments. We denote states by triples (ℓ, v, v′) where ℓ ∈ {ℓ0, ℓ1, ℓ2} and v and v′ respectively
refer to the valuation of x and of γ. Let λ ∈ N.

Let us first show that DFTW(p, λ) ⊊ FTW(p, λ), DBTW(pB) ⊊ BTW(pB) and FTW(p, λ) ⊈
DBTW(pB) hold. Due to the inclusions of Lemma 3, it suffices to provide some sequence
of states in FTW(pB, λ) \ DBTW(pB) to obtain these relations. For example, consider the
sequence of states (ℓ0, 0, 0)(ℓ1, 1, 1)(ℓ1, 2, 2) . . . obtained by using action a in ℓ0 after 1 time
unit, and then letting time diverge by means of delay moves. The suffix (ℓ1, 1, 1)(ℓ1, 2, 2) . . .

of this sequence satisfies DFTW(pB, λ): the only priority that appears in this suffix is even.
Therefore the sequence (ℓ0, 0, 0)(ℓ1, 1, 1)(ℓ1, 2, 2) . . . must satisfy FTW(pB, λ). However, this
sequence does not satisfy DBTW(pB) nor DFTW(pB, λ); no even priority smaller than 1 is
ever seen, therefore there cannot be any good window at the start of the play.

12 Timed Games with Bounded Window Parity Objectives

ℓ0
x ≤ 1

1

ℓ1
true

2

ℓ2
x ≤ 1

0

(true, a,∅) (true, a, {x})

(true, a, {x})

Figure 1 Timed automaton B. Edges are labeled with triples guard-action-resets. Priorities are
beneath locations. The incoming arrow with no origin indicates the initial location.

Let us now prove that DFTW(pB, λ) ⊊ DBTW(pB), FTW(pB, λ) ⊊ BTW(pB) and
DBTW(pB) ⊈ FTW(pB, λ) hold. It suffices to show that DBTW(pB) \ FTW(pB, λ) ̸= ∅.
We provide a sequence satisfying DFTW(pB, λ+1) ⊆ DBTW(pB) but not FTW(pB, λ). For in-
stance, consider the sequence of states (ℓ0, 0, 0)(ℓ1, 0, 0)(ℓ2, 0, λ)(ℓ0, 0, λ)(ℓ1, 0, λ)(ℓ2, 0, 2λ) . . .

obtained by repeatedly using action a with a delay of 0 in ℓ0, then action a with a delay
of λ in ℓ1 and finally action a in ℓ2 with a delay of 0. The timed good window objective
TGW(p, λ + 1) is satisfied by every suffix of this sequence; there is a delay of λ between
an occurrence of the priority 1 and the smaller even priority 0. Therefore, the objective
DBTW(pB) is satisfied. However, the fixed objective FTW(pB, λ) is not satisfied; any suffix
of this sequence starting in location ℓ0 does not satisfy the timed good window objective
TGW(pB, λ) due to the delay spent in location ℓ1. The relations DFTW(pB, λ) ⊊ DBTW(pB)
and FTW(pB, λ) ⊊ BTW(pB) follow from this example and inclusions of Lemma 3.

It remains to show that BTW(pB) ⊊ Parity(pB) holds. Initialize n to 0. We consider the
sequence of states induced by the path obtained by sequentially using the moves (0, a) in
location ℓ0, (n, a) in location ℓ1 and (0, a) in location ℓ2, increasing n and then repeating the
procedure. This sequence of states satisfies the parity objective; the smallest priority seen
infinitely often is 0. However, it does not satisfy BTW(p). At each step of the construction of
the path, a delay of n takes place between priority 1 in ℓ0 and priority 0 in ℓ2. No matter the
chosen suffix of the sequence of states and the chosen bound λ, the objective DFTW(pB, λ)
cannot be satisfied, therefore the objective BTW(pB) is not satisfied. ◀

▶ Remark 5. In the location ℓ1 of the previous TA, the invariant true allows us to wait for
an arbitrary amount of time in ℓ1. However, this aspect of the TA is not crucial to illustrate
that the inclusions of Lemma 3 are strict.

It is possible to obtain an example TA in which the claims of Lemma 4 hold and such
that invariants prevent time from diverging without infinitely often traversing edges. This
can be accomplished by a straightforward adaptation of the TA B of Figure 1; it suffices to
change the invariant of ℓ1 to x ≤ 1 and add an edge from ℓ1 to itself that resets x. Such an
alteration does not change the behavior of the TA.

The proof of Lemma 4 illustrates that window parity objectives, in general, are a strict
strengthening of parity objectives. Furthermore, it shows that, in general, there is no uniform
bound λ such that all paths satisfying a direct or indirect bounded timed window objective
satisfy the corresponding fixed objective for λ. However, we show in Section 4 that if all
time-divergent paths of a TA satisfy a (respectively direct) bounded timed window objective,
then one can find a bound λ such that all paths satisfy the (respectively direct) fixed timed
window objective for λ (Corollaries 8 and 10). Similarly, in TGs, P1 has a winning strategy
for a bounded objective if and only if they have a winning strategy for some corresponding
fixed objective (Theorems 17 and 22). In the sequel, we do not consider algorithms based
on reductions to the direct case; the bounds used to reduce bounded objectives to fixed

J. C. A. Main, M. Randour and J. Sproston 13

objective may be large and induce an otherwise avoidable computational cost. This justifies
alternative approaches.

3.3 Simplifying paths violating window objectives
In this section, we provide a technical result used for the verification and realizability of
bounded timed window objectives. First, we introduce some terminology. We say a path
π = s0

m0−−→ s1 . . . of A (respectively, a play π = s0(m(1)
0 , m

(2)
0)s1 . . . of G) eventually follows

the cycle (ℓ0, R0) τ−→ . . .
τ−→ (ℓn, Rn) of the region abstraction if there exists i ∈ N such that

for all j ∈ {i, i + 1, . . . , i + n− 1} and all k ∈ N, [sj+n·k] = (ℓj , Rj). We say that a cycle of
the region abstraction is time-divergent if all paths of the TA (or, equivalently, all plays of
the TG) that eventually follow this cycle are time-divergent.

The main result of this section allows us to extract time-divergent cycles in the region
abstraction from a path or play violating a timed good window objective for a sufficiently
large bound. This result can then be applied to any path or play that violates the direct or
indirect bounded timed window objective; it follows from the definition that, for any bound
λ, there is a suffix violating the timed good window objective for λ.

For the sake of generality, we abstract whether we consider paths or plays: we state the
upcoming result in terms of sequences of states. In practice, only the actions are abstracted
away; delays between states are encoded by the global clock γ. We say that for any sequence
of states s0s1 . . . ∈ Sω, the delays are bounded by B ∈ N if vn+1(γ) − vn(γ) ≤ B for all
n ∈ N. We also extend this terminology to paths and plays via their induced sequence of
states.

The rough idea of the following lemma is as follows: assuming that delays are bounded
along a sequence of states, if the timed good window objective is violated for some large
enough bound λ ∈ N, it is possible to find within λ time units from the start of the sequence
a time-divergent cycle in the region abstraction.

In the context of TGs, we will seek to apply the result to construct an outcome of a
given finite-memory region strategy violating a window objective. A deterministic finite
automaton (DFA) over state regions is a tuple (M,minit, αup) where M is a finite set of states,
minit ∈M and αup : M× (L× Reg)→M. Given a Mealy machine M = (M,minit, αup, αmov)
encoding a finite-memory region strategy, we refer to (M,minit, αup) as the DFA underlying
M. Showing that we can find cycles in the region abstraction gives us no information on the
finite-memory strategy. Therefore, we instead require the stronger claim that we can find a
cycle in the product of the region abstraction of A and the underlying DFA within the first
λ time units of the sequence of states.

▶ Lemma 6. Let (M,minit, αup) be a DFA. Let π = s0s1s2 . . . ∈ Sω be a sequence of
states induced by some time-divergent path or play in which delays are bounded by 1, and
m0m1m2 . . . ∈Mω be the sequence inductively defined by m0 = minit and mk+1 = αup(mk, [sk]).
Let λ = 2 · |L| · |Reg| · |M|+ 3. If π /∈ TGW(p, λ), then there exist some indices i < j such
that ([si],mi) = ([sj],mj), the global clock γ passes some integer bound between indices i and
j, and strictly less than λ time units elapse before reaching sj from s0.

Proof. Assume that π /∈ TGW(p, λ). For any j ∈ N, let vj denote the clock valuation of
sj . Because we assume that π is induced by a path or play, the sequence (vj(γ))j∈N is
non-decreasing. It follows that the set {j ∈ N | vj(γ) − v0(γ) < λ} is an interval. Let j⋆

denote the greatest element of this interval; j⋆ is well-defined because we assume that π

is induced by some time-divergent path or play. We let h = s0 . . . sj⋆ be the prefix of π in

14 Timed Games with Bounded Window Parity Objectives

which strictly less than λ time units have elapsed. Observe that because delays between
states are at most of 1 and vj⋆+1(γ)− v0(γ) ≥ λ, it follows that vj⋆(γ)− v0(γ) ≥ λ− 1.

We find the sought indices i and j by progressively checking each index up to j⋆ by
induction. We mark elements ([si],mi) ∈ (L × Reg) ×M as unsuitable if at step i of our
search there is no j > i such that ([si],mi) = ([sj],mj) and ⌊vi(γ)⌋ < ⌊vj(γ)⌋ (i.e., the global
clock passes a new integer bound). If at any step we do not mark the current region as
unsuitable, we have found the sought indices i and j and stop the search procedure.

In the remainder of this proof, we show that the procedure must terminate by finding a
suitable pair of indices. By contradiction, we assume that all elements of (L × Reg) ×M

appearing in ([s0],m0) . . . ([sj⋆],mj⋆) are marked as unsuitable, i.e., the search of a suitable
pair fails.

Any ([s],m) ∈ (L× Reg)×M that is marked as unsuitable during the search procedure
can only appear again at most one time unit after its first appearance, otherwise it would
not have been marked as unsuitable. This implies that whenever a pair ([s],m) is marked
as unsuitable, there is some point fixed in time from its first appearance after which it no
longer appears in h, i.e., there is some δ ∈ R≥0 (depending on the smallest index for which
we witness the pair) such that for all i ≤ j⋆, vi(γ) ≥ v0(γ) + δ implies ([si],mi) ̸= ([s],m),
in which case we say that the pair ([s],m) is eliminated by (as shorthand for can no longer
appear from) time δ. We give lower bounds on the number of eliminated pairs depending on
the time that has passed. We reach a contradiction by showing that we run out of pairs in
(L× Reg)×M before we reach j⋆.

We claim that at least n pairs are eliminated by time 2n− 1. We prove this by induction.
The base case is handled by considering the first elements of the sequence: (s0,m0) is
eliminated by time 1. Let k1 ≤ j⋆ denote the latest index such that ([s0],m0) = ([sk1],mk1).
This index occurs at most one time unit after index 0.

Now assume inductively that we have shown that (at least) n distinct pairs ([sk1],mk1),
. . . , ([skn

],mkn
) (where ki ≤ j⋆ denotes the index of the last occurrence of a pair) are

eliminated by time 2n− 1. It follows that ([skn+1],mkn+1) is eliminated at most 2 time units
after the elimination of ([skn+1],mkn+1): there is at most 1 time unit between indices kn and
kn + 1, and at most 1 time unit between the first and last occurrence of ([skn+1],mkn+1).
This shows that there are n + 1 eliminated pairs by time 2n + 1.

It follows that all elements of (L× Reg)×M are eliminated at time λ− 2, i.e., there are
no more pairs that can appear in h after this time. However, we have vj⋆(γ)− v0(γ) ≥ λ− 1,
i.e., it is absurd to have had ([sj⋆],mj⋆) eliminated. ◀

The main interest of the lemma is to construct witness paths or plays that violate the
direct bounded timed window objective. By following the sequence of states up to index i

and then looping in the cycle formed by the sequence of states from i to index j (modulo
clock-equivalence), one obtains a path along which, at all steps, the smallest priority seen
from the start is odd, i.e., such that no good window can ever be witnessed from the start.

4 Verification of timed automata

In this section, we are concerned with the verification of direct and indirect bounded timed
window objectives in TAs. For both objectives, we show the equivalence of the following
assertions: (1) there exists a time-divergent witness to the violation of a (direct) bounded
objective, (2) there exists a time-divergent witness to the violation of the matching (direct)
fixed objective for a sufficiently large bound, and (3) there exists a set of states (regions)
reachable from one another verifying some properties that we describe later in this section.

J. C. A. Main, M. Randour and J. Sproston 15

Nondeterministic algorithms for the verification of the objectives are obtained by guessing
appropriate regions and checking that they are reachable from one another.

The outline of the section is as follows. Section 4.1 describes criteria attesting to the
existence of time-divergent paths violating the direct and indirect bounded timed window
objectives in timed automata. Verification algorithms are described in Section 4.2.

We fix for this entire section a TA A = (L, ℓinit, C, Σ, I, E) and a priority function
p : L→ {0, . . . , D− 1}.

4.1 Equivalent conditions to the violation of bounded objectives
In this section, we provide conditions equivalent to the existence of paths violating the direct
and indirect bounded timed window objectives. We are also concerned with the question of
uniformity of time bounds; we show that in a timed automaton in which all time-divergent
paths satisfy a direct or indirect bounded timed window objective, there exists a bound for
which a direct or indirect fixed objective is satisfied.

4.1.1 Direct bounded timed window objectives
A path satisfies the direct bounded timed window objective if at all steps, there is a good
window and the size of these good windows is bounded overall. Therefore, a path can violate
this objective in one of two ways. First, it may be the case that at some step, no good
window of any size is witnessed. Second, it may be the case that good windows are witnessed
at all steps, but that there is no bound on the size of these windows.

We show that whenever some time-divergent path violates the direct bounded timed
window objective, there is always some witness that falls in the first category. Furthermore,
a witness that takes the form of a path that eventually follows a time-divergent cycle of the
region abstraction can be chosen.

Given a time-divergent path π violating the direct bounded timed window objective,
the rough idea to derive a suitable witness is the following. We consider some state s1
along π from which there is no good window for the window size λ in the statement of
Lemma 6 (assuming that the DFA has only one state). We obtain through this lemma two
region-equivalent states s2 and s′

2 appearing in π within λ time units of s1, such that in
the path fragment of π between s2 and s′

2, the global clock γ passes a new integer value.
As explained in Section 3.3, we can construct a path violating the direct bounded window
objective by following π up to s2 and then following a path that repeats the time-divergent
cycle in the region abstraction induced by the sequence of states between s2 and s′

2 in π.
The states described in the construction above can be characterized as follows. First,

there must be a finite path from the state s1 to the state s2 in which the smallest priority in
all prefixes is odd. Second, we require that [s2] be reachable from s2 without witnessing a
good window from s1 and also in such a way that the global clock γ passes a new integer
bound. The latter property can also be translated to reachability requirements; we require
that, on the sought path from s2 to its state region, there be states s3 and s4 such that the
valuation of γ is integral in only one of the two states s3 and s4.

We show hereunder that the existence of a time-divergent path violating the direct
bounded timed window objective is equivalent to the existence of states satisfying the
properties above. Because we need only consider a state from which there is no good window
for the bound λ of Lemma 6, these two conditions are also equivalent to the existence of a
time-divergent path violating DFTW(p, λ).

▶ Theorem 7. The following three statements are equivalent.

16 Timed Games with Bounded Window Parity Objectives

1. There exists a time-divergent initial path π /∈ DBTW(p).
2. There exists a time-divergent initial path π /∈ DFTW(p, 2 · |L| · |Reg|+ 3).
3. There exist reachable states s1, s2, s′

2, s3 and s4 such that s2 ≡A s′
2, the valuation of γ

is integral in only one of the two states s3 and s4, and there is a finite path h from s1
to s′

2 passing through s2, s3 and s4 in order such that the smallest priority in all of the
prefixes of h is odd.

Proof. Let λ = 2 · |L| · |Reg|+ 3. This λ is the bound of Lemma 6 assuming a deterministic
finite automaton with a single state. The implication (1 =⇒ 2) follows directly from the
inclusion DFTW(p, λ) ⊆ DBTW(p).

We move on to the proof of (2 =⇒ 3). Let us assume there is some time-divergent
initial path π /∈ DFTW(p, λ). We may assume without loss of generality that delays in π are
bounded by 1: moves (δ, a) with large delays can be simulated by using ⌊δ⌋ moves of the
form (1,⊥) followed by the move (frac(δ), a). It can easily be shown that the objective is
still violated following this modification.

Let s1 be some state of π such that some suffix π′ of π starting in s1 violates the timed
good window objective TGW(p, λ). It follows from Lemma 6 that there are two region-
equivalent states s2 and s′

2 in π′ within the first λ time units such that, in π′, the global
clock passes an integer bound between the two states.

One can take s3 = s2. If in s2, the valuation of γ is an integer (resp. not an integer),
take s4 to be any state in the path from s2 to s′

2 in π′ that has a non-integral (resp. integral)
valuation. If no such state exists, it suffices to split a move (δ, a) in π′ into two well-chosen
moves (δ1,⊥) and (δ2, a) where δ = δ1 + δ2 and the global clock γ is not equal to an integer
(respectively is equal to an integer) after δ1 time units elapse. It follows from π′ /∈ TGW(p, λ)
that s1, s2, s′

2, s3 and s4 satisfy the requirement of the theorem. This ends this direction of
the proof.

Finally, let us establish the implication (3 =⇒ 1). Assume now that we have the states
s1, s2, s′

2, s3, s4 and h satisfying the properties in the statement of the theorem. Let h′

denote the suffix of h between states s2 and s′
2. We argue that any initial path π obtained

by reaching s1 from sinit (by any means), then following h up to s2, and then following the
cycle in the region abstraction induced by h′ is time-divergent and violates DBTW(p). Fix
one such path π and let π′ denote its suffix starting from s1.

First, let us argue the time-divergence of π. The path π passes through states that are
equivalent to s3 and to s4 infinitely often. In other words, the global clock γ is infinitely
often an integer, and infinitely often not an integer. It follows from the fact that γ cannot
be reset that it must pass infinitely many integer bounds, i.e., π is time-divergent.

Second, let us move on to showing that π /∈ DBTW(p). It suffices to show that no matter
the bound λ ∈ N, the objective TGW(p, λ) is violated by π′. This can be established by
showing that in any prefix of π′, the smallest priority that occurs is odd. For any prefix of
π′ that is a prefix of h, this property follows from our hypothesis on h. For any subsequent
prefix, no new priorities are introduced as we repeat a cycle in the region abstraction following
the suffix h′ of h. This shows that π /∈ DBTW(p) and ends the proof of this implication.

◀

In light of Theorem 7, we directly obtain the following corollary.

▶ Corollary 8. Let λ = 2 · |L| · |Reg|+ 3. All time-divergent paths of A satisfy DBTW(p) if
and only if all time-divergent paths of A satisfy DFTW(p, λ).

Even though the corollary above suggests that we can reduce verification of bounded
objectives to verification of fixed objectives, the verification of fixed objectives requires time

J. C. A. Main, M. Randour and J. Sproston 17

polynomial in the supplied time bound. Intuitively, one must explore the region abstraction
of a TA derived from A in which an additional clock z /∈ C is introduced and increases up to
the bound of the objective. Given that the bound provided by Lemma 6 is large, we develop
approaches that avoid the cost incurred by this reduction.

4.1.2 Bounded timed window objective
We now move on to the bounded timed window objective. In this case, time-divergent paths
that eventually repeat a cycle of the region abstraction no longer suffice as witnesses to the
violation of the objective. In the direct case, the finite path preceding the cycle mattered in
the violation, e.g., if an odd priority smaller than all those of the cycle appeared along this
path. However, in such paths, only the cycle itself would matter by prefix-independence for
the indirect objective.

Lemma 4 asserts the existence of a TA in which all time-divergent paths satisfy the parity
objective, but some violate the bounded timed window objective. This implies that even if
all time-divergent cycles in the region abstraction have an even smallest priority, this does
not ensure the satisfaction of the bounded timed window objective. It follows that the form
of witnesses is more complex in this case.

Nonetheless, witnesses can be always be found with a recursive structure. Assume that
some time-divergent path violates the bounded timed window objective. Then there is a
another violating path operating in stages labeled by natural numbers n ∈ N, with each stage
divided in two parts. In the first part of stage n, we visit some well-chosen fixed state region
[s] from which there is a time-divergent path that violates the direct bounded objective.
Once a state belonging to such a region is reached, we can follow a time-divergent path
violating the direct objective that eventually follows a cycle in the region abstraction for (at
least) n time units, before moving on to stage n + 1.

In the direct case, Theorem 7 essentially states that one can find a witness to the violation
of the objective if and only if there exists reachable states s1, s2 and s′

2 such that s2 ≡A s′
2,

there is a finite path h from s1 to s′
2 passing through s2 such that the smallest priority in

any prefix of h is odd and an integer bound is passed by the global clock between s2 and s′
2

in h. The characterization in the prefix-independent case is only slightly stronger: we only
require, in addition to the above, that [s1] be reachable from s2, without any constraints on
the path between these two states. Intuitively, we return to [s1] whenever a stage has ended.
One such state is easy to find: there are finitely many regions and infinitely many suffixes of
the path from which there are no good windows for some sufficiently large bound, therefore
some region must repeat.

We formalize our characterization below. Similarly to the direct case, one can also show
that the existence of a time divergent path violating BTW(p) is equivalent to the existence
of a time-divergent path violating FTW(p, λ) for the bound λ of Lemma 6.

▶ Theorem 9. The following three statements are equivalent.
1. There exists a time-divergent initial path π /∈ BTW(p).
2. There exists a time-divergent initial path π /∈ FTW(p, 2 · |L| · |Reg|+ 3).
3. There exist reachable states s1, s2, s′

2, s3 and s4 such that s2 ≡A s′
2, the valuation of γ is

integral in only of the two states s3 and s4, there is a finite path h from s1 to s′
2 passing

through s2, s3 and s4 (in order) such that the smallest priority in all of the prefixes of h

is odd, and the region [s1] is reachable from s′
2.

Proof. Let λ = 2 · |L| · |Reg|+ 3 be the bound of Lemma 6 assuming a deterministic finite
automaton with a single state. The implication (1 =⇒ 2) follows directly from the inclusion

18 Timed Games with Bounded Window Parity Objectives

FTW(p, λ) ⊆ BTW(p).
To establish the implication (2 =⇒ 3), we explain how to adapt the proof of Theorem 7

to derive the five states from a time-divergent initial path π /∈ FTW(p, λ). Let us assume
that there is some time-divergent initial path π /∈ FTW(p, λ). In particular, π /∈ DFTW(p, λ).
It is shown in the proof of Theorem 7 that by taking any state s1 in π such that some suffix
π′ of π starting in s1 violates the timed good window objective TGW(p, λ), we can find the
sought-after states s2, s′

2, s3 and s4, without the requirement that [s1] be reachable from s′
2.

To ensure that [s1] is reachable from a matching s′
2, we choose a state s1 subject to some

constraints. We show that there must be some state s1 in π such that some suffix π′ starting
in s1 satisfies π′ /∈ TGW(p, λ) and such that there are states equivalent to s1 infinitely often
in π′. Because the region [s1] occurs infinitely often along π, there is an occurrence after the
appearance of s′

2. This makes one such s1 a good choice. The proof of existence of one such
s1 follows.

Let I = {i ∈ N | πi→ /∈ TGW(p, λ)}. The set I must be infinite, otherwise there would be
some j ∈ N such that for all i ≥ j, πi→ ∈ TGW(p, λ), i.e., πj→ ∈ DFTW(p, λ), which would
imply π ∈ FTW(p, λ). Because I is infinite and there are finitely many state regions, one can
find a state s1 in π indexed by an element in I such that its state region is visited infinitely
often along π. This ends the proof of this implication.

Let us now move on to the implication (3 =⇒ 1). Assume the existence of states s1, s2,
s′

2, s3 and s4 subject to the constraints above. We construct a time-divergent initial path
π /∈ BTW(p) inductively. We denote by πn the path constructed at step n of the induction.
We let π0 be any finite path to s1 from sinit. Let us now assume that we are at induction
step n ≥ 1, and by induction that the last state of πn−1 is in [s1]. We split the counterpart
in the region abstraction of the path from s1 through s2, s3, s4 to s′

2 given by our hypothesis
into two parts: hReg for the part up to [s2] (not included) and h′

Reg for the remaining cycle
from [s2] to itself. We extend πn−1 by appending to it some path in A following the path
hReg(h′

Reg)n+1 in the region abstraction, and then any path from [s2] back to [s1], so that we
can continue the inductive construction.

The path π obtained through the inductive construction above is time-divergent; the
global clock, which cannot be reset, alternates between taking an integer value and not
taking an integer value infinitely often, therefore its valuation must diverge. We now argue
that π violates BTW(p), i.e., we argue that for all suffixes of π, for all λ ∈ N, DFTW(p, λ) is
not satisfied by the suffix. By construction, the path appended at step n of the construction
aside from the return to [s1] is such that, in all of its prefixes, the smallest priority is odd.
Furthermore, the duration of this path is of at least n time units: we witness the global clock
pass an integer bound at least n + 1 times in this path. It follows that the suffix of π after
πn−1 violates TGW(p, n). Because we let n grow to infinity in the construction, no suffix of
π satisfies a direct fixed timed window objective. This ends the proof. ◀

In light of Theorem 9, we directly obtain the following corollary.

▶ Corollary 10. Let λ = 2 · |L| · |Reg|+ 3. All time-divergent paths of A satisfy BTW(p) if
and only if all time-divergent paths of A satisfy FTW(p, λ).

4.2 Verification algorithms
In this section, we discuss verification algorithms for the direct and indirect bounded
objectives. In Section 4.2.1, we provide a useful procedure to check, given some states of the
TA, the existence of paths subject to the constraints of Theorems 7 and 9. We then discuss
non-deterministic verification algorithms and their complexity in Section 4.2.2.

J. C. A. Main, M. Randour and J. Sproston 19

4.2.1 Checking reachability with priority-induced constraints

In the two previous sections, we have identified conditions for the existence of paths violating
the direct bounded timed window objectives and the bounded timed window objectives.
These criteria involve the existence of states such that one can find a path traversing these
states where, in any prefix of this path, the smallest priority that occurs is odd, i.e., we
construct paths along which no good window is identified. We argue in the sequel that
the existence of such paths can be decided in polynomial space. We will outline a non-
deterministic polynomial space procedure; the previous claim follows from the equality
PSPACE = NPSPACE [36].

This complexity can be justified by a straightforward adaptation of the classical algorithm
for reachability in timed automata [2]. The idea is to detect a suitable path by means of the
region abstraction. The region abstraction itself is exponential in the size of the TA, but
needs not be constructed entirely to check whether some region is reachable. An NPSPACE
algorithm for reachability can operate by exploring the region abstraction on-the-fly, and
keeping track of a region and the current number of steps taken in the current path. The
algorithm returns a positive answer if a target is reached, and a negative answer if the
step counter reaches the size of the region abstraction. Because regions are representable
in polynomial space and the counter can be represented in binary, the claimed complexity
follows.

In the sequel, we require a slight variant of this algorithm. We are given a certain number
of regions [s1], . . . , [sn] and want to determine whether one path exists traversing these
regions in such a way that the smallest priority witnessed from the start of the path is odd
at all times. The classical algorithm can be extended naturally to handle multiple sequential
targets and the priority-related constraints.

To handle the visiting of multiple regions in order, it suffices, each time a target is reached,
to reset the step counter and update the target to the next one. One returns a positive
answer if all targets have been reached. This induces an increase in memory at most linear
in the number of targets: one can simply keep track of the current target by means of its
index in the sequence of targets. In practice, we use this procedure with five targets.

For the priority-related constraints, it suffices to keep track of the smallest priority
witnessed from the start of the guessed path (unlike the counter above, this priority should
never be reset). We add an additional condition: the decision procedure stops and returns
a negative answer if this priority becomes even at any point. This induces an increase in
memory of at most log2(d) bits. Overall, this modified procedure still only uses polynomial
space. We therefore obtain the following lemma.

▶ Lemma 11. The existence of a path passing through n given regions in order such that the
smallest priority of all of its prefixes is odd is decidable in deterministic polynomial space.

4.2.2 Algorithms for the verification of bounded timed window
objectives

We can now describe the complexity of the verification problem for direct and indirect bounded
timed window objectives. We first describe algorithms for the dual problem of verification, i.e.,
algorithms that check whether there exists a time-divergent path that violates the considered
objective. These algorithms use oracles to check reachability properties between regions. The
complexity of our algorithms is in NPPSPACE = PSPACE [6]. The idea is to guess five state
regions and then check whether they conform to the conditions in Theorems 7 and 9.

20 Timed Games with Bounded Window Parity Objectives

We use two oracles in PSPACE. The first oracle returns, given two regions, whether there
is a path in the region abstraction from the first region to the second, i.e., this oracle decides
standard reachability. The second oracle encodes the problem formulated in Lemma 11.

To decide the existence of a time-divergent path violating the direct objective, we guess
five regions and check if they satisfy the conditions of Theorem 7. This algorithm consists of
guessing the regions, checking whether the first region is reachable from the initial state using
the first oracle and then using the second oracle to confirm the satisfaction of conditions
of Theorem 7. For the indirect objective, we proceed similarly to check the conditions
of Theorem 9; the only difference to the direct case is that there is an additional call to
the first oracle. This shows that the dual problem of verification for direct and indirect
bounded timed window objectives is in NPPSPACE = PSPACE. Because PSPACE is closed
under complementation, the PSPACE-membership of the verification problem for direct and
indirect bounded timed window objectives follows.

▶ Lemma 12. The verification problems for direct and indirect bounded timed window
objectives are in PSPACE.

Let us now assume that the priority function p : L→ {0, . . . , D−1}K is multi-dimensional.
Verifying that all time-divergent paths satisfy a generalized objective is equivalent to checking
that a one-dimensional objective is verified on each dimension. It follows from Lemma 12
and PPSPACE = PSPACE [6] that the verification of multi-dimensional objectives can be done
in polynomial space.

▶ Theorem 13. The verification problems for generalized direct and indirect bounded timed
window are in PSPACE.

5 Solving timed games

In this section, we propose an algorithmic solution to the realizability problem for direct and
indirect bounded timed window parity objectives. For the direct case, we provide a reduction
to the realizability problem for an ω-regular region objective in Section 5.1: we show that
to enforce the direct bounded objective, we can consider the objective requiring that any
odd priority is followed by a smaller even priority. In Section 5.2, we provide a fixed-point
algorithm for the indirect case, which intuitively iterates the computation of a winning set
for the direct case.

For this entire section, we fix a TG G = (A, Σ1, Σ2) with A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E)
and a multi-dimensional priority function p : L→ {0, . . . , D− 1}K.

5.1 Direct bounded timed window objective

In this section, we provide a reduction from the realizability problem for the generalized
direct bounded timed window objective to the realizability problem for the untimed ω-regular
request-response objective [37, 19]. In Section 5.1.1, we introduce the request-response
objective and explain how to derive a request-response objective from the multi-dimensional
priority function p. In Section 5.1.2, we show that the set of winning states for this request-
response objective coincides with the winning set for the generalized direct bounded timed
window objective and that this set coincides even with the winning set of some generalized
direct fixed timed window objective.

J. C. A. Main, M. Randour and J. Sproston 21

5.1.1 Request response-objectives
A request-response objective is an ω-regular region objective defined by a family of pairs of
sets of state regions R = ((Rqj , Rpj))r

j=1. The request-response objective for R requires that
for all k ∈ {1, . . . , r}, for any visit to a state region in Rqk, there must be a location in Rpk

appearing later in the play. We refer to state regions in Rqk as requests and to state regions
in Rpk as responses.

Let R = ((Rqk, Rpk))r
k=1 be a family of request-response pairs. Formally, we define the

request-response objective RR(R) as the set of sequences of states

{s0s1 . . . ∈ Sω | ∀ k ≤ r, ∀n, ∃n′ ≥ n, [sn] ∈ Rqk =⇒ [sn′] ∈ Rpk}.

A DPA in which the only priorities are 0 and 1 are equivalent to the deterministic Büchi
automata (DBAs) of the literature. In general, for a request-response objective with r

request-response pairs, a DBA with 2r ·r states suffices [37]. The request-response families we
define later from priority functions have ⌊D

2 ⌋ · K request-response pairs. Hence, using such a
DBA in our game solving approach induces an exponential blow-up in the number of priorities
in the time complexity. We can do better: the request-response objectives we derive from
multi-dimensional priority functions can be represented by DBAs with (⌊D

2 ⌋+ 1)K · K states.
For a fixed number of dimensions, we obtain a DBA with a number of states polynomial in
the number of priorities.

We do not directly introduce small DBAs for the specific request-response families derived
from multi-dimensional priority functions. Instead, we define a class of request-response
families that subsumes them. We proceed this way due to the indirect case; in the indirect
case, we repeatedly solve request-response games in which we alter the sets of requests and
responses; by introducing a broader class of request-response families, we achieve a better
complexity for these computations with respect to the number of priorities.

We say that a family of request-response pairs R = {(Rq1, Rp1), . . . , (Rqr, Rpr)} is a
chain-response family if the sets of responses form a chain, i.e., Rp1 ⊇ Rp2 ⊇ . . . ⊇ Rpr and
each set of requests and responses are pairwise disjoint, i.e., for all i, j ≤ r, Rqi ∩Rpj = ∅. In
a request-response objective induced by a chain-response family, one needs only keep track
of the pending request with the fewest responses, because any response to this request also
addresses requests with more responses due to the chain of inclusions. This allows us to
define a DBA with r + 1 states; there is one state to indicate that no requests are pending,
and one state per request to keep track of whichever pending request has fewest responses.

Let R = ((Rqk, Rpk))r
k=1 be a chain-response family where Rp1 ⊇ Rp2 ⊇ . . . ⊇ Rpr. The

request-response objective RR(R) can be encoded by a DBA H = (Q, qinit, L× Reg, up, pH)
where Q = {0, 1, . . . , r}, qinit = 0, and up is defined, for all q ∈ Q and [s] ∈ L× Reg,

up(q, [s]) =
{

0 if q ̸= 0 and [s] ∈ Rpq

max({q} ∪ {i ≤ r | [s] ∈ Rqi}) otherwise,

and the priority function pH assigns 0 to state 0 of H and 1 to all other states of H. The
DBA H encodes RR(R). Indeed, H keeps track of the highest seen index of a request and a
higher index means fewer responses. Because request and response sets are pairwise disjoint,
witnessing the state 0 of H infinitely often is equivalent to having all requests eventually
answered.

We say a family of request-response pairs is an n-chain-response family if it is a union
of n chain-response families. Observe that for all R1,. . . , Rn, we have RR(

⋃
1≤i≤nRi) =⋂

1≤i≤n RR(Ri). The intersection of the languages of n DBAs with r+1 states can be encoded

22 Timed Games with Bounded Window Parity Objectives

by a DBA with (r + 1)n · n states [33, Proposition 6.1]. It follows that request-response
objectives obtained from n-chain-response families where each underlying chain-response
family has at most r pairs can be encoded by DBAs with at most (r + 1)n · n states.

The following result follows immediately from Theorem 1 and Theorem 2.

▶ Lemma 14. Let R be an n-chain-response family in which each underlying chain-response
family has at most r pairs. The set of winning states in G for the request-response objective
RR(R) is a union of state regions and can be computed in time O((|L| · |Reg| · (r + 1)n · n)3),
and finite-memory region strategies proposing delays of at most 1 with 4 · (r + 1)n · n states
suffice for winning.

We now explain how we derive a K-chain-response family from a K-dimensional priority
function. The idea is to model each odd priority on each dimension as a request, the responses
to which are smaller even priorities on the same dimension. A similar construction is used
for direct bounded objectives in games in graphs [14].

Assume p is a one-dimensional priority function. We define the chain-response family R(p)
as the family of request-response pairs that contains for each odd priority j ∈ {0, 1, . . . , D−1},
the pair (Rqj , Rpj) where Rqj = p−1(j)× Reg and Rpj = {ℓ ∈ L | p(ℓ) ≤ j ∧ p(ℓ) mod 2 =
0} × Reg. This is indeed a chain-response family because the responses to an odd priority
are smaller even priorities, and are therefore also responses to any greater odd priorities. If p

is K-dimensional, we let R(p) be the K-chain-response family R(p) =
⋃

1≤i≤KR(pi).
We close this section by highlighting a nuance between the notion of good windows and

the modeling of priorities as requests and responses provided in the definition of R(p). We
consider the one-dimensional case for the upcoming explanation.

Given a state occurring in a play, recall that one finds a good window (of some size
about which we are not concerned) if there is a later state on the play such that the smallest
priority seen between the two states is even. The earliest response to a request in R(p) may
not induce a good window; it may be the case that on the segment between the request and
response, we witness another odd priority for which the first response is not suitable. This
new priority must be strictly smaller than that of the initial request; any response to this new
request is also strictly smaller than the first response. Assuming that this second request is
answered, there may yet again be a strictly smaller odd priority between the second request
and response for which the second response is not suitable. We can repeat this reasoning
assuming the third request is answered, and so on. However, this phenomenon can only
occur finitely often due to the finite number of priorities. The last response in the sequence
of responses obtained above is an even priority smaller than any prior odd priority, i.e., we
witness a good window eventually assuming that all requests are answered.

It follows that the request-response objective is satisfied if and only if there are good
windows from all states along the play. The remaining question addressed in the following
section is whether winning for the request-response objective ensures the existence of a
winning strategy for which the size of these windows is bounded.

5.1.2 Reducing direct objectives to request-response
The goal of this section is to show that to solve the TG G with the objective GDBTW(p),
one can solve the TG G with the request-response objective RR(R(p)). The main argument
consists in showing that the time-divergent outcomes of any winning finite-memory region
strategy for the objective RR(R(p)) proposing bounded delays (the existence of which is
ensured by Lemma 14 if P1 wins) must satisfy GDFTW(p, λ) for some λ ∈ N. This implies
that all time-divergent outcomes of one such strategy satisfy GDBTW(p).

J. C. A. Main, M. Randour and J. Sproston 23

This result is shown by contradiction. We assume that there exists some time-divergent
outcome π of one such finite-memory strategy violating DFTW(pk, λ) on some dimension k

for some sufficiently large bound λ; this is ensured whenever one assumes the existence of a
time-divergent outcome of σ violating DBTW(pk). If this is the case, we can construct an
outcome of σ along which, on dimension k, some odd priority is never followed by a smaller
even priority, i.e., some request goes unanswered, which contradicts the fact that σ is winning
for RR(R(p)).

The main points of the proof are as follows. There is some suffix π′ of π violating the
timed good window objective for λ. Within the λ first time units of π′, using Lemma 6,
one can find two indices such that the TG finds itself in state-equivalent states s and s′

and the Mealy machine encoding the winning strategy σ finds itself in the same memory
states. Because we consider a finite-memory region strategy, it is possible to inductively
construct an outcome of σ which first follows π up to s and then follows the time-divergent
cycle in the region abstraction induced by π between s and s′. However, because the smallest
priority appearing in all prefixes of π′ up to s′ is odd (the timed good window objective is
violated), it follows that this specific priority is never followed by any smaller even priority,
contradicting the fact that σ was winning for RR(R(p)).

We provide the details hereunder. We prove a slightly stronger statement for later use.
Let U be a set of state regions. We show that the announced result holds even if we modify
the request-response pairs of R(p) by removing regions in U from all request sets and adding
regions in U to all response sets; that is, any time-divergent outcome of a finite-memory
region winning strategy for the modified request-response objective proposing bounded delays
satisfies some generalized direct fixed timed window objective, and therefore the generalized
direct bounded timed window objective, under the assumption that the regions in U are not
visited.

▶ Lemma 15. Let R(p) = (Rqi, Rpi)r
i=1 be the family of request-response pairs derived from

p and R′ = (Rqi \ U, Rpi ∪ U)r
i=1 for some set of state regions U ⊆ L× Reg. Let W denote

the set of winning states for the objective RR(R′) and M = (M,minit, αup, αmov) be a Mealy
machine encoding a finite-memory region winning strategy of P1 from W for the objective
RR(R′) proposing delays of at most 1. Let π = s0(m(1)

0 , m
(2)
0)s1 . . . be a time-divergent

outcome of the strategy induced by M such that s0 ∈W and let λ = 2 · |L| · |Reg| · |M|+ 3. If
for all n ∈ N, [sn] /∈ U then π ∈ GDFTW(p, λ) ⊆ GDBTW(p).

Proof. Assume that π /∈ GDFTW(p, λ) by contradiction. We fix a dimension k ∈ {1, . . . , K}
such that π /∈ DFTW(pk, λ). Let σ denote the strategy induced by M. We consider the
sequence m0m1 . . . ∈Mω of memory states witnessed along π, given by m0 = minit and for all
n ∈ N, mn+1 = αup(mn, [sn]).

Recall that λ is the bound of Lemma 6 using the DFA underlyingM. It follows from our
assumption of π /∈ DFTW(pk, λ) that there is some n0 ∈ N such that πn0→ /∈ TGW(pk, λ).
By Lemma 6, there exists two indices n1, n2 ≥ n0 such that n1 < n2, sn1 ≡A sn2 , mn1 = mn2

and ⌊vn1(γ)⌋ < ⌊vn2(γ)⌋, and for all n0 ≤ n′ ≤ n2, we have minn0≤n≤n′ p(ℓn) is odd, where
sn = (ℓn, vn) for all n ∈ N.

We now construct a time-divergent outcome π̃ = s̃0(m̃(1)
0 , m̃

(2)
0)s̃1 . . . of σ that does not

satisfy the request-response objective RR(R′). We denote by m̃0m̃1 . . . ∈Mω the sequence
of memory states along the play π̃. We define π̃|n2 = π|n2 , i.e., the play π̃ coincides with
π up to step n2. It follows that for any n ≤ n2, we have m̃n = mn. In particular, we have
m̃n2 = mn1 .

The remainder of the construction is by induction. Let k ∈ N and j ∈ {0, . . . , n2−n1−1}.
We will choose s̃n2+(n2−n1)·k+j such that it is equivalent to sn1+j and m̃n2+(n2−n1)·k+j =

24 Timed Games with Bounded Window Parity Objectives

mn1+j . The idea to extend π̃ is to follow the cycle in the region abstraction induced by
the history sn1(m(1)

n1 , m
(2)
n1) . . . (m(1)

n2−1, m
(2)
n2−1)sn2 . In practice, to ensure time-divergence

of the constructed play, we ensure that the moves m̃
(1)
n2+(n2−n1)·k+j and m̃

(2)
n2+(n2−n1)·k+j

are such that δ̃ = delay(m(1)
n2+(n2−n1)·k+j , m

(2)
n2+(n2−n1)·k+j) traverses the same regions from

s̃n2+(n2−n1)·k+j than δ = delay(m(1)
n1+j , m

(2)
n1+j) does from sn1+j , i.e., {[vn1+j + δmid] | 0 ≤

δmid ≤ δ} = {[ṽ + δmid] | 0 ≤ δmid ≤ δ̃} where vn1+j and ṽ denote the clock valuations in
sn1+j and in s̃n2+(n2−n1)·k+j respectively.

We only provide the construction of m̃
(1)
n2 , m̃

(2)
n2 , s̃n2+1 and m̃n2+1 (i.e., case k = 0

and j = 0) for the sake of readability. Other cases are handled similarly. We define
m̃

(1)
n2 = αmov(m̃n2 , s̃n2) = αmov(mn1 , s̃n2) to ensure consistency of π̃ with σ. To define m̃

(2)
n2 ,

we distinguish two cases depending on which player is responsible for the transition in π at
step n1.

Assume first that sn1

m(1)
n1−−−→ sn1+1 holds. Then we let m̃

(1)
n2 be any P2 move enabled in

s̃n2 with a delay greater than or equal to that of m̃
(1)
n1 . Let s̃n2+1 be the unique state such

that s̃n2

m̃(1)
n1−−−→ s̃n2+1 holds. Because σ is a finite-memory region strategy, the equivalence

s̃n2+1 ≡A sn1+1 is ensured and the same regions are traversed from sn1 and s̃n2+1 in π and
π̃ respectively. It follows from mn1 = m̃n2 and sn1 ≡A s̃n2 that mn1+1 = m̃n2+1. This closes
this case of the inductive step.

Now, assume that sn1

m(1)
n1−−−→ sn1+1 does not hold. In this case, the move of P2 is responsible

for the transition at step n1 in π. Let δ = delay(m(2)
n1) and let vn1 and ṽn2 denote the clock

valuations in state sn1 and s̃n2 respectively. We choose m̃
(2)
n2 = (δ̃, action(m(2)

n1)) for some
δ̃ ≤ delay(m̃(1)

n1) such that ṽn2 + δ̃ ∈ [vn1 +δ] and {[vn+j +δmid] | 0 ≤ δmid ≤ δ} = {[ṽn2 +δmid] |
0 ≤ δmid ≤ δ̃}; one such delay exists because the moves m

(1)
n1 and m̃

(1)
n2 traverse the same

regions from sn1 and s̃n2 respectively (σ is a finite-memory region strategy), and the region
[vn1 + δ] has the region [vn1 + delay(m(1)

n1)] as a successor.

Let s̃n2+1 be the unique state such that s̃n2

m̃(2)
n2−−−→ s̃n2+1. By choice of m̃

(2)
n2 , we have

s̃n2+1 ∈ JD(s̃n2 , m̃
(1)
n2 , m̃

(2)
n2). Furthermore, because guard satisfaction is uniform within a

region and resets preserve regions, it follows that s̃n2+1 ≡A sn1+1. Finally, we must have
mn1+1 = m̃n2+1 for the same reason as in the previous case.

We now argue that π̃ is time-divergent and does not satisfy the request-response objective
RR(R′). Time-divergence follows from the fact that the global clock γ passes an integer
bound between indices n1 and n2 in π and that all regions traversed between these indices
in π are infinitely often traversed in π̃. For the request-response objective, we first remark
that for all n ∈ N, [s̃n] /∈ U , because all states appearing in π̃ are equivalent to states in π.
Hence, requests and responses along π̃ are determined by the sequence of witnessed locations
and their priorities. Let n⋆ ∈ argminn0≤n≤n2 pk(ℓn). From index n⋆ in π̃, no priority smaller
than pk(ℓn⋆) appears on dimension k, and this priority is odd. This shows that some request
goes unanswered in π̃, i.e., π̃ /∈ RR(R′), contradicting the fact that σ is winning.

◀

▶ Remark 16. The proof of Lemma 15 can be adapted to show that if a state is winning
for an arbitrary request-response objective RR(R), then it is winning for a bounded variant
thereof, in which we require that the delay between requests and responses along a play be
bounded by some integer.

It follows from Lemma 15 that any state winning for the objective RR(R(p)) is also

J. C. A. Main, M. Randour and J. Sproston 25

winning for some generalized direct fixed timed window objective, thus for the generalized
direct bounded timed window objective. A consequence is that one can use the synthesis
algorithm for games with request-response objectives to construct winning strategies for the
generalized direct bounded timed window objective from these states.

It remains to argue that states that are winning for the generalized bounded window
objective are also winning for the request-response objective. This follows immediately from
the inclusion GDBTW(p) ⊆ RR(R(p)): if a play satisfies GDBTW(p), there must be good
windows (of bounded size) at all times and on all dimensions along a play, implying that all
odd priorities are always followed by smaller even priorities. We obtain the following result.

▶ Theorem 17. Let λ = 8 · |L| · |Reg| · (⌊D
2 ⌋ + 1)K · K + 3. The sets of winning states for

the objectives GDFTW(p, λ), GDBTW(p) and RR(R(p)) coincide. Furthermore, there exists
a finite-memory region strategy that is winning for all three objectives from any state in these
sets.

Proof. We first argue that from the set of winning states for RR(R(p)), there exists a strategy
winning for all three objectives at once. Lemma 14 ensures that there exists a finite-memory
region strategy σM induced by a Mealy machine with 4 · (⌊D

2 ⌋+ 1)K ·K states and proposing
delays of at most 1 suffices to win for RR(R(p)). It follows from Lemma 15 that σM is
winning for the objectives GDFTW(p, λ) and GDBTW(p) from any state from which P1 has
a winning strategy for RR(R(p)).

It follows from the above that the set of winning states for RR(R(p)) is a subset of the set
of winning states of the two window objectives. Furthermore, the inclusion GDFTW(p, λ) ⊆
GDBTW(p) implies that any state winning for the fixed objective is also winning for the
bounded objective. To end the proof, it suffices to show that the inclusion GDBTW(p) ⊆
RR(R(p)) holds to obtain that the set of winning states for the bounded window objective is
included in that of the request-response objective.

Let π = s0(m(1)
0 , m

(2)
0)s1 . . . ∈ GDBTW(p) be a play conforming to the generalized direct

bounded timed window objective. Let n ∈ N such that sn ∈ Rq for some (Rq, Rp) ∈ R(p).
There is some dimension k ∈ {1, . . . , K} such that Rq = p−1

k (j)× Reg for some odd priority
j. By definition, there is some λ ∈ N such that π ∈ DFTW(pk, λ), which implies πn→ ∈
TGW(pk, λ). It follows immediately from the definition of TGW(pk, λ) that there exists some
n′ > n such that the priority of the location of sn′ on dimension k is even and smaller than
j, i.e., [sn′] ∈ Rp. This shows that π satisfies the request-response objective, and ends the
proof. ◀

We conclude this section by determining the time complexity of solving the realizability
problem for direct bounded timed window objectives. We produce a request-response objective
with K · ⌊D

2 ⌋ pairs, i.e., our reduction is in polynomial time. In light of Lemma 14, we obtain
that the overall reduction-based algorithm described above for realizability in TGs with
direct bounded timed window objectives is in exponential time.

▶ Theorem 18. The realizability problem for TGs with generalized direct bounded timed
window objectives is in EXPTIME.

Proof. It takes time O((⌊D
2 ⌋+ 1)K · K · |L| · |Reg|) to construct a DBA encoding RR(R(p))

(the factor |L| · |Reg| comes from the construction of transitions), and by Lemma 14, it takes
time O((|L| · |Reg| · (⌊D

2 ⌋+ 1)K · K))3) to solve the request-response game. Overall, we need
exponential time to solve the game. ◀

26 Timed Games with Bounded Window Parity Objectives

5.2 Indirect bounded timed window objective
In this section, we show the EXPTIME-membership of the realizability problem for the
generalized bounded timed window objective. To this end, we provide a fixed-point algorithm
to solve these games. At each step of the algorithm, we compute the set of winning states
for a given request-response objective.

The structure of the section is as follows. We open the section by presenting the algorithm
and proving its termination in Section 5.2.1. The correctness of the algorithm is shown in
Section 5.2.2. Section 5.2.3 establishes that the algorithm terminates in exponential time.

5.2.1 An algorithm for solving bounded timed window games
We provide a fixed-point algorithm to compute the set of winning states for the bounded
timed window objective. We utilize request-response objectives as in the direct case.

The algorithm behaves as follows. We start by computing the winning set W 1 for the
direct objective via the request-response objective RR(R(p)); we obtain in this way a subset
of the set of winning states, because GDBTW(p) ⊆ GBTW(p). It follows from the prefix-
independence of GBTW(p) that P1 can extend any play that reaches W 1 into a winning play.
Hence, we can compute a larger subset W 2 of the set of winning states of P1 by changing
our request-response pairs in such a way that reaching W 1 clears all requests.

This set W 2 is a subset of the set of winning states; intuitively if P1 uses a winning
strategy for the simplified request-response objective from W 2 and the play does not reach
W 1, the outcome satisfies the winning condition for the direct objective GDBTW(p) by
Lemma 15 with U = {[s] | s ∈W 1}. This reasoning can be repeated inductively: we update
the request-response objective so that states in W 2 clear all requests. We continue until a
fixed point is reached; the set of states W obtained this way is a set of states from which P1
has a winning strategy for the objective GBTW(p).

We now formally present the algorithm. The steps of the algorithm are as follows.
First, we construct the family of request-response pairs R(p). After this initialization, the
algorithm enters a loop, in which we repeatedly solve request-response games. We modify
the request-response pairs at each step by marking regions that were in the latest computed
winning set as responses for all possible requests. Note that at each step, we always have
K-chain-response families. The algorithm terminates when the set of winning states no longer
grows. The procedure is summarized in Algorithm 1, in which we assume a sub-routine
SolveRR which given a TG and a K-chain-response family R, outputs the set of winning
states in the TG for the objective RR(R).

We now move on to the termination of Algorithm 1. It is known that the set of winning
states for ω-regular region objectives in TGs are unions of state regions (Theorem 1). Hence,
it suffices to show that the sequence of sets (W k)k∈K computed at each step of the algorithm
is non-decreasing to obtain a proof of termination, as there are finitely many state regions.
Let us note that it is due to this property that we refer to Algorithm 1 as a fixed-point
algorithm. Intuitively, the result holds because we simplify the request-response objectives
from one iteration to the next.

▶ Lemma 19. The sequence of sets (W k)k∈K computed in the loop of Algorithm 1 is non-
decreasing. As a consequence, Algorithm 1 terminates.

Proof. We show the first statement of the lemma. We proceed by induction. We trivially
have W 0 ⊆ W 1 given that W 0 = ∅. Let us now take k ∈ K, k < sup K, and show that
W k ⊆ W k+1. Let Rk and Rk+1 respectively denote the family of request-response pairs

J. C. A. Main, M. Randour and J. Sproston 27

Algorithm 1 Computing the set of winning states for BTW(p)

Data: A TG G = (A, Σ1, Σ2), a multi-dimensional priority function p over A.
k ← 0;
W 0 ← ∅;
R ← R(p);
repeat

k ← k + 1;
W k ← SolveRR(G,R);
for (Rq, Rp) ∈ R do

Rq← Rq \ {[s] ∈ L× Reg | [s] ⊆W k};
Rp← Rp ∪ {[s] ∈ L× Reg | [s] ⊆W k};

until W k \W k−1 = ∅;
return W k;

from which W k and W k+1 were computed. To obtain W k ⊆W k+1, it suffices to show that
RR(Rk) ⊆ RR(Rk+1); W k and W k+1 are the respective winning sets for these objectives.

Let s0s1 . . . ∈ RR(Rk) be an infinite sequence of states. We must show that s0s1 . . . ∈
RR(Rk+1). Let (Rqk+1, Rpk+1) ∈ Rk+1 be a request-response pair. Assume there exists
i ∈ N be such that si ∈ Rqk+1. It follows from the innermost loop of the algorithm that there
is some request-response pair (Rqk, Rpk) ∈ Rk such that Rqk+1 ⊆ Rqk and Rpk+1 ⊇ Rpk.
It follows from s0s1 . . . ∈ RR(Rk) and Rqk+1 ⊆ Rqk that there is some j ≥ i such that
sj ∈ Rpk ⊆ Rpk+1. This shows that s0s1 . . . ∈ RR(Rk+1). This ends the argument that
(W k)k∈K is non-decreasing.

It remains to show that Algorithm 1 terminates. Each W k, k ∈ K, is a union of state
regions. There are finitely many state regions and we have shown (W k)k∈K to be non-
decreasing, thus it follows the sequence eventually reaches a fixed point, i.e., the algorithm
terminates. ◀

5.2.2 Correctness of the fixed-point algorithm
In this section, we prove that the set W returned by Algorithm 1 is the set of winning states
for P1 in the TG G for the objective GBTW(p). We establish the stronger claim that P1 has
a strategy that is winning for some generalized fixed timed window objective from W .

The proof is done in two steps. First, we show that Algorithm 1 outputs a subset of the
set of winning states of P1 on which finite-memory region strategies suffice. Second, to end
the proof of correctness, we show that the complement of the returned set is not winning for
GBTW(p).

Let us argue that P1 has a winning strategy from any state in the set W returned by
Algorithm 1. The set W is organized in layers: each set W k \W k−1 is one such layer. We
can construct winning strategies by exploiting this layered structure. In the lowermost layer
W 1, we have the winning set for GDBTW(p), which is also winning for a fixed objective
(Theorem 17); any winning strategy for the direct objective is trivially winning for the indirect
objective.

Higher layers are handled inductively. Given some layer, e.g., W k \W k−1, one argues
that P1 wins by constructing a strategy that changes its behavior when a lower layer is
reached: as long as the layer does not change, P1 plays a winning strategy for the current
request-response objective, and should a deeper layer be reached, P1 wins by forgetting

28 Timed Games with Bounded Window Parity Objectives

the history and switching to a winning strategy in this deeper layer. All outcomes of this
strategy are winning by prefix-independence of the objective; once the layer index no longer
decreases, Lemma 15 ensures that that some generalized direct fixed objective is satisfied if
time diverges.

By choosing finite-memory region winning strategies for each request-response objective
in the construction of the layered winning strategy, we can even show that finite-memory
region strategies suffice for winning in W . The idea is to keep track of the current layer in
memory, and whenever the layer of the current state is lower than that in the memory, we
act as though we had just started the play in the current state. The following lemma and its
proof formalize the explanations above.

▶ Lemma 20. Let λ = 8 · |L| · |Reg| · (⌊D
2 ⌋+ 1)K · K + 3. The set W provided by Algorithm 1

is a subset of the set of winning states of P1 for the objective GFTW(p, λ) and finite-memory
region strategies suffice for winning from any state in W .

Proof. We first describe a Mealy machine encoding a winning finite-memory region strategy
of P1, and then prove it indeed encodes a winning strategy.

Let K denote the set of positive integers such that W k \W k−1 is non-empty. For each
k ∈ K, let Rk be the family of request-response pairs from which W k was computed, and
let Mk = (M,minit, αk

up, αk
mov) be a Mealy machine encoding a finite-memory region strategy

for P1 on W k for the objective RR(Rk), proposing delays of at most 1 (Lemma 14) with
4 · (⌊D

2 ⌋+ 1)K · K states. We can assume that these Mealy machines all share the same state
space M. For any state s ∈ W , we let e([s]) = min{k ∈ K | [s] ⊆ W k} denote the earliest
index k ∈ K such that s ∈W k.

We will consider the Mealy machine M = (M×K, (minit, max K), αup, αmov) where the
update function αup : M×K × Reg→M is defined, for all m ∈M, k ∈ K and s ∈ S, by

αup(m, k, [s]) =
{

(αk
up(m, [s]), k) if s /∈W or e([s]) ≥ k

(αe([s])
up (minit, [s]), e([s])) otherwise,

and αmov : M×K × Reg→M1 is defined, for all m ∈M, k ∈ K and s ∈ S, by

αmov(m, k, [s]) =
{

αk
mov(m, [s]) if s /∈W or e([s]) ≥ k

α
e([s])
mov (minit, [s]) otherwise.

Intuitively, M encodes a strategy that plays a winning strategy of W k as long as the play
remains in W k, and whenever the plays visits a state in some W k′ with k′ < k, forgets the
past and switches to a winning strategy in W k′ .

We now show that M encodes a strategy that is winning from every state in W . Let
π = s0(m(1)

0 , m
(2)
0)s2 . . . be an outcome of the strategy induced byM starting in some state of

W , and let ((mn, kn))n∈N be the sequence of memory states such that (m0, k0) = (minit, max K)
and for all n ∈ N, (mn+1, kn+1) = αup(mn, kn, [sn]). We first argue that there exists some
k ∈ K such that π has a suffix that starts in W k \W k−1 and that is consistent with the
strategy induced by Mk.

By construction of αup, the sequence (kn)n∈N is a non-increasing sequence of non-negative
integers, hence it must stabilize at some point to some k ∈ K. We now argue that π has a
suffix starting in W k \W k−1 and consistent with the strategy induced byMk. We distinguish
two cases, depending on whether k = k0 or not.

First, assume that k < k0 = max K. Let n0 = min{n ∈ N | kn = k} − 1. By definition of
αup, it must be the case that e([sn0]) = k, i.e., sn0 ∈W k\W k−1. The suffix πn0→ is consistent

J. C. A. Main, M. Randour and J. Sproston 29

with the strategy encoded by Mk: the first move in πn0→ is given by αk
mov(minit, [sn0]) by

definition of αmov, and for later steps, it follows from the fact that (kn)n>n0 is a constant
sequence and the definitions of αup and αmov. Indeed, memory updates and move proposals
are performed as they would be in Mk: the component in K of memory states of M is
disregarded.

Now, assume that k = k0 = max K. It follows from the definition of αmov that π is
consistent with the strategy induced by Mk. Furthermore, by definition of αup, it must be
the case that no state in W k−1 has been visited, i.e., π starts in W k \W k−1. In this case, π

itself is a play consistent with Mk that starts in W k \W k−1. We let n0 = 0 so as to treat
both cases simultaneously in the remainder of the proof; note that π = π0→.

We now prove that π ∈ WC1(GFTWP(p, λ)). The definition of the indirect window
objectives imply that it suffices to show that πn0→ ∈WC1(GDFTWP(p, λ)). If πn0→ is time-
convergent, then it must be blameless for P1 because it is the outcome of a winning strategy
(the strategy induced by Mk). Assume that πn0→ is time-divergent. By Lemma 19, we
obtain W k−1 =

⋃
k′≤k−1 W k′ . We can therefore apply Lemma 15 with U = {[s] | s ∈W k−1}

and Mk to obtain that πn0→ satisfies GDFTW(p, λ)). We have shown that the strategy
induced by M is winning from every state of W , ending the proof. ◀

Lemma 20 asserts that all states in the output W of Algorithm 1 are winning for some
generalized fixed timed window objective, hence for the generalized bounded timed window
objective. To finish the proof of correctness of the algorithm, it remains to show that states
outside of W are not winning for the generalized bounded timed window objective. The
idea is to show that for any strategy of P1, there is some losing outcome when starting from
S \W .

We use the fact that states in S \W are losing for some request-response objective where
states in W answer all pending requests. It follows that any losing time-divergent outcome
eventually stays in S\W . We can inductively construct an outcome that violates the bounded
timed window objective in stages as follows. At stage n, we forget about the past and follow
a play that is losing for the request-response objective, while remaining consistent with the
strategy of P1 fixed beforehand. We follow this play until some request is left pending for at
least n time units, and then move on to the next stage. This constructs some losing outcome
of P1’s strategy because requests come from odd priorities: an unanswered request for n

time units implies the existence of a window that is not good within n time units on some
dimension. Because there are finitely many dimensions, this outcome cannot satisfy the
bounded timed window objective on at least one dimension, and it follows that P1’s strategy
is not winning. We formalize this construction in the following proof.

▶ Lemma 21. Let W denote the set provided by Algorithm 1. From every state in S \W ,
P1 has no winning strategy for the objective GBTW(p).

Proof. Let R be the request-response family {(Rq \ [W], Rp ∪ [W]) | (Rq, Rp) ∈ R(p)}
appearing in the last iteration of Algorithm 1, where [W] = {[s] ∈ L × Reg | s ∈ W}
denotes the set of state regions in W . The set W is the set of winning states of P1 for
the request-response objective RR(R). It follows that from each state in S \W , P1 has no
winning strategy for this objective.

Let s ∈ S \W . We must show that P1 has no winning strategy for GBTW(p) from s. Fix
a strategy σ of P1. If σ has some time-convergent outcome that is not blameless for P1, σ

cannot be a winning strategy. In the sequel, we assume that all time-convergent outcomes of
σ are blameless for P1.

30 Timed Games with Bounded Window Parity Objectives

We construct an outcome of σ from s by inductively extending histories. We will denote
the history after step n ∈ N of the construction by hn. The inductive assumptions we rely on
is that hn ends in some state of S \W , and that hn is consistent with σ. The play obtained
in the limit of the construction will be an outcome of σ from s. To ensure that this outcome
violates GBTW(p), we construct our histories as follows: for n ≥ 1, in the history appended to
hn−1 so as to obtain hn, on some dimension, there is some odd priority that was not followed
by any smaller even priority within n time units. The resulting play violates GBTW(p): no
matter the suffix taken, even if all windows along it are good on all dimensions, there is no
bound on their size over all dimensions, hence there is some dimension on which there is no
bound. Furthermore, this play is also time-divergent; at step n of the construction, a history
in which at least n time units elapse is appended.

We introduce some notation. Given a history h = s0(m(1)
0 , m

(2)
0) . . . (m(1)

k−1, m
(2)
k−1)sk ∈

Hist(G) and some history or play π = sk(m(1)
k , m

(2)
k) . . . (m(1)

k′−1, m
(2)
k′−1)sk′ . . . ∈ Hist(G) ∪

Plays(G) where the last state of h is the first state of π, we let h · π denote the play
or history s0(m(1)

0 , m
(2)
0) . . . (m(1)

k−1, m
(2)
k−1)sk(m(1)

k , m
(2)
k) . . . (m(1)

k′−1, m
(2)
k′−1)sk′ . . . obtained by

concatenating h and π and disregarding the repeated state.
We let h0 = s, which trivially satisfies the inductive assumptions. Now, assume that hn

has been constructed, and let sn = last(hn). We consider a strategy σn such that for any
history h ∈ Hist(G) starting in sn, σn(h) = σ(hn · h). The strategy σn uses the actions which
would have been proposed by σ if we had seen hn prior to the input history.

Because sn is losing for RR(R), there exists some outcome πn of σn starting in sn such
that πn /∈WC1(RR(R)). By choice of σn, the play hn · πn is an outcome of σ. The play πn

must be time-divergent, otherwise the play hn · πn would not be blameless for P1, which
contradicts the assumption that all time-convergent outcomes of σ are blameless for P1. We
therefore have that πn is time-divergent and πn /∈ RR(R).

There is some request along πn that is never followed by a response. From states in
W , all requests are answered, and hence there are no occurrences of W after this request.
Furthermore, because πn is time-divergent, there is some prefix h(πn) of πn such that at
least n + 1 time units elapse between the unanswered request and the last state of h(πn). It
suffices to choose hn+1 = hn · h(πn) to obtain all desired properties.

This concludes the construction of a time-divergent outcome of σ that violates GBTW(p).
We have thus shown that σ is not a winning strategy, and therefore that s is not in the set
of winning states of P1 for GBTW(p). ◀

We summarize the results of the section in the following theorem. On the one hand,
Lemma 20 implies that the set returned by Algorithm 1 is a subset of the set of winning
states for GBTW(p) on which finite-memory region strategies suffice, and such a strategy can
be chosen as winning for some generalized fixed timed window objective. On the other hand,
Lemma 21 implies that P1 has no winning strategy on the complement of the set computed
by Algorithm 1 for any fixed timed window objective. We obtain the following theorem.

▶ Theorem 22. Let λ = 8 · |L| · |Reg| · (⌊D
2 ⌋+ 1)K · K + 3. The sets of winning states for the

objectives GFTW(p, λ) and GBTW(p) coincide. Furthermore, there exists a finite-memory
region strategy that is winning for both objectives from any state in these sets of winning
states.

5.2.3 Complexity of the fixed-point algorithm
We conclude this section by determining the computational complexity of Algorithm 1. In
the worst case, there are as many iterations as there are state regions. While the complexity

J. C. A. Main, M. Randour and J. Sproston 31

of solving the request-response games is in EXPTIME, we still obtain an EXPTIME algorithm
because the exponential terms are multiplied rather than stacked. We obtain the following
result.

▶ Theorem 23. The realizability problem for bounded timed window objectives is in EXPTIME.

Proof. We show that Algorithm 1 runs in exponential time to finish this proof. By Lemma 14
the subroutine SolveRR(R) runs in time O((|L| · |Reg| · (⌊D

2 ⌋+ 1)K · K)3) (the time to solve
the TG dominates that of the DPA construction). The innermost loop iterates ⌊D

2 ⌋ · K times.
The outermost loop iterates at most |L| · |Reg| times. By combining all of these complexities
appropriately, one obtains a time complexity in O((|L| · |Reg| · (⌊D

2 ⌋+ 1)K · K)4). ◀

6 Lower bounds and completeness

In this section, we establish the PSPACE and EXPTIME completeness of the verification and
realizability problems for the direct and indirect bounded timed window objectives. In light
of Theorems 13, 18 and 23 that assert membership of these problems in these complexity
classes, we need only establish hardness to obtain completeness. In the remainder of this
section, we no longer distinguish direct and indirect cases; arguments are the same in both
cases.

We will consider the verification and realizability problems for safety objectives to establish
hardness. The verification problem for safety objectives is PSPACE-complete [2], and the
realizability problem for safety objectives is EXPTIME-complete (as a consequence of the
EXPTIME-completeness of the safety control problem [27]).

It was shown in [30] that there exists a polynomial-time reduction from the verification
and realizability problems for safety objectives to these respective problems for fixed timed
window objectives. Furthermore, the reduction works no matter the bound on the size of
windows in the definition of the fixed objective, i.e., the two problems for safety objectives are
reducible in polynomial time to their counterpart for the objectives FDTW(p, λ) or FTW(p, λ)
for any λ ≥ 1 (for some appropriate priority function p) with a construction independent of
λ. We argue that these same reductions are suitable to establish hardness of the studied
problems with bounded timed window objectives.

An intuitive sketch of the reductions follows. They are similar for both the verification
and realizability problems; we modify the TA in the same way in both cases, and make no
changes to the partition of actions in TGs. Let A = (L, ℓinit, C, Σ, I, E) be a TA. Fix F ⊆ L.
Recall that the safety objective for F requires that no location of F ever be visited.

The reduction consists in deriving a TA A′ from A in which locations are augmented with
a Boolean value indicating whether F has been previously visited. Edges of A are replicated
in A′. These edges do not update the Boolean value, unless they target some location in
F , in which case the Boolean value is changed to indicate F has been visited. The initial
location (ℓinit, b) of A′ indicates that F has been visited if and only if ℓinit ∈ F . To define
the window objectives, we use a priority function assigning 0 (respectively 1) to locations
indicating F has not been visited (respectively has been visited). Intuitively, correctness of
the reduction follows from the fact that if F is never visited, then only the priority 0 appears,
and otherwise, from some point on, only the priority 1 appears. In the former case, any
variant of timed window parity objectives are satisfied trivially, and in the latter, they are
trivially violated.

Formally, we can also derive hardness for the verification and realizability problems for the
bounded timed window objectives as follows. We have established that the verification and

32 Timed Games with Bounded Window Parity Objectives

realizability problem for bounded timed window objectives are equivalent to some instance
of verification and realizability problems respectively for some fixed timed window objective
on the same TA or TG (Corollaries 8 and 10 for verification and Theorems 17 and 22 for
realizability). Because the reduction above is known to work for fixed objectives for any
bound λ, it follows that the verification and realizability problems for safety objectives are
reducible in polynomial time to the verification and realizability problems for the bounded
timed window objectives, yielding PSPACE and EXPTIME-hardness of these problems in the
one-dimensional case. We obtain the following result.

▶ Theorem 24. The verification problem for generalized direct and indirect bounded timed
window objectives is PSPACE-complete and the realizability problem for generalized direct and
indirect bounded timed window objectives is EXPTIME-complete.

7 Comparing window objectives in timed and untimed settings

In this section, we provide a short comparison of timed window objectives. We compare
the timed and untimed settings, as well as the fixed and bounded settings. A summary
of the complexity classes for each respective problem is provided in Table 1. We fix a TG
G = (A, Σ1, Σ2) with A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E) for the upcoming explanations.

Single dimension Multiple dimensions

Timed automata Fixed [30] PSPACE-complete PSPACE-complete
Bounded PSPACE-complete PSPACE-complete

Timed games Fixed [30] EXPTIME-complete EXPTIME-complete
Bounded EXPTIME-complete EXPTIME-complete

Games (untimed) [14] Fixed P-complete EXPTIME-complete
Bounded P-complete EXPTIME-complete

Table 1 Summary of the complexity classes for problems with window parity objective in timed
and untimed settings. Direct and prefix-independent cases are grouped together as their complexity
matches. New results are in boldface.

First, let us compare TGs with parity objectives and with window parity objectives by
analogy to the setting of untimed games. In the one-dimensional case, in both the fixed
and bounded cases, solving untimed games with window parity objectives can be done in
polynomial time. Parity games on graphs are widely studied and have recently been shown to
be solvable in quasi-polynomial time [16], but are not yet known to be solvable in polynomial
time. In many algorithms, the number of priorities is responsible for their high complexity.
One-dimensional window parity games provide a polynomial time alternative to parity games;
the number of priorities contributes polynomially to the complexity of solving an untimed
window parity game.

In the timed setting, TGs with parity objectives can be solved in exponential time [23],
and [22] proposes a reduction from parity TGs to untimed parity games; from a TG and
a priority function p : L → {0, . . . , D − 1}, they construct a turn-based parity game with
256 · |L| · |Reg| · |C| · D states and priorities at most D + 1. The solving of parity TGs by
means of this reduction nevertheless suffers from the blow-up in the number of priorities in
the same way as untimed games. Similarly to the untimed setting, fixed and bounded timed
window objectives avoid this issue; the number of priorities only contributes polynomially to
the complexity of solving these games.

J. C. A. Main, M. Randour and J. Sproston 33

Now let us move on to a comparison of the fixed and bounded cases. Despite there being
no difference in the complexity classes for the two cases, a TG with a generalized direct or
indirect fixed timed window objective with K dimensions and bound λ ∈ N can be solved in
time

O

(|L| · (DK + 1) · (|C|+ K)! · 2|C|+K ·
∏
x∈C

(2cx + 1) · (2λ + 1)K

)4

with the approach of [30], where cx denotes the largest bound to which clock x ∈ C is
compared in clock constraints of A. It follows that the algorithm, for a fixed number of
dimensions, is polynomial in the bound on the size of windows (i.e., exponential in the size
of its encoding). When solving TGs with bounded timed window objectives, the complexity
of the algorithms presented in previous sections is not affected by the potential size of good
windows. Because the winning set for a bounded objective coincides with the winning set for
some fixed objective, it follows that the algorithms for TGs with bounded objectives can
be used to more efficiently solve TGs with fixed objectives with large bounds, by entirely
bypassing the bound in question.

References
1 Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time. Inf.

Comput., 104(1):2–34, 1993. doi:10.1006/inco.1993.1024.
2 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994. doi:10.1016/0304-3975(94)90010-8.
3 Christel Baier. Reasoning about cost-utility constraints in probabilistic models. In

Mikolaj Bojanczyk, Slawomir Lasota, and Igor Potapov, editors, Reachability Problems
- 9th International Workshop, RP 2015, Warsaw, Poland, September 21-23, 2015, Pro-
ceedings, volume 9328 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.
doi:10.1007/978-3-319-24537-9_1.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
5 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight monitoring

with linear temporal logic: complexity and decidability. In Thomas A. Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014,
pages 11:1–11:10. ACM, 2014. URL: http://dl.acm.org/citation.cfm?id=2603088, doi:
10.1145/2603088.2603162.

6 Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975. doi:10.1137/0204037.

7 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold constraints with
guarantees for parity objectives in Markov decision processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. URL: http://www.dagstuhl.de/dagpub/978-3-95977-041-5, doi:10.4230/LIPIcs.
ICALP.2017.121.

8 Benjamin Bordais, Shibashis Guha, and Jean-François Raskin. Expected window mean-
payoff. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019,
December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 32:1–32:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.32.

https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-24537-9_1
http://dl.acm.org/citation.cfm?id=2603088
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1137/0204037
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
https://doi.org/10.4230/LIPIcs.ICALP.2017.121
https://doi.org/10.4230/LIPIcs.ICALP.2017.121
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.32

34 Timed Games with Bounded Window Parity Objectives

9 Patricia Bouyer, Thomas Brihaye, Mickael Randour, Cédric Rivière, and Pierre Vandenhove.
Decisiveness of stochastic systems and its application to hybrid models. In Jean-François
Raskin and Davide Bresolin, editors, Proceedings 11th International Symposium on Games,
Automata, Logics, and Formal Verification, GandALF 2020, Brussels, Belgium, September
21-22, 2020, volume 326 of EPTCS, pages 149–165, 2020. doi:10.4204/EPTCS.326.10.

10 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in Markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.
doi:10.1016/j.jcss.2016.09.009.

11 Tomás Brázdil, Vojtech Forejt, Antonín Kucera, and Petr Novotný. Stability in graphs and
games. In Desharnais and Jagadeesan [25], pages 10:1–10:14. URL: http://www.dagstuhl.
de/dagpub/978-3-95977-017-0, doi:10.4230/LIPIcs.CONCUR.2016.10.

12 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is random,
time is not: Markov decision processes with window objectives. Log. Methods Comput. Sci.,
16(4), 2020.

13 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Inf.
Comput., 254:259–295, 2017. doi:10.1016/j.ic.2016.10.011.

14 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

15 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the complexity of
heterogeneous multidimensional games. In Desharnais and Jagadeesan [25], pages 11:1–11:15.
URL: http://www.dagstuhl.de/dagpub/978-3-95977-017-0, doi:10.4230/LIPIcs.CONCUR.
2016.11.

16 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

17 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

18 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-
regular games. ACM Trans. Comput. Log., 11(1):1:1–1:27, 2009. doi:10.1145/1614431.
1614432.

19 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity of request-
response games. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors,
Language and Automata Theory and Applications - 5th International Conference, LATA 2011,
Tarragona, Spain, May 26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer
Science, pages 227–237. Springer, 2011. doi:10.1007/978-3-642-21254-3_17.

20 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games.
In Helmut Seidl, editor, Foundations of Software Science and Computational Structures, 10th
International Conference, FOSSACS 2007, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April 1, 2007,
Proceedings, volume 4423 of Lecture Notes in Computer Science, pages 153–167. Springer,
2007. doi:10.1007/978-3-540-71389-0_12.

21 Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Trading infinite
memory for uniform randomness in timed games. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Control, 11th International Workshop, HSCC

https://doi.org/10.4204/EPTCS.326.10
https://doi.org/10.1016/j.jcss.2016.09.009
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.4204/EPTCS.226.10
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1007/978-3-642-21254-3_17
https://doi.org/10.1007/978-3-540-71389-0_12

J. C. A. Main, M. Randour and J. Sproston 35

2008, St. Louis, MO, USA, April 22-24, 2008. Proceedings, volume 4981 of Lecture Notes in
Computer Science, pages 87–100. Springer, 2008. doi:10.1007/978-3-540-78929-1_7.

22 Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed parity games:
Complexity and robustness. Log. Methods Comput. Sci., 7(4), 2011. doi:10.2168/LMCS-7(4:
8)2011.

23 Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga.
The element of surprise in timed games. In Roberto M. Amadio and Denis Lugiez, editors,
CONCUR 2003 - Concurrency Theory, 14th International Conference, Marseille, France,
September 3-5, 2003, Proceedings, volume 2761 of Lecture Notes in Computer Science, pages
142–156. Springer, 2003. doi:10.1007/978-3-540-45187-7_9.

24 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for
infinite-state games. In Kim Guldstrand Larsen and Mogens Nielsen, editors, CONCUR 2001
- Concurrency Theory, 12th International Conference, Aalborg, Denmark, August 20-25, 2001,
Proceedings, volume 2154 of Lecture Notes in Computer Science, pages 536–550. Springer,
2001. doi:10.1007/3-540-44685-0_36.

25 Josée Desharnais and Radha Jagadeesan, editors. 27th International Conference on Concur-
rency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://www.dagstuhl.de/
dagpub/978-3-95977-017-0.

26 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

27 Thomas A. Henzinger and Peter W. Kopke. Discrete-time control for rectangular hybrid
automata. Theor. Comput. Sci., 221(1-2):369–392, 1999. doi:10.1016/S0304-3975(99)
00038-9.

28 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean payoff through
foggy windows. Acta Inf., 55(8):627–647, 2018. doi:10.1007/s00236-017-0304-7.

29 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/s10703-009-0067-z.

30 James C. A. Main, Mickael Randour, and Jeremy Sproston. Time flies when looking out
of the window: Timed games with window parity objectives. In Serge Haddad and Daniele
Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 25:1–25:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.25.

31 Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed
systems (an extended abstract). In Ernst W. Mayr and Claude Puech, editors, STACS 95, 12th
Annual Symposium on Theoretical Aspects of Computer Science, Munich, Germany, March
2-4, 1995, Proceedings, volume 900 of Lecture Notes in Computer Science, pages 229–242.
Springer, 1995. doi:10.1007/3-540-59042-0_76.

32 Gethin Norman, David Parker, and Jeremy Sproston. Model checking for probabilistic timed au-
tomata. Formal Methods Syst. Des., 43(2):164–190, 2013. doi:10.1007/s10703-012-0177-x.

33 Dominique Perrin and Jean-Eric Pin. Infinite words - automata, semigroups, logic and games,
volume 141 of Pure and applied mathematics series. Elsevier Morgan Kaufmann, 2004.

34 Mickael Randour. Automated synthesis of reliable and efficient systems through game theory:
A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages
731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

35 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy
by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of

https://doi.org/10.1007/978-3-540-78929-1_7
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/3-540-44685-0_36
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/S0304-3975(99)00038-9
https://doi.org/10.1016/S0304-3975(99)00038-9
https://doi.org/10.1007/s00236-017-0304-7
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.4230/LIPIcs.CONCUR.2021.25
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/978-3-319-00395-5_90

36 Timed Games with Bounded Window Parity Objectives

LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: http:
//www.dagstuhl.de/dagpub/978-3-95977-093-4, doi:10.4230/LIPIcs.FSTTCS.2018.38.

36 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

37 Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of finite-state
controllers for request-response specifications. In Oscar H. Ibarra and Zhe Dang, editors,
Implementation and Application of Automata, 8th International Conference, CIAA 2003, Santa
Barbara, California, USA, July 16-18, 2003, Proceedings, volume 2759 of Lecture Notes in
Computer Science, pages 11–22. Springer, 2003. doi:10.1007/3-540-45089-0_3.

38 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

http://www.dagstuhl.de/dagpub/978-3-95977-093-4
http://www.dagstuhl.de/dagpub/978-3-95977-093-4
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/3-540-45089-0_3
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

J. C. A. Main, M. Randour and J. Sproston 37

A Winning strategies in ω-regular timed games

In this section, we present an approach to solving timed games with ω-regular region
objectives as a direct extension of the technique of [23] for timed games with ω-regular
location objectives, i.e., objectives the satisfaction of which depends only on the sequence
of witnessed locations in the same way that region objectives depend only on the sequence
of witnessed regions along a play. The main interest of this presentation is to highlight
some useful properties of winning strategies in timed games with ω-regular region objectives,
namely that finite-memory region strategies suffice for winning. We assume that the objectives
are given by deterministic parity automata.

The main ideas are as follows. First, we consider an expanded game in which blamelessness
and time-divergence can be encoded as ω-regular conditions. We alter the deterministic parity
automaton defining the objective so that it encodes the winning condition itself rather than
the objective. We can then compute memoryless region strategies on the (infinite) parity game
obtained through the product of the expanded game and expanded parity automaton [23, 24].
The remainder of this section is devoted to showing that we can use these memoryless region
strategies to derive a winning finite-memory strategies on the non-expanded TG.

We fix a TG G = (A, Σ1, Σ2) where A = (L, ℓinit, C, Σ1 ∪ Σ2, I, E) for this entire section.
Recall that we use S and → to denote the state space and transition relation of T (A), and
JD for the joint-destination function.

Expanding the state space of the game. To encode time-divergence and blamelessness
as ω-regular conditions, we expand the state space S with two Boolean values, i.e., we
consider an expanded state space Ŝ = S × {true, false}2. Expanded states are of the form
(s, tick, blame), where tick holds if and only if during the previous transition, the global clock
γ passes a new integer bound, and blame holds if P1 is responsible for the latest transition.
We extend the joint-destination function so that it handles the additional information. We
denote by ĴD : Ŝ×M1×M2 → 2Ŝ the expanded joint-destination function, defined as follows.
For any expanded state ŝ = (s, tick, blame) ∈ Ŝ and moves m(1) = (δ(1), a(1)) ∈ M1(s) and
m(2) = (δ(2), a(2)) ∈M2(s) enabled in s, we set

JD(s, m(1), m(2)) =

{(s′, tick(s, δ(1)), true) | s m(1)

−−−→ s′} if δ(1) < δ(2)

{(s′, tick(s, δ(2)), false) | s m(2)

−−−→ s′} if δ(1) > δ(2)

{(s′, tick(s, δ(i)), bl1(s, m(1), s′)) | s m(i)

−−−→ s′, i = 1, 2} if δ(1) = δ(2),

where for any s′ = (ℓ, v) ∈ S and δ ≥ 0, tick(s′, δ) holds if and only if ⌊v(γ)⌋ < ⌊v(γ) + δ⌋,
and bl1(s, m(1), s′) holds only if s

m(1)

−−−→ s′ (i.e., if P1 is responsible for the transition).
We denote this expanded game by Ĝ. The notions of plays, histories, time-divergence,

blame, strategies and objectives are defined analogously in Ĝ as they were in regular TGs. We
extend state equivalence to the state space of Ĝ by saying that any two states (ℓ, v, tick, blame)
and (ℓ′, v′, tick′, blame′) are state-equivalent if ℓ = ℓ′, v ≡A v, tick = tick′ and blame =
blame′. In other words, a state region of this expanded state space is a set of the form
{ℓ} × R × {tick} × {blame} where ℓ ∈ L, R ∈ Reg, tick, blame ∈ {true, false}, i.e., obtained
by taking a state region and adding two fixed Boolean values for the last components.

We can define time-divergence and blamelessness as ω-regular conditions using the two
additional Boolean values. A play of the expanded game is time-divergent if and only if
infinitely many states of the form (s, true, blame) appear along it (i.e., the global clock passes
infinitely many integer bounds along the play). A play is blameless if and only if from some

38 Timed Games with Bounded Window Parity Objectives

index on, only states of the form (s, tick, false) are visited, i.e., if from some point on, P1 is
no longer responsible for transitions.

Parity automata for winning conditions. We consider ω-regular objectives specified by
deterministic parity automata. We explain how to derive a DPA encoding the winning
condition using the additional information of Ĝ from a DPA specifying a region objective in
the TG G.

Let us fix a DPA H = (Q, qinit, L × Reg, up, p). One can derive from H a DPA Ĥ

encoding the winning condition WC1(L(H)) in the expanded game Ĝ. Formally, we define
Ĥ = (Q̂, q̂init, (L× Reg)× {true, false}2, ûp, p̂), where Q̂ = Q× {true, false}2 × {0, . . . , D− 1},
q̂init = (qinit, false, false, d), for any q̂ = (q, tick, blame, h) ∈ Q̂ and ŝ = ([s], tick′, blame′), we
have

ûp(q̂, ŝ) =
{

(q′, tick′, blame′, p(q′)) if tick = true
(q′, tick′, blame′, min{h, p(q′)}) otherwise,

where q′ = up(q, [s]), and

p̂(q̂, ŝ) =

h if tick = true
D′ if tick = false and blame = true,

D′ + 1 otherwise

where D′ = D if D is odd, and otherwise D′ = D− 1. The DPA Ĥ encodes an objective of Ĝ
in the same way that H encodes an objective of G. This objective is the winning condition
for the following reasons.

The rough idea of the construction is to keep track of the smallest priority in H seen
between two ticks and output it whenever tick holds. This way, whenever tick holds infinitely
often, the smallest priority appearing in an execution of Ĥ is the same as the smallest priority
in the matching execution of H, because we chose D′ greater or equal to all of the priorities
of H.

If tick holds finitely often however (i.e., we consider a time-convergent play), from some
point on only the priorities D′ and D′ + 1 are seen. We see the smaller odd priority D′

whenever P1 is responsible for a transition; it follows that, in this case, we have a rejecting
execution of Ĥ if and only if P1 is not blameless.

For the remainder of this section, we fix a DPA H = (Q, qinit, L× Reg, up, p) and let Ĥ

denote its adaptation as defined above.

Computing the set of winning states. We explain how to compute the set of winning
states of Ĝ. The idea is to solve an infinite parity game obtained via the synchronous product
of the expanded game Ĝ with the expanded DPA Ĥ. This approach is presented in [24] and
underlies the algorithmic solution of [23].

The synchronous product of Ĝ and Ĥ, which we will denote by Ĝ × Ĥ, is obtained in the
usual way. At each step of the TG Ĝ, we feed the state region, tick and blame components
of the current state to the DPA Ĥ. In the sequel, because the tick and blame components in
both Ĝ and Ĥ coincide (by nature of the product), we omit one of the two in the upcoming
definitions.

Formally, we obtain a game played on the state space S × Q̂, with the joint destination
function ĴD× : S×Q̂×M1×M2 → 2S×Q̂ defined by, for all (s, q̂) ∈ S×Q̂, q̂ = (q, tick, blame, h),

J. C. A. Main, M. Randour and J. Sproston 39

and all m(1) ∈M1(s) and m(2) ∈M2(s),

ĴD×((s, q̂), m(1), m(2)) = {(s′, q̂′) | ŝ′ = (s′, tick′, blame′) ∈ ĴD(ŝ, m1, m2)∧ q̂′ = ûp(q̂, [ŝ′])},

where ŝ = (s, tick, blame).
On this product game, the objective of P1 is a parity objective. The priority function p̂×

from which this objective is defined assigns to each state (ŝ, q, h) the priority p̂(q̂).
Winning in the product game Ĝ × Ĥ and winning in the original TG G are related as

follows. There is a winning strategy for P1 in a state s ∈ S in G for the (winning condition
induced by the) objective encoded by H if and only if there is a winning strategy for P1
from the state (s, up(qinit, [s]), false, false, d− 1) in Ĝ × Ĥ for the parity objective given by p̂×.
This can be established by showing that from any winning strategy in the product game,
one can derive a winning strategy in the original TG and vice-versa.

The set of winning states in the product game can be computed by a linear-size µ-calculus
formula of alternation depth D′ + 2 ≤ D + 2 [24]. Furthermore, and all sets involved in its
computation are unions of state regions [23], i.e., its evaluation can be performed on the
finite region abstraction (albeit of the product game). The following result follows.

▶ Theorem 1. The set of winning states of P1 in the TG G for the objective given by H is
a union of state regions and is computable in time O((4 · |L| · |Reg| · |Q| · D)D′+2).

Let us now discuss winning strategies in the product game. A strategy is said to be
memoryless if for any two histories ending in the same state, the same move is prescribed.
In parity games, memoryless strategies suffice for winning (e.g., [26, 38]). In the product
game Ĝ × Ĥ, one can find winning memoryless strategies that are well-behaved with respect
to regions. A memoryless strategy σ : S × Q̂ → M1 is said to be a memoryless region
strategy if for any two states (s1, q̂), (s2, q̂) ∈ S × Q̂, where s1 = (ℓ1, v1) and s2 = (ℓ2, v2), if
s1 ≡A s2, then the moves (δ1, a1) = σ((s1, q̂)) and (δ2, a2) = σ((s2, q̂)) are such that a1 = a2,
[v1 + δ1] = [v2 + δ2] and {[v1 + δmid] | 0 ≤ δmid ≤ δ1} = {[v2 + δmid] | 0 ≤ δmid ≤ δ2}. Such
memoryless region strategies suffice for winning in Ĝ × Ĥ.

A function f : (L × Reg) × Q̂ → U , where U denotes the set of unions of elements of
(L × Reg) × Q̂, can be derived during the evaluation of the µ-calculus formula mentioned
above. This function f describes a memoryless winning strategy at the region level [24, 23];
a memoryless winning strategy is obtained by assigning to any winning state (s, q̂) ∈
S × Q̂ some move m(1) such that for any move m(2) of P2 enabled in (s, q̂), we have
JD×((s, q̂), m(1), m(2)) ⊆ f(([s], q̂)) – such a move is guaranteed to exist assuming that P1
has a winning strategy from (s, q̂).

We explain how a memoryless winning region strategy can be obtained from f . The choice
of moves only matters in regions from which P1 wins. Fix a state (s, q̂) ∈ S×Q̂ with s = (ℓ, v)
and let m = (δ, a) be any move that could have been assigned in (s, q̂) by a winning strategy
derived from f . Let s′ = (ℓ′, v′) ∈ S such that s′ ≡A s; we argue that we can find a move
m′ = (δ′, a) such that [v+δ] = [v′+δ′], {[v+δmid] | 0 ≤ δmid ≤ δ} = {[v′+δmid] | 0 ≤ δmid ≤ δ′}
and for any move m(2) of P2 enabled in (s′, q̂), we have JD×((s′, q̂), m′, m(2)) ⊆ f(([s′], q̂)).
The properties of clock regions ensures that there exists some δ′ satisfying the first two
conditions. Fix any such δ′. The third condition follows from the facts that (i) s ≡A s′ implies
f(([s], q̂)) = f(([s′], q̂)) and (ii) m and m′ traverse and reach the same regions, therefore
if P2 has a move (δ′

2, b) enabled in s′ with δ′
2 ≤ δ′, then there is some δ2 ≤ δ such that

[v + δ2] = [v′ + δ′
2], therefore the sets of regions {[s′′] | (s′′, q̂′) ∈ JD×((s, q̂), m, (δ2, b))} and

{[s′′] | (s′′, q̂′) ∈ JD×((s′, q̂), m′, (δ′
2, b))} are the same, which implies the third condition in

conjunction with (i).

40 Timed Games with Bounded Window Parity Objectives

Simplifying the structure of winning strategies. In the previous section, we have explained
that in the product parity game Ĝ×Ĥ, memoryless region strategies suffice and are computable.
To replicate the behavior of these strategies in the original TG G, one needs to observe the
moves of the players, e.g., to keep track of the blame component. The goal of this section is
to show that we can simplify winning strategies in two regards, with the goal of deriving
finite-memory strategies that do not take in account the moves of the players.

Let us fix a memoryless winning region strategy σ : S × Q̂ → M1 of P1 in the product
game. First, we show that the blame component is irrelevant to the decision of the strategy.
Formally, we show that we can select a winning strategy such that if two expanded states
(s, q̂1) and (s, q̂1) differ only in their blame Boolean value, then the strategy prescribes the
same move in both states. Second, we show that we can bound the delays proposed by
a winning strategy, in such a way that whether tick holds or not can be inferred without
examining the delays in the moves.

To show that the blame Boolean can be disregarded, we provide a non-constructive
argument. The essence of the argument is that one can find a winning strategy which assigns
the same move to two states that possess the same successors.

▶ Lemma 25. In the game Ĝ × Ĥ, region memoryless strategies that disregard the blame
Boolean suffice for winning.

Proof. In (potentially infinite) turn-based parity games, memoryless strategies that select
the same action in two states with the same successors suffice for winning; this follows from
the proof of Emerson and Jutla [26] that memoryless strategies suffice in turn-based parity
games with finitely many priorities.

While the game Ĝ × Ĥ is not turn-based, the definition of winning we use (i.e., winning
no matter the strategy of P2) allows us to apply the previous result. Indeed, winning in the
concurrent product game Ĝ × Ĥ is trivially equivalent to winning in a turn-based game in
which first P1 selects a move, and then P2 is informed of P1’s move and has the choice to
preempt P1 or to let P1’s move induce the next transition.

In light of the above and the fact that two states that differ only from their blame
component possess the same successors, this ends the proof. ◀

While the argument above is non-constructive, memoryless winning region strategies are
constructed in practice using algorithms for finite parity games [24]. One can show that
winning strategies constructed by Zielonka’s recursive algorithm [38] can be built such that
two successor-sharing states are assigned the same action. This is due to the fact that the
building blocks of these winning strategies are so-called attractor strategies, and intuitively
that successor-sharing states are in the same attractor sets when neither are target states.

We now move on to the second step in our simplification of winning strategies. The goal of
the upcoming construction is to have ticks be detectable by observing only the current state
region and using one bit of information. The role of the bit of information is to remember
whether the valuation of the global clock was integral or not at the previous step. This allows
us to infer that tick holds in some cases: tick holds whenever the valuation of the global clock
is integral at the current step but was not at the previous step.

In the sequel, we show that the delays proposed by a strategy can be constrained in
such a way that all ticks are detectable by the mechanism described above. Intuitively,
our construction consists, given a memoryless winning strategy that disregards the blame
Boolean, to replace proposed moves that have a large delay by delay moves with small delays
in such a way that the strategy obtained this way is still winning, and that all ticks are
observable.

J. C. A. Main, M. Randour and J. Sproston 41

It remains to clarify what we mean by a large delay. On the one hand, any delay such
that the global clock passes an integer bound strictly is considered large; we cannot observe
that the global clock was integral at some point in time during the transition in this case.
On the other hand, a delay of one is also considered large: from regions, we can only observe
whether the valuation of the global clock is integral or not. If we move between two states in
which the valuation of the global clock is integral, it cannot be known without observing the
moves whether the transition was taken with a non-zero delay or not, therefore ticks cannot
be observed.

We formally state and prove the announced result hereunder. Let us underline that in
the following proof, to lighten notation, we denote by ŝ states of the product game Ĝ × Ĥ.
In previous sections, we had used such a notation for states of the expanded game Ĝ.

▶ Lemma 26. In the game Ĝ × Ĥ, region memoryless strategies σ that satisfy the following
constraints suffice for winning: σ disregards the blame Boolean and for any state ŝ =
((ℓ, v), q̂) ∈ S× Q̂, we have delay(σ(ŝ)) ≤ 1− frac(v(γ)), and this inequality is strict whenever
v(γ) ∈ N.

Proof. Let ŝinit ∈ S × Q̂ be a state from which P1 wins. Let σ denote a memoryless region
strategy winning from ŝinit that disregards the blame Boolean, the existence of which is
ensured by Lemma 25. We explicitly derive a suitable strategy σ̃ from σ and show it is
winning.

For any state ŝ = ((ℓ, v), q̂) ∈ S × Q̂, we let f = frac(v(γ)) and define

σ̃(ŝ) =

σ(ŝ) if delay(σ(ŝ)) ≤ 1− f and v(γ) /∈ N
(1− f,⊥) if delay(σ(ŝ)) > 1− f and v(γ) /∈ N
σ(ŝ) if delay(σ(ŝ)) < 1− f and v(γ) ∈ N
(1

2 (1−maxx∈C frac(v(x))),⊥) if delay(σ(ŝ)) ≥ 1− f and v(γ) ∈ N.

This memoryless strategy σ̃ disregards the blame Boolean because σ does, and satisfies the
delay-related constraints by construction. To end the proof, we must show that σ̃ is a region
strategy and that it is winning.

First, let us show that it is a memoryless region strategy. Let ŝ1 and ŝ2 be two region-
equivalent states. Because σ is a region strategy, it proposes moves in both ŝ1 and ŝ2 that
traverse and reach the same region. In particular, given that ticks are encoded in states in
the product game Ĝ × Ĥ, and that cases in the definition of σ̃ depend on whether tick holds
or not after the move proposed by σ, it follows that both ŝ1 and ŝ2 fall into the same case.

In the first or third cases, σ̃ proposes the same move as σ, therefore there is nothing
to show. We restrict for the remainder of this paragraph our attention to the set of clocks
containing the global clock and the clocks such that their valuation in ŝ1 (or equivalently in
ŝ2) has not yet exceeded the largest constant to which they are compared to in A. Clocks for
which the valuation has exceeded this threshold need not be taken in account to prove that
the delays σ̃ proposes traverse and reach the same regions from both ŝ1 and ŝ2 (by definition
of regions).

In the second and fourth cases, σ̃ prescribes a delay move; it does not affect the ordering
of the fractional parts of the valuations of the clocks. It follows that we need only check that
the same clocks have pass and reach an integral value during and after the delay prescribed
by σ̃ in ŝ1 and ŝ2 respectively. In the second case of the definition of σ̃, the only clocks that
have an integral valuation after the delay are those with the same fractional part in their
valuation as γ by choice of the delay. Furthermore, the valuation of any clock that had a

42 Timed Games with Bounded Window Parity Objectives

fractional part greater than that of γ before the delay passes an integer bound during the
delay. In the fourth case, the chosen delay is such that the valuation of no clock passes an
integer bound after the delay. This shows that in both cases, the same regions are traversed
and reached from both states. This concludes the proof that σ̃ is a region strategy.

It remains to show that σ̃ is winning to end the proof. The idea for the remainder of this
proof is to show that for any outcome π̃ of σ̃ from ŝinit, one can find an analogous outcome π

from ŝinit of σ (by changing the moves of P2) and use the fact that π is winning to show that
π̃ is also winning.

Let π̃ = s̃0(m̃(1)
0 , m̃

(2)
0)s̃2 . . . be an outcome of σ̃. We consider the outcome π =

ŝ0(m(1)
0 , m

(2)
0)ŝ2 . . . of σ where ŝ0 = s̃0, and for all k ∈ N, m

(1)
k = σ(ŝk) and, if m

(1)
k = m̃

(1)
k

or P2 is responsible for the transition at step k in π̃, we let m
(2)
k = m̃

(2)
k and ŝk+1 = s̃k+1,

and otherwise, we let m
(2)
k = m̃

(1)
k (i.e., P2 takes over the delay move of P1) and ŝk+1 is

obtained by reversing the blame Boolean of s̃k+1. We note that the play π is a well-defined
play because by construction, σ̃ proposes shorter delays than σ. Since we assume that σ is
winning, it follows that π satisfies the parity objective.

It now remains to show that π̃ is winning for the parity objective. Assume first that tick
holds infinitely often in π̃. It follows by construction that tick holds infinitely often in π.
In this case, the structure of the priority function of the product game Ĝ × Ĥ ensures that
the smallest priority occurring infinitely often in π̃ and π coincide, i.e., π̃ is winning for the
parity objective.

Let us now assume that tick holds only finitely often in π̃ and therefore in π. Because π

is winning, it follows that there exists an index n ∈ N such that for all k ≥ n, both the tick
and blame components of ŝk evaluate to false. By construction of π, for all k ≥ n, the tick
component of s̃k evaluates to false. In the remainder of the proof, we argue that there is at
most one k ≥ n, such that the blame component of s̃k is true.

Let us fix k ≥ n. If m̃
(1)
k−1 = m

(1)
k−1, we have s̃k = ŝk, hence the blame component of s̃k

evaluates to false. Let us assume instead that m̃
(1)
k−1 ̸= m

(1)
k−1. There are two possibilities:

either the valuation of γ in s̃k−1 is not an integer or it is an integer. The former case is
easiest to handle: by definition of σ̃, because the move is changed, it means that the move
m

(1)
k−1 has a delay large enough that tick would hold after using it, therefore the move m̃

(1)
k−1

is defined in such a way that tick would hold after using it. However, because tick does not
hold in s̃k, it follows that blame does not hold either. Now, let us place ourselves in the
latter case and assume that the valuation of γ is integral in s̃k−1. In this case σ̃ proposes a
delay move with a strictly positive delay. In these circumstances, it may be the case that P1
is responsible for the transition, but this can happen at most once: after one such transition,
the valuation of the global clock is never an integer again as there are no more ticks. This
shows that π̃ is winning in this second case. This concludes the proof that the strategy σ̃ is
winning, and with this, the entire proof. ◀

Finite-memory strategies. Up to now, we have been concerned with winning strategies
in the expanded game structure. In this section, we describe how to derive winning finite-
memory region strategies from the memoryless winning region strategies on the product
Ĝ ×Ĥ. The role of the Mealy machine is to keep track of the additional information contained
in the expanded product game.

It follows from Lemma 26 that to win in the expanded product game, one can disregard
the blame Boolean and restrict themselves to delays that prevent the occurrence of two ticks
in a row. Let us fix one such winning memoryless region strategy σ : S × Q̂→M1 for the
remainder of this section.

J. C. A. Main, M. Randour and J. Sproston 43

The structure of the Mealy machine encoding the finite-memory strategy we derive from
σ is very close in nature to the structure of Ĥ. The main difference is that neither ticks nor
blame are observable from state regions in the TG G, which is why we simplified strategies
to overcome these limitations.

We provide the construction of the Mealy machine in the proof of the following formal
statement.

▶ Theorem 2. There exists a finite-memory region strategy with 2 · |Q| · D states proposing
delays of at most 1 that is winning for the objective specified by H from any state that is
winning for P1.

Proof. It suffices to show that using a finite-memory strategy, it is possible to emulate
σ in G. Any strategy constructed this way is winning due to the relations between the
games G and Ĝ × Ĥ. The state space of the upcoming Mealy machine is a essentially a
simplification of Q̂: states are of the form (int, q, h) where int ∈ {true, false} holds if and only
if the valuation of the global clock was integral at the previous step, q ∈ Q is some state
of H and h ∈ {0, . . . , D − 1} is the smallest priority seen since the last tick. We also use
h = D− 1 in case no priorities were seen, i.e., if a tick has occurred in the current step.

We formally define the Mealy machine M = (M,minit, αup, αmov) as follows. The state
space is M = {true, false}×Q×{0, . . . , D−1} and the initial state is minit = (true, qinit, p(qinit)).
Prior to defining the update function αup : M × (L × Reg) → M and next-move function
αmov : M× S →M1, we introduce some notation. Let m = (int, q, h) ∈M and s = (ℓ, v) ∈ S.
We denote by q′ = up(q, [(ℓ, v)]) the successor of q in H after reading [s]. We also let int′

hold if and only if v(γ) ∈ N. The definition of αup(m, [s]) is:

αup(m, [s]) =
{

(int′, q′, D− 1) if ¬int and int′ hold
(int′, q′, min{p(q′), h}) otherwise

and the definition of αmov(m, s) is:

αmov(m, s) =
{

σ(s, q′, true, false, min{h, p(q′)}) if ¬int and int′ hold
σ(s, q′, false, false, min{h, p(q′)}) otherwise.

The Mealy machine that M encodes a finite-memory region strategy because σ is a region
strategy. We now briefly explain why M encodes a strategy in G with the same behavior as
σ. This implies that the encoded strategy is winning.

In the product game Ĝ × Ĥ, updates of the DPA component are performed using the state
we move into. Given that this is not possible in practice (we do not know in advance where
we will be at the next step), the Mealy machine is always one step behind. This explains
why in the evaluation of σ used in the definition of αmov, we use q′ rather than q and the
priority of q′ in the last argument of the function. By choice of σ, two ticks cannot occur
consecutively, therefore at some step, tick holds if and only if int did not hold previously and
holds now. This justifies the two distinguished cases in the definitions of both αup and αmov.

Finally, it remains to explain that the priority fed to σ (i.e., last component in the
evaluation of σ) is well-chosen. Whenever a tick is registered by Ĥ, the last component is
reset to the priority of the successor state in the execution of H following the current history.
In our case, we cannot guess what will be this priority will be in advance. Instead, we set
D−1 as the current lowest priority after a tick. This way, this greatest priority is disregarded
by the min operator in the definition of αmov.

◀

44 Timed Games with Bounded Window Parity Objectives

▶ Remark 27. The assumption of a global clock γ is crucial for the existence of finite-memory
winning strategies. In fact, if one removes this global clock, winning may require infinite
memory and observing the moves [21]. Essentially, this infinite memory can be described as
a simulation of the clock γ.

	1 Introduction
	2 Preliminaries
	3 Bounded window objectives
	3.1 Objective definitions
	3.2 Relationships between objectives
	3.3 Simplifying paths violating window objectives

	4 Verification of timed automata
	4.1 Equivalent conditions to the violation of bounded objectives
	4.1.1 Direct bounded timed window objectives
	4.1.2 Bounded timed window objective

	4.2 Verification algorithms
	4.2.1 Checking reachability with priority-induced constraints
	4.2.2 Algorithms for the verification of bounded timed window objectives

	5 Solving timed games
	5.1 Direct bounded timed window objective
	5.1.1 Request response-objectives
	5.1.2 Reducing direct objectives to request-response

	5.2 Indirect bounded timed window objective
	5.2.1 An algorithm for solving bounded timed window games
	5.2.2 Correctness of the fixed-point algorithm
	5.2.3 Complexity of the fixed-point algorithm

	6 Lower bounds and completeness
	7 Comparing window objectives in timed and untimed settings
	A Winning strategies in omega-regular timed games

