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SUMMARY
Dysregulation of alternative splicing in prostate cancer is linked to transcriptional programs activated by AR,
ERG, FOXA1, and MYC. Here, we show that FOXA1 functions as the primary orchestrator of alternative
splicing dysregulation across 500 primary and metastatic prostate cancer transcriptomes. We demonstrate
that FOXA1 binds to the regulatory regions of splicing-related genes, including HNRNPK and SRSF1. By
controlling trans-acting factor expression, FOXA1 exploits an ‘‘exon definition’’ mechanism calibrating alter-
native splicing toward dominant isoform production. This regulation especially impacts splicing factors
themselves and leads to a reduction of nonsense-mediated decay (NMD)-targeted isoforms. Inclusion of
the NMD-determinant FLNA exon 30 by FOXA1-controlled oncogene SRSF1 promotes cell growth in vitro
and predicts disease recurrence. Overall, we report a role for FOXA1 in rewiring the alternative splicing land-
scape in prostate cancer through a cascade of events from chromatin access, to splicing factor regulation,
and, finally, to alternative splicing of exons influencing patient survival.
INTRODUCTION

Pre-mRNA alternative splicing (AS) is a fundamental genetic pro-

cess underpinning eukaryotic proteome diversity. AS is the se-

lective inclusion of exons or introns into mature transcripts.

Catalyzed by the macromolecular spliceosome complex

comprising core spliceosomal factors, AS is finely regulated by

auxiliary RNA-binding proteins (RBPs), which bind to

sequence-specific nucleotide motifs to promote or repress a

given splicing event (Cereda et al., 2014; Van Nostrand et al.,

2020a). Genomic studies have also shown that somatic cells

exploit RBP-mRNA interactions to promote tumor onset and

progression (Pereira et al., 2017; Wang et al., 2018).

AS can be affected by somatic alterations leading to dysregu-

lated expression of splicing-related genes (SRGs) (Sebestyén

et al., 2016; Seiler et al., 2018). These alterations have uncovered

novel cancer therapeutic targets (Lee and Abdel-Wahab, 2016).
Cel
This is an open access article und
Small-molecule compounds targeting RBP-mRNA perturbations

have entered clinical trials (Bonnal et al., 2020). For instance, pla-

dienolide B derivatives inhibiting the SF3b splicing commitment

complex have efficacy for blood and solid cancers (Zhang et al.,

2020; Zhou et al., 2020). Similarly, antisense decoy oligonucleo-

tides targeting RBPs have proven effective in preventing the acti-

vation of RBP-driven oncogenic programs (Denichenko et al.,

2019). Finally, dysregulated AS has the potential to generate

neo-epitopes to a greater extent than point mutations, thus

potentially expanding the indications for immunotherapies

(Frankiw et al., 2019; Kahles et al., 2018).

The commonest cause of male-specific cancer death is

prostate cancer (PC) (Rebello et al., 2021). Despite advances in

the diagnosis and treatment of early disease, there are few ther-

apeutic options for end-stage metastatic castration-resistant PC

(mCRPC) (Rebello et al., 2021). The disease is difficult to tackle in

part due to considerable phenotypic heterogeneity, underpinned
l Reports 40, 111404, September 27, 2022 ª 2022 The Author(s). 1
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by genomic alterations within different oncogenes or tumor sup-

pressors. These impact on transcriptional and translational pro-

grams that are fundamental for the cell in complex ways (Rebello

et al., 2021).

Interestingly, aberrant splicing can contribute to the heteroge-

neous phenotypes of PC (Paschalis et al., 2018; Rajan et al.,

2009). The dysregulation of this mechanism increases with dis-

ease aggressiveness toward metastatic disease, with most

SRGs being transcriptionally dysregulated throughout PC pro-

gression (Zhang et al., 2020). Consequently, the AS landscape

fingerprints the spectrum of PC disease states, with many aber-

rant events associated with oncogenic signals driven by tran-

scription factors (TFs), such as MYC and AR (Phillips et al.,

2020; Shah et al., 2020). Consistently, novel therapeutic target-

ing of highly expressed SRGs (specifically members of the SF3

splicing commitment complex) has been shown to have anti-

proliferative effects in PC models (Kawamura et al., 2019; Zhang

et al., 2020).

In the heterogeneous genetic landscape of PC, the only recur-

rent activating alterations occur within key oncogenic TFs: AR,

ERG, FOXA1, andMYC (Rebello et al., 2021). Ligand-dependent

activation of AR controls a tumorigenic cistrome of androgen-

sensitive genes (Pomerantz et al., 2015). FOXA1 is a pioneer

TF that reprograms the AR cistrome to drive PC initiation and

progression to metastasis (Parolia et al., 2019). In the aggressive

neuroendocrine PC (NEPC) subtype, where AR transcription is

absent, FOXA1 is essential for proliferation (Baca et al., 2021).

Similarly, overexpression of ERG redirects AR and FOXA1 bind-

ing to drive invasive PC, illustrating the cooperation between

these TFs (Chen et al., 2013; Kron et al., 2017). Finally, aggres-

sive PC is characterized by amplification of MYC, which is the

most frequent genomic alteration in NEPCs (Rebello et al.,

2021). MYC antagonizes AR transcriptional programs pioneered

by FOXA1, underscoring the interdependence of PC on this

handful of TFs (Hawksworth et al., 2010; Qiu et al., 2021).

Of these four TFs, all but FOXA1, have each been implicated in

controlling splicing outcomes in PC by modulating SRG expres-

sion or influencing inclusion levels of functionally relevant exons

(Phillips et al., 2020; Saulnier et al., 2021; Shah et al., 2020).

These studies highlight the involvement of distinct TFs in the dys-

regulation of AS during PC progression. Nevertheless, in the

context of PC transcriptional reprogramming cooperatively

driven by these TFs, the magnitude of influence exerted by

each individual TF to aberrant AS remains to be elucidated.

Here, we systematically assess the impact of the four TFs on

AS in primary PC and mCRPC patients.

RESULTS

FOXA1 drives SRG dysregulation in PC by directly
binding cognate regulatory regions
To assess the influence individually exerted by AR, ERG, FOXA1,

and MYC to the dysregulation of AS in PC, we measured the

contribution of their expression to the overall transcription of

148 SRGs. We used available RNA sequencing (RNA-seq) data

of 409 primary PCs (Network Cancer, 2015), 118 mCRPCs (Rob-

inson et al., 2015), and 15 NEPCs (Beltran et al., 2016). For our

quantitative analysis, we implemented a multivariable covari-
2 Cell Reports 40, 111404, September 27, 2022
ance approach (1) fitting SRG cumulative expression as a func-

tion of TF expression levels using a generalized linear regression

and (2) measuring their relative contribution in the model (see

STAR Methods). We found that, of the four, FOXA1 was the

strongest positive predictor of SRG cumulative expression in

all datasets (Figures 1A and S1A), suggesting that splicing regu-

lation in PC involves a pioneer TF.

We next sought to systematically investigate the three-dimen-

sional architectural features of transcriptional control by FOXA1

in PC in the context of the other TFs (Figure S1B). To do so, we

integrated information on chromatin interactions in PC cell lines

and accessibility in primary PCs. Firstly, we identified TF binding

sites in VCaP and LNCaP cell lines from chromatin immunopre-

cipitation sequencing (ChIP-seq) experiments. We merged peak

calls by cell line to define the cell-line-specific TF binding re-

gions. Secondly, we exploited results of chromatin interaction

analysis by paired-end tag sequencing experiments in the

same cell lines and identified proximal enhancer-gene associa-

tions (i.e.,%1 mega base pair [Mbp]). We then selected TF bind-

ing sites and enhancer-gene associations that were present in

actively transcribed regions of primary PC from 26 Assay for

Transposase-Accessible Chromatin using sequencing experi-

ments. Finally, we defined gene promoters (i.e., ±2,000 bp) and

cognate proximal enhancer regions with TF-specific binding

sites as active TF-bound regulatory regions of PC.

To identify the biological processes under the direct transcrip-

tional control of each TF, we assessed the over-representation of

genes with active TF-bound regions in a list of 186 KEGG canon-

ical pathways. Overall, the spliceosome pathway had the highest

enrichment of genes with active TF-bound promoter and

enhancer regions across VCaP- and LNCaP-based datasets

(Figure S1C). Of the TFs, we found the most prevalent contribu-

tion of FOXA1 on regulatory regions of spliceosome genes

across conditions, with the strongest involvement on proximal

enhancers (Figure 1B). These results corroborate the known

contribution of AR, ERG, andMYC in AS regulation, while impor-

tantly revealing the broadest influence of FOXA1 on the tran-

scriptional control of spliceosome genes compared with the

other TFs.

To identify physiologically relevant candidate SRGs controlled

by FOXA1, we stratified primary PC and mCRPC RNA-seq data

according to FOXA1 expression and performed differential gene

expression analyses (Figures S2A–S2C). We identified 71 SRGs

that were differentially expressed by FOXA1 in either dataset

(Figure 1C). Of these, 90% harbored active FOXA1 binding sites

in regulatory regions, demonstrating a direct transcriptional con-

trol by this pioneer factor. Consistent with a known tendency to

occupy distal regulatory elements (Ramanand et al., 2020), we

found that FOXA1 preferentially bound enhancer, over promoter,

regions of differentially expressed SRGs (Figure 1C). To further

investigate this regulation, we performed RNA-seq on FOXA1

siRNA-treated and control samples from AR-dependent (AR+)

VCaP and AR-independent (AR�) PC3 cell lines (Figures S2D–

S2G). We found that 18 FOXA1-regulated and -bound SRGs

were differentially expressed by FOXA1 in both cell lines regard-

less of AR status (Figures 1C, 1D, S2H, and S2I). We refer to

these AR-independent FOXA1-regulated SRGs, hereafter

FOXA1-controlled SRGs.
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Figure 1. FOXA1 transcriptionally controls splicing-related genes in PC

(A) Results of multivariable covariance analysis between the cumulative expression of SRGs and the expression of TFs in primary PCs, mCRPC, and NEPC. Color

key indicates the standardized b coefficients of the model.

(B) Enrichment of spliceosome geneswith active TF binding sites within chromatin-accessible promoters (yellow) and enhancers (blue) for the VCaP- and LNCaP-

based architectural datasets. The fraction of spliceosome genes with active TF-bound regions for each TF is shown.

(C) Framework used to select FOXA1-controlled SRGs. p values refer to a two-tailed test of equal proportion comparing the proportion of active FOXA1 binding

sites on SRG promoters (yellow) and enhancers (blue). DE, differentially expressed.

(D) Bar plots indicate fold change (FC) in expression levels of FOXA1-controlled SRGs upon FOXA1 depletion in VCaP and PC3 cells. Color code indicates

DEseq2 adjusted p value. Bottom annotations depict the active FOXA1-bound regulatory regions for each SRG.

(E) ChIP-seq density read tracks of H3K27ac, H3K4me3, CTCF (two overlayed experiments) and FOXA1 (five overlayed experiments) in VCaP cells are shown

together with recurrent accessible regions of primary PC from assay for transposase-accessible chromatin using sequencing experiments, active FOXA1 binding

sites and RNA PolII chromatin interaction analysis by paired-end tag sequencing-derived FOXA1-bound regulatory regions.

(F) Representative western blotting images (left panel) of whole-cell lysates from PC3 cells transfected with 2 mg of plasmid DNA vectors encoding FOXA1 or

vector only (VO) control using antibodies to FOXA1 and ACTB. ACTB-normalizedmean fold change in protein expression compared with control are shown below

the upper blot image. Bar plots (right panel) depict the mean fold change in expression of candidate SRGs measured by qRT-PCR upon FOXA1 overexpression

(biological triplicates). Error bars correspond to standard error of the mean. Two-tailed t test was used to compare conditions (*p % 0.05).
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Of these, HNRNPK, HNRNPL, and SRSF1 particularly drew

our interest as they harbor active FOXA1 binding sites in both

promoter and interacting enhancer regions in both VCaP- and

LNCaP-based datasets (Figure 1D). To probe the transcriptional

architecture of these SRGs, we included ChIP-seq data for

H3K27ac (marker of active enhancer), H3K4me3 (marker of

active promoter), and CTCF (marker of topologically associating

domain boundary element) in the corresponding PC cells. We
found that FOXA1 binds to the promoter (marked by

H3K4me3) and cognate active enhancers (marked by

H3K27ac), within chromatin loops (delimited by CTCF sites) of

HNRNPK (Figure 1E) and the other two SRGs (Figure S3).

To test the robustness of our results, we profiled the expres-

sion of these three FOXA1-controlled SRGs by qRT-PCR on

FOXA1 siRNA-treated and control samples from VCaP, PC3,

LNCaP, and DU145 cell lines. We observed a significantly
Cell Reports 40, 111404, September 27, 2022 3



Article
ll

OPEN ACCESS
reduced expression ofHNRNPK andSRSF1 in themajority of PC

cell lines upon FOXA1 depletion (Figures S4A–S4D). Consis-

tently, ectopic expression of FOXA1 protein in PC3 cells resulted

in a significant increase in HNRNPK and SRSF1 expression

compared with the control (Figure 1F).

Overall, these results clearly demonstrate that FOXA1 directly

drives SRG expression, particularly HNRNPK and SRSF1, by

preferentially binding cognate chromatin-accessible active

enhancers. The direct transcriptional control of FOXA1 primarily

impacts on splicing factors.

FOXA1 calibrates AS in PC, predominantly within SRGs
As we found that FOXA1 primarily controls expression of

splicing factors, we next sought to determine its impact on

the downstream AS landscape of PC. To do this, we explored

the inclusion level of 60,699 alternatively spliced exons in their

corresponding transcripts (i.e., percent spliced in [psi or J])

across 384 primary tumors (Kahles et al., 2018). We sought

to assess the impact of FOXA1 on AS by quantifying exon in-

clusion changes, in terms of mean and standard deviation, be-

tween tumors with high FOXA1 expression (R75th percentile of

expression distribution) and the remaining ones. To select

exons with a significant splicing association with high FOXA1

expression, we employed two non-parametric statistical tests

followed by bootstrapping simulations to control for sample

size differences and estimate empirical significance levels

(see STAR Methods and Figure S5A). We identified 7,121 AS

exons that had significant inclusion changes between tumors

with high FOXA1 expression and the remaining ones (i.e.,

FOXA1-regulated exons). Whereas, 23,318 exons had non-sig-

nificant inclusion changes upon FOXA1 high expression (i.e.,

FOXA1-unregulated exons).

Exons can be concomitantly included and excluded in

different transcripts from the same gene leading to populations

of mixed isoforms (J = 0.5) or dominant isoforms (J = 0 or 1)

(Agirre et al., 2021). To gain insights into rewiring of the AS land-

scape by FOXA1 in this light, we examined the trajectory of inclu-

sion changes driven by high FOXA1 expression in terms of their

mean and standard deviation across primary PCs (i.e., Dm(J)

and Ds(J), respectively, Figure 2A). To do so, we measured

the cumulative distributions of positive and negative splicing

changes (i.e., Dm(J) and Ds(J)) starting from the mean inclusion

level of 0.5 (i.e., mixed isoform population) to the boundaries of

0 and 1 (i.e., dominant isoform population). As a reference, we

calculated the empirical distribution of the expected number of

exons with splicing changes ranging from mixed to dominant

isoform populations based on the assumption of an equal prob-

ability of positive and negative changes (see STAR Methods).

Lowly included events were inhibited across tumors with high

FOXA1 expression compared with remaining ones, whereas

highly included events were enhanced by FOXA1 (Figure 2B,

left panel). Concomitantly, exons were more uniformly spliced

across tumors with high FOXA1 expression than remaining

ones (Figure 2B, right panel). For a quantitative analysis of this

phenomenon, we stratified FOXA1-regulated events into four

groups according to three inclusion cutoffs (i.e., m(J)primary

PC = 0.15, 0.50, and 0.85). For each group, we compared the pro-

portion of events with positive and negative Dm(J) and Ds(J).
4 Cell Reports 40, 111404, September 27, 2022
Lowly included exons (m(J)primary PC < 0.15) were significantly

FOXA1 inhibited, whereas mid or highly included exons (m(J)pri-

mary PC>0.5) were significantly enhanced by FOXA1 (Figure 2B,

left panel). Furthermore, exons were significantly uniformly

spliced across tumors with high FOXA1 expression (blue bars)

regardless of their inclusion levels (two-tailed exact binomial

test p < 10�3; Figure 2B, right panel). Together, these results indi-

cate that FOXA1 lessens the noise of isoform production toward

a precise equilibrium, in a consistent way across primary tumors,

thereby promoting the assembly of dominant isoforms in PC.

To test this finding, we identified differentially alternatively

spliced exons by FOXA1 from our RNA-seq data in VCaP and

PC3 cells. We stratified these exons into the four groups of

exon inclusion (see above) and compared the proportion of

FOXA1-inhibited and -enhanced exons in each group. We found

that lowly included exons were significantly FOXA1 inhibited in

both cell lines (Figures 2C and 2D). These data confirm the cali-

brating effect of FOXA1 on the AS equilibrium of PC, with a prom-

inent role for FOXA1 in inhibiting lowly included AS events.

Finally, to characterize the impact of FOXA1-mediated AS

regulation on fundamental biological processes, we performed

over-representation analysis of genes harboring FOXA1-regu-

lated AS events in primary tumors and cell lines. Out of 186 ca-

nonical KEGG pathways, the spliceosome gene set was the

top-ranked affected process in all datasets (Figure 2E) and by

AS event category (Figure S5B). These results suggest that

FOXA1 significantly impacts on AS of splicing factors and not

just their expression.

Overall, our comprehensive analysis demonstrates that

FOXA1 calibrates AS toward an equilibrium further promoting

the assembly of dominant isoforms in PC. This phenomenon is

particularly evident for splicing factors.

FOXA1 controls the inclusion of NMD-determinant
exons
Splicing factors can regulate their own mRNAs by controlling the

inclusion of nonsense mediated decay (NMD)-determinant

exons (Kurosaki et al., 2019). By selectively including premature

termination codon (PTC)-introducing and PTC-preventing

exons, these transcripts can be targeted for degradation by

NMD (Figure 3A). Therefore, we sought to assess the regulation

of NMD-determinant exons by FOXA1. Using a list of 15,518

NMD-determinant cassette exons (CEs) (Pervouchine et al.,

2019), we found a significant enrichment of this class of exons

among FOXA1-regulated exons (Figure 3B). By inspecting the

distribution of mean inclusion changes in tumors with high

FOXA1 expression compared with remaining ones, we found

that FOXA1-regulated PTC-introducing CEs were significantly

inhibited, whereas PTC-preventing events were significantly

enhanced compared with controls (Figure 3C). These results

suggest that FOXA1 predominantly calibrates AS toward domi-

nant isoforms that escape NMD.

By employing RNA-seq data from FOXA1-depleted VCaP and

PC3 cells, we confirmed that PTC-introducing exons were signif-

icantly inhibited by FOXA1 relative to controls in both cell lines

(Figure S5C). This was especially true for NMD-determinant

exons in SRGs. Specifically, PTC-introducing exons were en-

riched for FOXA1-inhibited exons (Figure 3D, bottom-left
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Figure 2. FOXA1 calibrates the alternative splicing equilibrium of PC by enhancing the production of dominant isoforms

(A) Overview of alternatively spliced exon trajectories in the space defined bymean and standard deviation (SD) of exon inclusion levels (Js). Color codes indicate

positive (red) and negative (blue) changes of mean and SD of Js between FOXA1 highly expressing tumors and remaining ones.

(B) Cumulative distribution plots depict the number (N) of exons with either positive (red) or negative (blue) changes ranging from m(J)primary PC of 0.5 (i.e., mixed

isoforms) to the boundaries of 0 and 1 (i.e., dominant isoforms). Dashed lines represent the expected mean cumulative distribution of events with inclusion

changes generated by 1,000Monte Carlo simulations. Gray area represents confidence intervals (5%–95%). Histograms of the number of exonswith positive and

negative changes are superimposed on the x axis. On left panel, a preponderance of blue over red indicates that FOXA1 mostly inhibits exon inclusion, whereas

the dominance of red compared with blue indicates amajor enhancement of exon inclusion by FOXA1. On right panel, a preponderance of blue over red indicates

that exons were more uniformly spliced across tumors by FOXA1, whereas the dominance of red compared with blue indicates more heterogeneous inclusion

upon high FOXA1 expression.

(C and D) Cumulative distribution plots depict differentially alternatively spliced events (N) with positive (red) and negative (blue) mean inclusion changes upon

FOXA1 depletion in VCaP (C) and PC3 (D) cells ranging frommixed (i.e., m(J) = 0.5) to dominant (i.e., m(J) = {0,1}) isoform population. Histograms of the number of

exons with positive and negative changes are superimposed on the x axis. A preponderance of blue over red indicates that FOXA1mostly inhibits exon inclusion.

(E) Over representation analysis performed on genes harboring FOXA1-regulated AS events in primary PCs and cell lines. Shape size and gene ratio indicate the

number (from 12 to 59) and the fraction of selected genes in each pathway, respectively. Color key represents the statistical significance (FDR) of the enrichment.

Only top 5 enriched pathways (FDR < 0.1), if any, are shown and sorted by statistical significance. For (B–D), stars indicate the significance of two-tailed exact

binomial tests comparing the abundances of exons with positive and negative changes against a null hypothesis with probability = 0.5 in four groups of Js.

**p <10�2 and ***p < 10�3.
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quadrant), whereas PTC-preventing exons were predominantly

FOXA1-enhanced exons (Figure 3D, top-right quadrant).

Overall, these results indicate that the enhancement of domi-

nant isoform production by FOXA1 includes those that escape

NMD, particularly in splicing factors.

FOXA1 mediates exon silencing by controlling trans-

acting factors within an ‘‘exon definition’’ mechanism
Alternatively spliced CEs have weaker splice sites (ss), are

strongly conserved during evolution, and are usually shorter

with longer flanking introns (Keren et al., 2010; Mazin et al.,

2021). Therefore, we sought to delineate the features of

FOXA1-mediated exon definition in primary PC. By performing

conventional ss strength analysis, we did not find any significant

difference in ss scores between FOXA1-regulated and -unregu-

lated exons (Figure S5D). However, compared with FOXA1-un-
regulated events, FOXA1-regulated exons were (1) significantly

shorter with longer flanking introns (Figure 4A) and (2) more

conserved across 100 species, especially within 100 nt of the

exon/intron junctions (Figure 4B). The stronger evolutionary

constraint on FOXA1-regulated exons suggests functionality.

These results indicate that FOXA1-mediated exon definition de-

pends on exon length and conservation, demonstrating a model

in which FOXA1 controls exons in trans.

Furthermore, splicing is a co-transcriptional process in which

chromatin modifications can impact on recruitment of splicing

factors to the pre-mRNA of a minority of exons to enhance their

definition (Agirre et al., 2021). To investigate chromatin involve-

ment in FOXA1-mediated exon definition, we collected 876

CEs marked by combinations of histone modifications and

measured their over-representation within FOXA1-regulated

exons relative to unregulated events. We found that a minority
Cell Reports 40, 111404, September 27, 2022 5
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of FOXA1-regulated exons were significantly enriched for

splicing-associated chromatin signatures (SACS; Figure 4C)

compared with FOXA1-unregulated events, particularly for

SACS marking generally excluded exons (i.e., SACS 4, 5, and

7; Figure 4C, two-tailed Fisher’s exact test, p = 7.6 3 10�6).

These findings suggest that chromatin modifications may also

contribute to FOXA1-mediated exon regulation for a subset of

events.

To gain insights into trans-acting regulation of FOXA1-medi-

ated AS, we performed a position-dependent analysis of cis-

acting sequences, which define splicing regulation by trans-

acting factors. To do so, we integrated our conventional RNA

motifs analysis (Cereda et al., 2014) with RBP binding data and

associated cis-acting sequences to cognate trans-acting factors

(see STAR Methods). In brief, we searched for clusters of tetra-

mers that were enriched at specific positions around FOXA1-

regulated exons compared with unregulated events. Next, in

light of the reproducibility of splicing factor binding positions

across cell types (Van Nostrand et al., 2020b), we searched for

RBP crosslinking sites from eCLIP experiments in HepG2 cells

at FOXA1-regulated exons with tetramer instances. Finally, we

associated tetramers to cognate RBPs on similarity of (1) their

sequence with canonical RBP consensus motifs and (2) posi-

tion-dependent representation of their occurrences (i.e., splicing

maps) with those of RBP crosslinking sites at exon-intron

junctions.

We identified 13 tetramers enriched at FOXA1-regulated

exons (Figure 4D) and associated with 10 FOXA1-regulated

SRGs (Figure 4E). The majority of tetramers (77%) were enriched

at FOXA1-inhibited exons, corroborating the propensity for an

extensive FOXA1-mediated exon silencing. In particular, T-rich

tetramers were strongly enriched at the 3ʹ ss of FOXA1-inhibited

exons (Figure 4D). These motifs were associated with RBPs that

canonically bind within the upstream intron, predominantly

FOXA1-controlled proteins PTBP1, U2AF2, HNRNPC, and

HNRNPK (Figure 4E).

Together, our data describe the FOXA1-mediated splicing

code in primary PC where different trans-acting splicing factors

control exon inclusion. In particular, FOXA1-mediated exon

silencing appears to preferentially rely on splicing repressors

acting at the 3ʹ ss, which are directly controlled by FOXA1.

FOXA1-regulated NMD-determinant exons impact on
PC patient survival
In light of recent evidence implicating PTC-introducing exons in

lung cancer disease-free survival (Thomas et al., 2020), we

sought to investigate whether the subset of FOXA1-regulated

NMD-determinant exons could impact PC patient prognosis.
(C) Distribution of mean inclusion changes of NMD-determinant FOXA1-

regulated and FOXA1-unregulated exons.

(D) Bar plots show the proportion of PTC-introducing and PTC-preventing

exons among FOXA1-regulated and FOXA1-unregulated exons. Exons are

stratified according to their positive (red) and negative (blue) mean inclusion

change upon high expression of FOXA1. The number of exons in each cate-

gory is indicated. Stars indicate statistical significance of two-tailed Fisher’s

exact test (B and D) and Wilcoxon rank-sum test (C). *p < 0.05, **p < 10�2,

***p < 10�3.
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To do so, we firstly divided FOXA1-regulated NMD-determi-

nant CEs into four groups based on Dm(J) (Figure S5F). We

then stratified 332 primary PC patients with available clinical

data according to low and high cumulative event inclusion of

each group (see STAR Methods). Of these groups, univariate

Cox proportional hazard models revealed that a low cumulative

inclusion of FOXA1-inhibited PTC-introducing exons was signif-

icantly associated with a longer patient survival relative to high

inclusion (Figure 5A, upper left panel). Similarly, a high cumula-

tive inclusion of FOXA1-enhanced PTC-preventing exons was

significantly associated with a better prognosis than low cumu-

lative inclusion (Figure 5A, bottom right panel).

Secondly, to determine the impact of each individual NMD-

determinant exon on patient survival, we again used a univariate

Cox proportional hazard model to calculate the hazard ratio (HR)

associated with exon inclusion. Overall, 85 exons were associ-
ated with survival (i.e., two-tailed log rank test p < 0.05). Most

of the exons associated with poor prognosis (62%, n = 24,

HR > 1, i.e., ‘‘harmful’’) were FOXA1-inhibited PTC-introducing

CEs (Figure 5B, top quadrants). Conversely, exons associated

with favorable prognosis (HR < 1, i.e., ‘‘favorable’’) were mostly

FOXA1-enhanced PTC-preventing exons (61%, n = 28; Fig-

ure 5B, bottom quadrants). Together, these results suggest

that FOXA1-mediated AS of NMD-determinant exons predomi-

nantly results in a positive patient survival by silencing harmful

PTC-introducing exons and enhancing the inclusion of favorable

PTC-preventing ones.

However, of eight most prognostic exons, six were harmful

(i.e., FDR < 0.05; Figure 5C). Four exons were inhibited by

FOXA1, whereas exons in FLNA and NDGR1 were enhanced.

To evaluate which of these exons exhibited the greatest link

with FOXA1 expression, we employed our multivariable
Cell Reports 40, 111404, September 27, 2022 7
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covariance analysis (see STAR Methods). Among all events,

FLNA exon 30 inclusion levels showed the strongest positive

contribution to the overall correlation with FOXA1 expression

(Figures 5D and S5G). Indeed, FLNA exon 30 inclusion was

significantly higher in tumors with high FOXA1 expression than

remaining ones (Figure S5H).

Therefore, we sought to determine whether primary PCswith a

prognostic inclusion level of FLNA exon 30 also exhibit high

FOXA1 expression. Using the maximally selected rank statistics

approach (Lauria et al., 2020; Lausen and Schumacher, 1992),

we identified a FLNA exon 30 (J = 0.26) as the optimal cutpoint

defining primary PC patient prognosis (Figures 5E and S5I). By

stratifying patients on this cutpoint, we observed a larger propor-

tion of high FOXA1-expressing tumors with prognostic inclusion

level of FLNA exon 30 than remaining ones (Figure 5F). This result

corroborates the link between high FOXA1 expression and high

FLNA exon 30 inclusion.

Finally, we validated FLNA exon 30 inclusion in PC3 cells upon

FOXA1 depletion by digital droplet PCR (ddPCR) and endpoint

PCR splicing assays and confirmed the dependence of this

exon on FOXA1 (Figures 5G and S4E).

Overall, these results reveal that the AS of FOXA1-regulated

NMD-determinant exons has a clinically relevant impact on PC

recurrence. FOXA1-mediated AS inhibits the majority (75%) of

harmful PTC-introducing exons and enhances almost all (90%)

favorable PTC-preventing exons. However, FOXA1 also en-

hances a small subset of NMD-determinant exons, such as

FLNA exon 30, which predicts disease recurrence, and therefore

may drive a more aggressive cancer phenotype.

FLNA exon 30 promotes PC cell growth and is controlled
by the FOXA1 target SRSF1
Being the most harmful NMD-determinant exon associated with

FOXA1 expression, we sought to investigate the impact of FLNA

exon 30 on PC cell phenotypes. To do so, we transfected AR�

PC3 cells with ectopic expression vectors with and without

exon 30 (i.e., FLNA+ex30 and FLNADex30, respectively), and

confirmed exon 30 expression levels by endpoint PCR splicing

assays (Figures S4F and S4G). Using cell viability MTT and sur-

vival clonogenic assays, we observed a significant increase in

growth and survival, respectively, of cells overexpressing

FLNA+ex30 compared with the case for FLNADex30 (Figure 6A).
Figure 5. FOXA1-regulated NMD-determinant exons predict PC patien

(A) Kaplan-Meier plots of disease-free survival for primary PC patients stratified

NMD-determinant exons that are inhibited or enhanced by high FOXA1 expression

Univariate HRs with 95% confidence intervals (CI) and two-tailed log rank test p

(B) Bar plots show the number of FOXA1-inhibited or -enhanced NMD-determin

bottom panel) impact on patient disease-free survival (two-tailed log rank test p

(C) Kaplan-Meier plots of disease-free survival for primary PC patients with low an

of patients at risk (Nrisk) are reported at each time point on the x axis. Univariate

(D) Results of multivariable covariance analysis between FOXA1 expression and th

the standardized b coefficients of the model.

(E) Kaplan-Meier plots of disease-free survival for primary PC patients stratified on

rank statistics = 5.35). Number of patients at risk (Nrisk) are reported at each time p

are shown.

(F) Bar plots show the proportions of high FOXA1 expressing and remaining tum

(G) Bar plots showJs of FLNA exon 30 in PC3 cells measured by ddPCR upon FO

tailed t test was used to compare conditions: ***p < 0.001.
To determine putative regulators of FLNA exon 30 inclusion

associated with FOXA1 expression, we performed our multivari-

able covariance analysis between FLNA exon 30 inclusion and

the expression levels of ten FOXA1-controlled SRGs (see

STAR Methods). SRSF1, followed by HNRNPK, expression

was the strongest positive contributor to the correlation with

FLNA exon 30 inclusion, while HNRNPLL expression showed

the greatest association with exon 30 skipping (Figure 6B).

To further evaluate the contribution of SRSF1 to FLNA exon 30

inclusion, in the context of FOXA1, we stratified primary PC sam-

ples according to high and low expression of these genes (i.e.,

75th and 25th percentile of expression distributions, respec-

tively). We found a significantly higher inclusion of FLNA exon

30 in samples with high expression of both FOXA1 and SRSF1

compared with other groups of samples (Figure 6C).

We next assessed SRSF1 binding around FLNA exon 30 using

eCLIP-derived crosslinking information in HepG2 cells. We

observed strong binding of SRSF1 in the surrounding exons,

consistent with a predominant role of FOXA1-controlled

SRSF1 in exon 30 incorporation (Figure 6D). To test this, we per-

formed siRNA-mediated depletion of SRSF1 in PC3 cells (Fig-

ure S4H). Using endpoint PCR and ddPCR splicing assays, we

measured a significant decrease in FLNA exon 30 inclusion in

siRNA conditions compared with controls (Figures 6E and 6F).

Taken together, these findings demonstrate that FLNA exon

30 inclusion is regulated by SRSF1, which is directly controlled

by FOXA1. Increased expression of FLNA exon 30 confers a

growth advantage to PC cells, which may drive poorer patient

prognosis.

DISCUSSION

In this study, by analysis of transcriptomics, protein-mRNA inter-

actions, epigenomics, and chromosome conformation, we

reveal that the pioneer TF FOXA1 orchestrates AS regulation in

PC impacting on patient survival.

Collectively, our results indicate that FOXA1 expression is a

predominant hallmark of the transcriptional dysregulation of

SRGs. As a pioneer factor, FOXA1 opens up nucleosomal do-

mains for DNA binding by distinct TFs (Fei et al., 2019; Lupien

et al., 2008). This pliant mechanism (Ramanand et al., 2020)

may explain why FOXA1 hallmarks the global SRG dysregulation
t prognosis

according to the 25th and 75th percentile of the cumulative inclusion levels of

. Numbers of patients at risk (Nrisk) are reported at each time point on the x axis.

values are shown where statistically significant.

ant exons with a significant harmful (HR > 1, top panel) or favorable (HR < 1,

< 0.05).

d high inclusion of the six most prognostic harmful exons (FDR < 0.05). Number

HRs with 95% CI and two-tailed log rank test FDR are shown.

e inclusion levels of the six most prognostic harmful exons. Color key indicates

the optimal FLNA exon 30 inclusion level (i.e.,JR 0.258, maximally selected

oint on the x axis. Univariate HRs with 95%CI and two-tailed log rank test FDR

ors with FLNA exon 30 J R 0.258.

XA1 depletion with one siRNA duplex (si1, 40 nM for 72 h). For (F) and (G), two-
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Figure 6. FLNA exon 30 inclusion promotes PC cell growth and is controlled by SRSF1

(A) Bar plot shows mean fold change in PC3 cell growth (left panel) measured by MTT assay following transfection with 100 ng of plasmid DNA vector encoding

FLNA with or without exon 30 (i.e., FLNA+ex30 or FLNADex30, respectively, or VO control, biological triplicates). Bar plot shows mean fold change in PC3

clonogenic potential (middle and right panels) measured by crystal violet assays following transfection with 2 mg of plasmid DNA vector encoding FLNA with or

without exon 30 (i.e., FLNA+ex30 or FLNADex30, respectively, or VO control). Both colony number (middle panel) and staining intensity (right panel) are shown

(five biological replicates). Two-tailed t test was used to compare conditions.

(B) Results of multivariable covariance analysis between FLNA exon 30 inclusion levels and SRG expression levels. Color key indicates the standardized b

coefficients of the model.

(C) Distribution of FLNA exon 30 inclusion levels in primary PC patients stratified by high or low expression (R75th and%25th percentile, respectively) of FOXA1

and SRSF1. Two-tailed Wilcoxon rank-sum test was used to compare conditions. Only significant results are reported.

(D) SRSF1 eCLIP density read distribution in HepG2 cells in the alternatively spliced region of FLNA exon 30. Significant crosslinked sites detected by iCounts for

SRSF1 are shown in black.

(E and F) Bar plots showJs of FLNA exon 30 in PC3 cells upon depletion of SRSF1with one siRNA duplex (40 nM for 72 h) in PC3 cells quantified by (E) endpoint

PCR splicing assays using the QIAxcel capillary electrophoresis device and (F) by ddPCR. Representative capillary gel electrophoretogram (QIAxcel) shows two

bands representing FLNA transcripts including or excluding exon 30 which were quantified to determineJ (E) (left panel). Two-tailed t test was used to compare

biological triplicates of the different conditions.
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to a greater extent than the non-pioneer TFs, of which AR and

MYCare documented to impact splicing regulation in PC (Phillips

et al., 2020; Shah et al., 2020). Therefore, FOXA1 may open mul-

tiple channels to transmit transcriptional signals to SRG loci as

exemplified by a common pioneer function for AR- and MYC-

driven PC transcriptional programs (Barfeld et al., 2017).

By assessing AS changes in primary PC and cell lines, we

demonstrate that FOXA1 calibrates the landscape of exon utili-

zation toward an equilibrium that solidifies the production of

dominant isoforms. This phenomenon is largely achieved by

silencing lowly included exons in a consistent manner across tu-

mors, but crucially also by enhancing highly included ones.

Therefore, FOXA1 ultimately limits protein diversity toward iso-

forms that are functional for cells. We show that exons respond-

ing to FOXA1 are alternatively spliced by an ‘‘exon definition’’

mechanism, being shorter with longer flanking introns, strongly

conserved across species, and, for a small fraction, marked by

chromatin modifications (Agirre et al., 2021; Keren et al., 2010).

A smaller exon size and higher intronic sequence conservation
10 Cell Reports 40, 111404, September 27, 2022
have been associated with a greater exon silencing, under evolu-

tionary constraints, to control relative isoform frequencies (Baek

and Green, 2005). By integrating analyses of cis-acting elements

and trans-acting factors, we demonstrate that FOXA1 calibrates

AS by enlisting splicing factors under its transcriptional control,

including binding of PTBP1, U2AF2, and HNRNPC at 30 ss (König
et al., 2010; Sutandy et al., 2018; Xue et al., 2009), and HNRNPK

at upstream intron-exon boundary and within downstream in-

trons, respectively (Van Nostrand et al., 2020a, 2020b). It is fasci-

nating that FOXA1 increases the inclusion of exons that are

already highly included while reducing lowly included exons.

This latter group indicates that FOXA1 is a genuine regulator of

AS and not just an enhancer of splicing efficiency per se.

It is likely significant that FOXA1-mediated AS preferentially

impacts on SRGs themselves, suggesting that FOXA1 may be

involved in a known regulatory feedback loop exploited by

splicing factors to modulate their own protein expression levels

(Lareau et al., 2007). Interestingly, our results indicate that high

FOXA1 expression in PC mostly inhibits the inclusion of
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NMD-determinant PTC-introducing ‘‘poison’’ exons.We hypoth-

esize, therefore, that FOXA1-mediated AS restricts proteome di-

versity by influencing isoform degradation, particularly in SRGs.

Recently, MYC has been implicated as a regulator of AS-coupled

NMD in PC (Nasif et al., 2018; Pervouchine et al., 2019; Phillips

et al., 2020). It is tempting to speculate that FOXA1, as a pliant

regulator, may pioneer MYC to control transcription of specific

SRGs and fine-tune AS in PC. Further functional studies are

necessary to determine whether FOXA1 cooperates with spe-

cific TFs, chromatin modifiers, and RNA polymerase II, to rewire

the AS landscape of PC.

Clearly the systems-wide impact on ASmediated by FOXA1 is

likely to have a profound effect on cancer severity. From a clinical

perspective, we found that FOXA1 enhanced the inclusion of two

NMD-determinant exons that are strong biomarkers of disease

recurrence. Of these, we established a role for the FOXA1-

enhanced PTC-preventing exon 30 in the cancer gene FLNA

as a promoter of PC cell growth. We demonstrate that the inclu-

sion of FLNA exon 30 is controlled primarily by SRSF1, which

was the first proto-oncogenic splicing factor enacting some of

the oncogenic functions of MYC (Das et al., 2012).

In summary, we reveal a novel role for the pioneer TF FOXA1 in

orchestrating AS regulation in PC at different stages of gene

expression. By transcriptionally regulating trans-acting factors,

FOXA1 exploits an exon definition model to control relative iso-

form expression thereby fine-tuning proteome diversity. This

splicing equilibrium favors the production of dominant isoforms,

especially including those that escape NMD. FOXA1-mediated

splicing regulation affects clinically relevant coding regions of

the genome underlying PC patient survival.

Limitations of the study
Our characterization of AS regulation in PC is limited to the

contribution of four key oncogenic TFs with recurrent activating

alterations across PC patients. In light of a long tail of oncogenic

drivers underpinning a heterogeneous disease, we cannot

exclude the influence of other transcriptional regulators. The

analysis of FOXA1-mediated AS regulation was limited to pri-

mary PCs as splicing data for mCRPCs were not available.

Although we recapitulated our results on metastatic PC cells,

the generalizability of our findings to other clinical PC disease

states remains to be elucidated.

Our work is based on novel computational analyses that pro-

vide unique insights into AS regulation by FOXA1, including the

involvement of candidate SRGs and, to a minor extent, chro-

matin regulators. However, the mechanistic details as to how

FOXA1 modulates SRG expression, cooperates with epi-tran-

scriptional regulators, and affects AS decisions remain ques-

tions to address in future studies. Althoughwe highlighted candi-

date prognostic AS events that could be exploited as biomarkers

and therapeutic targets, further studies are required to determine

their value in the context of FOXA1. Furthermore, a lack of pre-

clinical phenotyping in our study limits the immediate clinical

translation of our findings.

A potential confounder in the analysis of PC transcriptomes

from bulk sequencing experiments is the contamination in low

purity samples arising from benign prostatic epithelial, stromal,

or immune cells. However, we performed computational valida-
tions showing that FOXA1 orchestrates AS regulation regardless

of purity constraints (Figure S6; STAR Methods).
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Denichenko, P., Mogilevsky, M., Cléry, A., Welte, T., Biran, J., Shimshon, O.,

Barnabas, G.D., Danan-Gotthold, M., Kumar, S., Yavin, E., et al. (2019). Spe-

cific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat.

Commun. 10, 1590.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,

P., Chaisson,M., andGingeras, T.R. (2013). STAR: ultrafast universal RNA-seq

aligner. Bioinformatics 29, 15–21.

Fei, T., Li, W., Peng, J., Xiao, T., Chen, C.-H., Wu, A., Huang, J., Zang, C., Liu,

X.S., and Brown, M. (2019). Deciphering essential cistromes using genome-

wide CRISPR screens. Proc. Natl. Acad. Sci. USA 116, 25186–25195.

Feng, H., Bao, S., Rahman,M.A.,Weyn-Vanhentenryck, S.M., Khan, A.,Wong,

J., Shah, A., Flynn, E.D., Krainer, A.R., and Zhang, C. (2019). Modeling RNA-

binding protein specificity in vivo by precisely registering protein-RNA cross-

link sites. Mol. Cell 74, 1189–1204.e6.

Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland,

J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE

reference annotation for the human and mouse genomes. Nucleic Acids

Res. 47, D766–D773.

Frankiw, L., Baltimore, D., and Li, G. (2019). Alternative mRNA splicing in can-

cer immunotherapy. Nat. Rev. Immunol. 19, 675–687.
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Antibodies

Rabbit monoclonal [EPR10881] anti-FOXA1 Abcam Abcam Cat# ab23738; RRID:AB_2104842

Mouse monoclonal anti-Beta-Actin Sigma Sigma-Aldrich Cat# A1978; RRID:AB_476692

Mouse monoclonal [G122-434] anti-AR BD Biosciences BD Biosciences Cat# 554225; RRID:AB_395316

Mouse monoclonal [96] anti-SRSF1 Thermo Fisher Scientific Thermo Fisher Scientific Cat# 32-4500;

RRID:AB_2533079

Goat Anti-Mouse Immunoglobulins/HRP antibody Agilent Technologies Agilent Cat# P0447; RRID:AB_2617137

Goat Anti-Rabbit Immunoglobulins/HRP antibody Agilent Technologies Agilent Cat# P0448; RRID:AB_2617138

Chemicals, peptides, and recombinant proteins

ViaFect Promega Cat# E4981

RNAiMax Thermo Fisher Scientific Cat# 13778-075

PVDF (polyvinylidene difluoride) membrane Sigma Cat# 000000003010040001

Bovine Serum Albumin (BSA) Sigma Cat# A9418

Luminata Crescendo Western HRP substrate Thermo Fisher Scientific Cat# 10776189

TRI Reagent Invitrogen Cat# AM9738

SYBR green master mix NEB Cat# M3003

Taq Polymerase NEB Cat# M0273

Deoxynucleotide (dNTP) Solution Mix NEB Cat# N0447

(3-(4,5-Dimethylthiazol-2-yl)-2,

5-Diphenyltetrazolium Bromide) (MTT)

Alfa Aesar Cat# L11939.06

Dimethyl Sulfoxide (DMSO) Thermo Fisher Scientific Cat# 10213810

Critical commercial assays

TruSeq total RNA Illumina Cat# 20020596

TruSeq stranded mRNA Illumina Cat# 20020594

Q5 Site-Directed Mutagenesis Kit NEB Cat# E0554S

Bicinchoninic acid (BCA) assay Thermo Fisher Scientific Cat# 10678484

RNA Clean and Concentrator Zymo Research Cat# R1013

Qubit RNA HS Assay Kit Thermo Fisher Scientific Cat# Q32852

RNA 6000 Nano kit Agilent Technologies Cat# 5067-1511

cDNA reverse transcription kit Applied Biosystems Cat# 4368814

QIAxcel DNA High Resolution Kit (1200) QIAgen Cat# 929002

ddPCRTM Supermix for Probes (No dUTP) Bio-Rad Cat# #1863024

Deposited data

PC3 and VCaP RNA-Seq This Paper GEO: GSE193127

Differential splicing results in

PC3 and VCaP RNA-seq data

This Paper Mendeley Data: https://doi.

org/10.17632/gtyfsryffj.1

The Cancer Genome Atlas (TCGA) RNA-Seq (Network Cancer, 2015) TCGA Data Matrix portal

(Level 3, https://tcga-data.

nci.nih.gov/tcga/data

AccessMatrix.htm)

Metastatic castration-resistant PC,

Stand Up 2 Cancer (SU2C) RNA-Seq

(Robinson et al., 2015) cBioPortal.org

Neuroendocrine PC (Beltran et al., 2016) cBioPortal.org

Publically available ChIP-seq experiments Gene Expression Omnibus (GEO) See Table S1 for a list

of accession numbers
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RNA PolII ChIA-PET data (Ramanand et al., 2020) https://www.jci.org/articles/

view/134260/sd/2

ATAC-seq data (Corces et al., 2018) https://gdc.cancer.gov/about-

data/publications/ATACseq-AWG

Splicing data of primary PC (Kahles et al., 2018) https://gdc.cancer.gov/about-data/

publications/PanCanAtlas-Splicing-2018

Experimental models: Cell lines

Human: DU145 ATCC ATCC Cat# HTB-81; RRID:CVCL_0105

Human: PC3 ATCC ATCC Cat# CRL-7934; RRID:CVCL_0035

Human: LNCaP ATCC ATCC Cat# CRL-1740; RRID:CVCL_1379

Human: VCaP ATCC, Yong-Jie Lu,

Barts Cancer Institute, UK

RRID: CVCL_WZ27

Oligonucleotides

siRNA See Table S1 See Table S1

Primers See Table S1 See Table S1

Recombinant DNA

Plasmid: pcDNA3.1-VO Professor Jason Carroll,

Cancer Research UK

Cambridge Institute, UK

N/A

Plasmid: pcDNA3.1-FOXA1 Professor Jason Carroll,

Cancer Research UK

Cambridge Institute, UK

N/A

Plasmid: pcDNA3-myc-Flna

WT (FLNADex30)

Addgene: John Blenis,

(Woo et al., 2004)

RRID: Addgene_8982

Plasmid: pcDNA3.1-FLNA+ex30 This study N/A

Software and algorithms

Image Studio Lite v.5.2 LI-COR https://www.licor.com/bio/

image-studio-lite/ RRID:

SCR_013715

Quant Studio Design and

Analysis Software v1.5.1

Thermo Fisher Scientific https://www.thermofisher.

com/uk/en/home/global/forms/

life-science/quantstudio-3-5-

software.html

QIAxcel Screen Gel v1.6.0.10 QIAgen https://www.qiagen.com/us/

products/instruments-and-

automation/analytics-software/

qiaxcel-screengel-software/

Plate Reader Omega v.5.11.R3 BMG Labtech https://www.bmglabtech.com/

microplate-reader-software/

ImageQuantTL Amersham https://www.cytivalifesciences.

com/en/us/shop/molecular-biology/

nucleic-acid-electrophoresis–blotting–

and-detection/molecular-imaging-for-

nucleic-acids/imagequant-tl-8-2-image-

analysis-software-p-09518

R v.3.5.2 R Project for Statistical Computing R Project for Statistical Computing,

RRID:SCR_001905

RStudio v.1.3.1093 RStudio RStudio, RRID:SCR_000432

STAR v.2.7.3a (Dobin et al., 2013) STAR, RRID:SCR_004463

featureCounts – Subread v.2.0.0 (Liao et al., 2014) featureCounts, RRID:SCR_012919

R Bioconductor package – DESeq2 v.1.30.1 (Love et al., 2014) DESeq2, RRID:SCR_015687

R Bioconductor package - edgeR v.3.32.1 (Robinson et al., 2010) edgeR, RRID:SCR_012802

BEDTools v.2.29.2 (Quinlan and Hall, 2010) BEDTools, RRID:SCR_006646

(Continued on next page)

e2 Cell Reports 40, 111404, September 27, 2022

Article
ll

OPEN ACCESS

https://www.jci.org/articles/view/134260/sd/2
https://www.jci.org/articles/view/134260/sd/2
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018
https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018
https://www.licor.com/bio/image-studio-lite/
https://www.licor.com/bio/image-studio-lite/
https://www.thermofisher.com/uk/en/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.thermofisher.com/uk/en/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.thermofisher.com/uk/en/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.thermofisher.com/uk/en/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.qiagen.com/us/products/instruments-and-automation/analytics-software/qiaxcel-screengel-software/
https://www.qiagen.com/us/products/instruments-and-automation/analytics-software/qiaxcel-screengel-software/
https://www.qiagen.com/us/products/instruments-and-automation/analytics-software/qiaxcel-screengel-software/
https://www.qiagen.com/us/products/instruments-and-automation/analytics-software/qiaxcel-screengel-software/
https://www.bmglabtech.com/microplate-reader-software/
https://www.bmglabtech.com/microplate-reader-software/
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518
https://www.cytivalifesciences.com/en/us/shop/molecular-biology/nucleic-acid-electrophoresis--blotting--and-detection/molecular-imaging-for-nucleic-acids/imagequant-tl-8-2-image-analysis-software-p-09518


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R package – relaimpo v.2.2-5 (Grömping, 2006) https://CRAN.R-project.org/

package=relaimpo

R Bioconductor package –

GenomicFeatures v.1.38.2

(Lawrence et al., 2013) https://bioconductor.org/

packages/GenomicFeatures

R Bioconductor package –

GenomicRanges v.1.42.0

(Lawrence et al., 2013) https://bioconductor.org/packages/

GenomicRanges

R Bioconductor package –

clusterProfiler v.3.18.1

(Yu et al., 2012) clusterProfiler, RRID:SCR_016884

Whippet v.0.11 (Sterne-Weiler et al., 2018) Whippet, RRID:SCR_018349

RNAmotifs (Cereda et al., 2014) https://github.com/matteocereda/

RNAmotifs

MACRO-APE (Vorontsov et al., 2013) https://github.com/autosome-ru/

macro-perfectos-ape

R package – survival v.3.2-11 Terry M. Therneau https://CRAN.R-project.org/

package=survival

Scripts and data analysis This Paper Mendeley Data:

https://doi.org/10.17632/gtyfsryffj.1

Other

Un-cropped western blot images This Paper Mendeley Data:

https://doi.org/10.17632/gtyfsryffj.1

QIAxcel report files This Paper Mendeley Data:

https://doi.org/10.17632/gtyfsryffj.1

Agarose gel images This Paper Mendeley Data:

https://doi.org/10.17632/gtyfsryffj.1

Un-cropped colony assay wells This Paper Mendeley Data:

https://doi.org/10.17632/gtyfsryffj.1
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof Mat-

teo Cereda (matteo.cereda1@unimi.it).

Materials availability
Reagents used in this study are publicly available or available from the lead contact upon request.

Data and code availability
RNA-Seq data have been deposited at Gene Expression Omnibus (GEO) and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table. Original Western blot images have been deposited at Mendeley and are

publicly available as of the date of publication. The DOI is listed in the key resources table. This paper analyzes existing, publicly avail-

able data. These accession numbers for the datasets are listed in the key resources table.

All original code has been deposited at Mendeley and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
DU145 (ATCC Cat# HTB-81; RRID:CVCL_0105), PC3 (ATCC Cat# CRL-7934; RRID:CVCL_0035), LNCaP (ATCC Cat# CRL-1740;

RRID:CVCL_1379), and VCaP (ATCC, RRID: CVCL_WZ27) cells were obtained from ATCC and their identities were confirmed by

Short Tandem Repeat (STR) profiling (DDC Medical). All cell lines were isolated from Male subjects. Cells were incubated at 37�C,
5% CO2 in a humidified incubator. Cells were maintained at sub-confluency in RPMI-1640 medium (21875-034, Gibco) or DMEM

(41966-029, Gibco) containing 2 mM L-glutamine, supplemented with 10% foetal calf serum (FCS) (Gibco), 100 units/mL penicillin

and 100 mg/mL streptomycin (15140-122, Gibco) and regularly tested for the presence of mycoplasma.
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RNA-seq patient datasets
RNA sequencing (RNA-seq) data were obtained from The Cancer Genome Atlas (TCGA) Data Matrix portal (Level 3, https://

tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) and cBioPortal (Beltran et al., 2016; Cerami et al., 2012; Chen et al., 2013)

websites for 409 primary PCs, 118 mCRPCs and 15 NEPCs. The number of transcripts per million reads was measured starting

from the scaled estimate expression values provided for 20,531 genes (Cereda et al., 2016). For the metastatic castration-resistant

PC dataset, reads per kilobase of transcript per million mapped reads values were converted into transcripts per million. For each

transcription factor, the distribution of expression levels across samples was measured. A transcription factor was considered as

highly expressed if its transcripts per million value was R75th percentile of its expression distribution across samples (Cereda

et al., 2016) (Table S1).

Selection of splicing-related genes
A list of 128 genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) ‘spliceosome’ pathway was collected from MSigDb

version 5 (Subramanian et al., 2005). An additional list of 66 RNA-binding proteins was obtained from the RNAcompete catalogue

(Ray et al., 2013) and added to the 128 spliceosome genes. A final set of 148 genes with gene ontology terms related to splicing

was retained for further analyses as splicing-related genes.

Multivariable covariance analysis
Relative contributions of expression, or inclusion, levels of multiple factors (e.g. genes, exons), namely regressors, to the correlation

with a response variable (e.g. cumulative expression of splicing factors, FOXA1 expression) were measured using the following

approach. Normalized expression, or inclusion levels, of regressors were normalized using a near-zero variance filter, Yeo-

Johnson transformation, centering around their mean, and scaling by their standard deviation using the preProcess function in

the R ‘caret’ package with parameters method = c("center", "scale", "YeoJohnson", "nzv"). A generalized linear regression model

(GLM) was fitted to the response variable based on the normalized values of regressors using the glm function in the R ‘stats’ pack-

age. Relative importance of each regressor to the correlation measured by themodel was calculated using the function calc.relimp in

the R ‘relaimpo’ package (Grömping, 2006). This function divides the coefficient of determination R2 into the contribution of each

regressor using the averaging over orderings method (Lindeman, 1980). Confidence intervals were measured using a bootstrap pro-

cedure implemented in the function boot.relimp. For 1,000 iterations the full observation vectors were resampled and the regressor

contributions were calculated.

Architectural features of TF transcriptional control in prostate cancer
A list of 40,495 and 27,580 RNA Pol II–associated enhancer regions, defined by Chromatin Interaction Analysis by Paired-End Tag

sequencing (ChIA-PET) in VCaP and LNCaP cell lines, respectively, were obtained from Ramanand et al. (Ramanand et al., 2020). Of

these, 31,282 and 17,134 enhancers were associated with at least one putative regulated gene for VCaP and LNCaP cells, respec-

tively. Thus, a total of 115,855 and 41,921 enhancer-gene associations were retained for further analyses. Coordinates of 20,298 pro-

tein-coding genes were retrieved fromGENCODEGRCh37 version 28 (Frankish et al., 2019). Promoter regions were defined as 2,000

base pairs upstream and downstream of the transcription start sites of each gene using the promoter function from the R ‘Genomic-

Features’ package v.1.38.2 (Lawrence et al., 2013) with parameters: upstream = 2,000 and downstream = 2,000 (Figure S1B).

To select regulatory regions that are related to sites of active transcription in PC, 112,124 DNA accessible elements that were

defined as reproducible across Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) experiments of 26 primary un-

treated PC tumors were retrieved from the Genomic Data Commons (GDC) Portal (https://gdc.cancer.gov/about-data/publications/

ATACseq-AWG) (Corces et al., 2018). Genomic positions of accessible elements were lifted over from hg38 to hg19 reference

genome using liftOver version 366 (Kent et al., 2002). Only accessible elements in canonical chromosomes were retained. Promoter

and enhancer regions were intersected with PC-specific accessible elements with the intersectBed command from BEDTools

v.2.29.2 (Quinlan and Hall, 2010) using default parameters and only overlapping regions were retained. Candidate enhancer-gene

interactions were retained if associated with the related promoter, and enhancer-gene associations in which the enhancer overlap-

ped with the promoter of the same gene were discarded. Interactions smaller than 1 million base pairs were retained for further an-

alyses. Overall, 14,013 promoters and 39,479 and 21,645 enhancer-gene associations for VCaP and LNCaP cells, respectively, were

retained as PC-specific accessible elements.

To identify TF binding regions in LNCaP and VCaP cells, significant peak calls (i.e. p-value%10�5) of 22 chromatin immunoprecip-

itation sequencing (ChIP-seq) experiments were obtained from ChIP-Atlas (Oki et al., 2018) (Table S1). For each TF and cell line,

peaks were positionally sorted and merged withmergeBed command from BEDTools v.2.29.2 toolset (Quinlan and Hall, 2010) using

default parameters. TF binding regions were intersected with PC-specific accessible elements using the intersectBed command

(Quinlan and Hall, 2010) with default parameters. Only overlapping regions were retained and considered as active TF binding sites.

To identify genes putatively regulated by each TF, active binding sites were intersected with promoter and enhancer regions using

the intersectBed command from BEDTools v.2.29.2 toolset (Quinlan and Hall, 2010) with default parameters.
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Over-Representation Analysis
The enrichments of genes of interest in specific gene sets (i.e.Over-Representation Analysis, ORA) were performed with the enricher

function in the Rpackage ‘clusterProfileR’ v.3.18.1 (Yu et al., 2012) using the 186Kyoto Encyclopedia of Genes andGenomes (KEGG)

canonical pathways downloaded with the msigdbr function of the R package ‘msigdbr’. Enrichment tests with false discovery rate

(FDR)%0.1 were considered as significant. Results of over-representation analyses performed in this study are reported in Table S2.

Differentially expressed splicing-related genes
Since SRGs are highly expressed in the cell (de la Grange et al., 2010; Sebestyén et al., 2016), canonical parametric methods for

differential expression analysis may fail to detect statistically significant changes in the presence of large gene counts and subtle

differences between cohorts (Li and Tibshirani, 2013). Recent studies have shown that nonparametric differential expression analysis

approaches are more robust than parametric models to handle this scenario (Shi et al., 2015; Zhu et al., 2019). In this view, to identify

FOXA1-regulated SRGs in PC, parametric and non-parametric analyses were performed. Firstly, differentially expressed SRGs were

identified by comparing their transcripts per million read distributions between FOXA1 highly expressing (R75th percentile of expres-

sion distribution) and remaining samples with a two-tailed Kolmogorov-Smirnov test. p-values were corrected for multiple tests using

the false discovery rate (FDR) by the Benjamini–Hochbergmethod. To estimate the empirical p-value (emp-pv) of each comparison, a

Monte Carlo procedure was implemented. For 10,000 iterations, FOXA1 highly expressing and remaining samples were randomly

selected and, for each SRG, the transcripts per million read distributions were compared using a two-tailed Kolmogorov-Smirnov

test. For each SRG, the emp-pv was measured as the proportion of tests with p-value smaller than the observed one over the total

number of iterations. Concomitantly, canonical parametric differential expression analyses were performed between FOXA1 highly

expressing and remaining samples using the R packages ‘DESeq2’ and ‘EdgeR’ in parallel (Love et al., 2014; Robinson et al., 2010)

for primary tumors, for which raw sequencing counts were available. Briefly, read counts of 20,531 genes of each sample were used

as input for both DESeq2 and EdgeR. Genes with read count equal to zero across all samples were removed. SRGs with FDR%0.01,

emp-pv%0.01, DESeq2 or EdgeR absolute log2 Fold Change (FC)R0.2 and adjusted p-value%0.01were considered as differentially

expressed in FOXA1 highly expressing samples as compared to remaining samples. For the SU2C dataset, SRGs with FDR%0.01,

emp-pv%0.01, and an absolute log2(FC) of median transcripts per million R0.2 were considered as altered (Figures S2A–S2C and

Table S3).

Cell transfections
Transfections with plasmid DNA and siRNA duplexes (Table S1) were performed as detailed in the figure legends using ViaFect

(E4981, Promega) and RNAiMax (13778-075, Thermo Fisher Scientific), respectively, according to the manufacturers’ instructions.

Antibodies, plasmids, and oligonucleotides
pcDNA3.1 FOXA1was provided by Jason Carroll (Cancer Research UKCambridge Institute). pcDNA3-myc-FlnaWT, which encodes

FLNADex30 without exon 30, was a gift from John Blenis (Addgene plasmid # 8982 ; http://n2t.net/addgene:8982 ; RRID:Addg-

ene_8982) (Woo et al., 2004). pcDNA3-myc-Flna+ex30FLNAwas generated bymutagenesis using theQ5 Site-DirectedMutagenesis

Kit (NEB:E0554S) according to manufacturer’s instructions using primers designed in the NEBaseChanger tool (https://

nebasechanger.neb.com, Table S1). Correct incorporation of exon 30 was confirmed by Sanger Sequencing (Source Bioscience)

and PCR. The following antibodies were used: anti-FOXA1 (ab23738, Abcam), anti-actin (A1978, Sigma-Aldrich), anti-AR (554225,

BD Biosciences:), anti-SRSF1 (32-4500, Thermo Fisher Scientific), anti-mouse IgG HRP-linked (P044701-2, Dako), and anti-rabbit

IgG HRP-linked (P044801-2, Dako). Sequences used to generate siRNA duplexes are as previously described (Zheng et al., 2015)

or commercially-designed (ON-TARGETPlus, DharmaconHorizon Discovery) and are listed in Table S1. Sequences used to generate

oligonucleotide primers for qRT-PCR were designed by entering the Ensembl (http://www.ensembl.org) Transcript ID representing

the principal isoform for each gene into the National Center for Biotechnology Information (NCBI) Primer-BLAST tool (https://www.

ncbi.nlm.nih.gov/tools/primer-blast) and commercially synthesised (Integrated DNA Technologies). Primer sequences are listed in

Table S5. Primers used for endpoint PCR splicing assay were designed in exons flanking FLNA exon 30 using http://bioinfo.ut.ee/

primer3-0.4.0/ and commercially synthesised (Integrated DNA Technologies). Primers and probes for ddPCR were designed using

https://www.primer3plus.com, based on Bio-Rad recommended guidelines at https://www.bio-rad.com/webroot/web/pdf/lsr/

literature/Bulletin_6407.pdf and commercially synthesised (Bio-Rad). Probes used for digital droplet PCR were designed to specif-

ically recognize either the FLNA+ex30 (FAM, spanning exons 30–31) or FLNADex30 (HEX, spanning exons 29–31), with primers in

exons flanking the targeted exon (forward primer in exon 29 and reverse primer in exon 31). All primer and probe sequences are re-

ported in Table S1.

SDS-PAGE and Western blotting
Whole cell lysate protein samples were obtained by lysis of cells in RIPA (Radio-Immunoprecipitation Assay) buffer for 30 minutes at

4�C followed by lysate clearing by centrifugation. Protein concentration was calculated using the bicinchoninic acid (BCA) assay

(10678484, Thermo Fisher Scientific) method and samples adjusted to equal concentrations of total protein. Samples were dena-

tured in a 2-Mercapto-ethanol-based SDS sample buffer. Proteins were then separated by SDS-PAGE on 12% w/v Tris gels, trans-

ferred onto PVDF (polyvinylidene difluoride) membrane (000000003010040001, Sigma-Aldrich) using the wet transfer method,
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blocked in 5% milk in TBST (Tris-Buffered Saline and Polysorbate 20) for 1 hour at room temperature and then placed in primary

antibodies diluted in 5% BSA (Bovine Serum Albumin) in TBST overnight at 4�C. Membranes were washed and incubated with rele-

vant HRP-conjugated secondary antibodies for 1 hour at room temperature. For signal detection, membranes were washed and

incubated for 3 minutes each in Luminata Crescendo Western HRP substrate (10776189, Thermo Fisher Scientific) before bands

were visualised on the Amersham Imager 600 chemidoc system (29-0834-61, GE Healthcare). Antibody concentrations were as fol-

lows: anti-FOXA1 (1:1000), anti-actin (1:100,000), anti-AR (1:1000), anti-SRSF1 (1:500); HRP-linked secondaries (1:5000). Where

indicated, densitometric assessments of protein bands were performed using Image Studio Lite v.5.2 (LI-COR), and signal intensities

used to calculate relative normalised fold-change (FC) in protein expression (Table S3).

Generation of RNA-seq libraries
Cells were lysed in Tri Reagent Solution (AM9738, Invitrogen) and RNA extracted by phase separation using 1-bromo-3-

chloropropane. To exclude genomic contamination, total RNA was treated with DNAse I and cleared with RNA Clean and Concen-

trator (R1013, Zymo Research). RNAs were quantified using the Qubit 4 Fluorometer (Q33238, Thermo Fisher Scientific). RNA quality

was determined using the RNA 6000 Nano kit (5067-1511, Agilent Technologies) on the 2100 Bioanalyzer Instrument (G2939BA, Agi-

lent Technologies). RNA samples with an RNA integrity number >7 were selected for library preparation. RNA-seq libraries for VCaP

and PC3 were generated from 1 mg of RNA using the TruSeq total RNA (RS-122-2001, Illumina) and TruSeq stranded mRNA

(20020594, Illumina) Library Prep kits, respectively, according to manufacturer’s recommendations. VCaP libraries were sequenced

on the NextSeq500 (Illumina) in a paired-end manner with a read length of 75 nucleotides (nt). PC3 libraries were sequenced on the

NovaSeq6000 (Illumina) in 100nt-long paired-end read modality.

Gene expression analyses of RNA-seq data
Raw sequencing reads were aligned to the human genome reference GENCODE GRCh37 version 28 (Frankish et al., 2019) using

STAR (v. 2.7.3a) (Dobin et al., 2013) in two-pass mode (–peOverlapNbasesMin = 40 and –peOverlapMMp = 0.8). Read counts, at

the gene level, were estimated using featureCounts (Subread v. 2.0.0) (Liao et al., 2014) with -p, -B and -s 2 parameters. Fragment

counts were finally normalized as transcripts per million reads. Hierarchical clustering and principal component analyses of gene

expression normalized data showed that samples were appropriately separated upon silencing conditions (Figures S2F and S2G).

The R package ‘DESeq2’ was used to quantify differential expression (Love et al., 2014) between FOXA1 siRNA-treated and control

samples to match the contribution of high FOXA1 expression in primary PCs. Genes with an adjusted p-value<0.1 were considered

as differentially expressed (Table S3).

Quantitative reverse transcription PCR
Total RNA was isolated from cells and reverse transcribed to cDNA using a high capacity cDNA reverse transcription kit (4368814,

Applied Biosystems). Reactions were performed using 20ng of cDNA per condition combined with forward and reverse primers

(Table S1), and SYBR green master mix (NEB: M3003) in a 10ul reaction volume. Assays were performed in the QuantStudio 5

Real-Time PCR system (A34322, Thermo Fisher Scientific) measuring binding of SYBR green to DNA, with ROX as a passive dye.

Reaction conditions were as follows: 2 minutes at 50�C, 10 minutes at 95�C, and 40 cycles of 15 seconds at 95�C and 1 minute

at 60�C. Cycle threshold (CT) values were calculated using QuantStudio Design and Analysis Software v1.5.1 (Thermo Fisher Scien-

tific). Relative gene expression was determined by the 2�DDCT method using the geometric mean expression of two validated endog-

enous control genes (ACTB and B2M) to ensure the reliability and reproducibility of observed effects (Table S3).

Alternative splicing analysis of primary PC
The publicly available catalogue of alternative splicing (AS) events was obtained from the GDC portal (https://gdc.cancer.gov/

about-data/publications/PanCanAtlas-Splicing-2018) for 384 TCGA primary PC samples. This atlas included five categories of AS

events: Cassette Exon (CE), Alternative 3’ (A3) and 5’ (A5), Intron Retention (IR) and Mutually Exclusive exons (MEX). The percent

spliced in (psi or J) value was used as a measure of splicing event inclusion in the mature mRNA (Venables et al., 2009). AS events

with (i) available information inmore than 75%of the samples (Li et al., 2017), (ii) mean (m)J ranging from0.01 and 0.99 (i.e. not consti-

tutively excluded or included, respectively), and (iii) in genes with less than 500 events were retained for further analysis. For each

selected AS event, missing values were replaced by the mean of the corresponding J distribution across samples (Li et al., 2017).

For each AS event the mean (m) and standard deviation (s.d. or s) ofJ levels in FOXA1 highly expressing and remaining samples

were calculated (Figure S5A). The difference in the m and s of the J levels (i.e. Dm(J) and Ds(J)) between the two groups was then

measured. To identify AS events associated with FOXA1 high expression, events with negligible changes in Dm(J) and Ds(J) were

discarded based on the quantile distributions of Dm(J) and Ds(J). In particular, an AS event was retained either (i) if Dm(J) was lower

or greater than the 15th or the 85th percentile ofDm(J) distribution, respectively, or (ii) ifDs(J) was lower or greater than the 20th or the

80th percentile of Ds(J) distribution, respectively. To select AS events that were significantly differentially included between FOXA1

highly expressing and remaining samples, two non-parametric statistical tests were performed. For each AS event, Dm(J)s between

FOXA1 highly expressing and remaining tumors were tested using a two-tailed Wilcoxon Rank Sum test, whereas Ds(J)s were

compared using a two-tailed Fligner-Killeen test (Saraiva-Agostinho and Barbosa-Morais, 2019). p-values were corrected for mul-

tiple testing using the Benjamini–Hochberg procedure. To calculate the emp-pv of each comparison, sample labels were shuffled
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1,000 times and at each iteration the two tests were performed. To account for the sample size difference between the FOXA1 highly

expressing and remaining groups, the latter was randomly down-sampled to reach the size of the former for 1,000 times. At each

iteration, tests were performed. The success rate (SR) was then computed as the proportion of significant results (p-value<0.05)

over the total number of comparisons. AS events with an FDR<0.05, emp-pv<0.05 and SR>0.7 for at least one test were considered

as significantly differentially included between FOXA1 highly expressing and remaining samples and named as FOXA1-regulated AS

events. AS events with non-statistically significant changes were considered not differentially spliced by FOXA1 and termed as

FOXA1-unregulated AS events (Table S4).

Cumulative distributions of the number of FOXA1-regulated AS events with positive and negative splicing changes (i.e. Dm(J) and

Ds(J)) were calculated starting from the mean inclusion level of 0.5 (i.e.mixed isoform population) to the boundaries of 0 and 1 (i.e.

dominant isoform population). Monte Carlo simulations (1,000 iterations) were used to measure the empirical cumulative distribution

of the number of exons with inclusion changes. For each iteration, the direction of the inclusion change (i.e. positive or negative) of

FOXA1-regulated AS events was randomly assigned and the number of exons with positive and negative changes at each mean in-

clusion levels were annotated. At the end of all iterations, the cumulative distribution of the average expected number of AS events

with splicing changes, as well as its confidence intervals, were calculated.

Alternative splicing analysis of cell lines
AS events were identified using Whippet v0.11 (Sterne-Weiler et al., 2018) on AR+ VCaP and AR- PC3 RNA-seq data. The GENCODE

GRCh37 version 28 (Frankish et al., 2019) was employed as reference. The event index reference was generated using –suppress-

low-tsl and –bam parameters to allow the identification of unannotated splice-sites and exons from each alignment BAM file. Core

exons, alternative acceptor splice sites, alternative donor splice sites, retained introns, alternative first exons and alternative last

exons identified by Whippet were retained for further analyses as matching the corresponding AS event classes (i.e. CE, A3, A5

and IR) defined for primary tumors. AS events with a Whippet confidence interval width R0.2 in at least one sample were filtered

out from the analysis (Sterne-Weiler et al., 2018). AS events with splicing complexity higher than K0, probabilityR0.9 and |Dm(J)|

>0.05 were considered as differentially spliced and termed as FOXA1-regulated AS events (Van Nostrand et al., 2020b). For each

set, not-significant AS events were retained as controls and termed FOXA1-unregulated AS events.

Nonsense-mediated decay determinant exons
Genomic positions of a previously defined list of 15,518 nonsense-mediated decay (NMD) determinant cassette exonswere retrieved

and stratified into premature termination codon (PTC) introducing (PTC-introducing) and preventing (PTC-preventing) ones accord-

ingly to the definition of poison and essential events, respectively (Pervouchine et al., 2019). Coordinates of these events were inter-

sectedwith those of primary PC cassette exon events using intersectBed command fromBEDTools v2.29.0 toolset (Quinlan andHall,

2010) with default parameters and cassette exons were annotated accordingly (Table S4).

For RNA-seq data of VCaP and PC3 cell lines, sensitivity to NMD for transcripts harboring cassette exon events was measured

using the predictNMD function in the R ‘notNMD’ package. Events with a difference of NMD probability between transcripts,

including and excluding the exon below the 15th percentile, were defined as putative PTC-preventing exons, while events with a dif-

ference of NMD probability above the 85th percentile were defined as putative PTC-introducing exons, for a total of 16,880 putative

NMD-determinant cassette exons (see key resources table for deposited data).

Splicing-associated chromatin signatures
Genomic coordinates of AS events in primary PC and exons marked by splicing-associated chromatin signatures (SACS) (Agirre

et al., 2021) were intersected using the findOverlaps function of the R ‘GenomicRanges’ package (Lawrence et al., 2013) and cassette

exons with a minimum reciprocal overlap of 90% were considered as marked by chromatin signatures (Table S4). Enrichment of

SACS-marked cassette exons in the FOXA1-regulated set with respect to controls was assessed with a two-tailed Fisher’s exact

test.

Splicing code analysis
RNAmotifs (Cereda et al., 2014) was used to identify cis-acting multivalent RNA motifs of 4nt length (i.e. tetramers), among 512

degenerate and non-degenerate motifs, that occurred in a specific AS region more often in cassette exons of interest compared

to 3,266 FOXA1-unregulated exons with mPC(J)>0.9 or mPC(J)<0.1 defined as controls. The tool was run considering three enrich-

ment regions (R): (i) R1 [-205:-5] nucleotides of intronic sequence upstream of the 30 splice site; (ii) R2 corresponding to the entire

exonic sequence (or up to 200 nt from both splice sites in case of exon longer than 400 nt); and (iii) R3 [10:210] nucleotides of intronic

sequence downstream of the 50 splice site. RNAmotifs empirical p-values were calculated using 10,000 bootstrap iterations. Tetra-

mers with RNAmotifs Fisher’s p-values% 0.05 (or the 1st percentile of the p-value distribution in case of highly significant results) and

empirical p-values% 0.0005 were considered as enriched and retained for further analysis (Table S5). For enriched tetramers, RNA-

motifs was run performing a position-specific enrichment analysis at exon/intron junctions of alternative CEs and flanking exons ex-

tending 1,000 and 50 nucleotides into introns and exons to generate the corresponding RNA splicing map.

To select trans-acting SRGs that were most likely to bind the enriched tetramers, a list of 466 11-nt long position weight matrices

(PWMs) derived fromHepG2 eCLIP data for 62 SRGs was collected from themCross database (Feng et al., 2019). For each enriched
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tetramer, a PWMwas computed on tetramer occurrences at regulated exons extending both tetramer sides of two nucleotides. Sim-

ilarities between tetramer and mCross PWMs were calculated using the MACRO-APE tool (Vorontsov et al., 2013) with parameters

–position J,direct with J = �3,-2,-1,0 to allow up to four different alignments to the most informative seven core positions of the

mCross PWM (Feng et al., 2019). For each tetramer and SRG pair, the highest similarity amongst the four alignments (u) was retained

(Table S5). In case of multiple mCross PWMs for the same SRG, the different similarity values were averaged. Hence, the similarity

value U was measured as follows:

c SRG and tetramer : U =

PNPWM

i = 1 ui

NPWM

whereui is the similarity value between the tetramer and the ith mCross PWM o and is the total number of mCross PWMs of a SRG.U

was named ‘‘sequence similarity score’’.

Next, the similarity between profiles of the RNAmotifs maps of each enriched tetramer and those of eCLIP-based RNA splicing

maps of the 62 SRGs was assessed. Firstly, cross-linking sites, as iCounts peak instances, from eCLIP experiments in HepG2 cells

for each SRG were collected (König et al., 2010). Then, for each tetramer, eCLIP-based splicing maps of all SRGs were generated

around exons with tetramer instances (i.e. extending 1,000 and 50 nucleotides into introns and exons). At each position, and for each

SRG, a cross-linking enrichment score was computed by performing a Fisher’s exact test comparing the proportion of FOXA1-regu-

lated and constitutive exons having at least one iCounts peak:

CES = � 2 logðpÞ
where p is the p-value of the Fisher’s exact test.

The similarity between the RNAmotifs and eCLIP-based RNA splicing maps was then evaluated by calculating the Bhattacharyya

coefficient (BC) (Rizzo et al., 2019) as follows:

BCðq; tÞ =
Xn

i = 1

ffiffiffiffiffiffiffi
qiti

p

where qi is the RNAmotifs enrichment score of the tetramer at position i on the map and ti is the cross-linking enrichment score of the

SRG at the same position i, and n is the length of the maps.

Finally, for each tetramer and SRG a global Matching Score was computed as the product of the sequence similarity score U and

the map similarity given by the Bhattacharya coefficient:

c SRG and tetramer : Matching Score = U$BC

SRGs with Matching ScoreR75th percentile of its distribution were considered as significantly associated with the corresponding

tetramer (Figure S5E).

Sequence logos were plotted with the ggseqlogo function of the R ‘ggseqlogo’ package.

Survival analysis
Clinical data for 332 primary PC patients were obtained from the TCGA Data Matrix portal (Level 3, https://tcga-data.nci.nih.gov/

tcga/dataAccessMatrix.htm). Disease-free survival was defined as the time between primary treatment and the diagnosis of disease

progression, as defined by biochemical or clinical recurrence, or the end of follow-up. PTC-introducing and PTC-preventing FOXA1-

regulated cassette exons were divided into inhibited and enhanced events according to their Dm(J) sign upon FOXA1 high expres-

sion, resulting into four groups (i.e. inhibited PTC-introducing, enhanced PTC-introducing, inhibited PTC-preventing and enhanced

PTC-preventing FOXA1-regulated cassette exons). As previously proposed (Thomas et al., 2020), for each group and each patient,

the following S statistic was computed:

S = n25On75

where n25 and n75 are the number of events withJ% 25th andR 75th percentiles, respectively, of their inclusion distribution across

patients.

For each group of FOXA1-regulated exons, patients were stratified into high and low expressors based on the 25th and 75th percen-

tile of the S statistics distribution, respectively. Exploiting this stratification, survival analysis was performed by fitting a univariate Cox

proportional hazards model with log-rank test (Therneau and Grambsch, 2000) using the coxph function in the R ‘survival’ package.

Similarly, to assess the contribution of each NMD-determinant FOXA1-regulated cassette exon on disease-free survival, patients

were stratified according to the 25th and 75th percentiles of theJ level distribution of each event and survival analysis was performed

as described above. Log-rank test p-values were corrected for multiple testing with the Benjamini–Hochberg procedure. FOXA1-

regulated cassette exons with FDR<0.05 were selected as the strongest survival-associated candidates (Table S4).

The optimal prognostic cutpoint of FLNA exon 30J inclusion level in primary PCs was identified using the surv_cutpoint function

from the R ‘survminer’ package (Lauria et al., 2020; Lausen and Schumacher, 1992). All Kaplan-Meier curves were generated using

the survfit and ggsurvplot functions of the R ‘survival’ package.
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Splicing assays
Cells were lysed in TRI Reagent (AM9738, Invitrogen) and RNA extracted by phase separation using 1-bromo-3-chloropropane. RNA

was DNAse treated to remove contaminating genomic DNA and transfected plasmid DNA. cDNA was generated from RNA using a

high capacity cDNA reverse transcription kit (4368814, Applied Biosystems).

For endpoint PCR splicing assay, primers flanking the variable exon 30 within FLNA (Table S1) were combined with cDNA, dNTPs

and Taq Polymerase (NEB, M0273) in standard reaction buffer. PCR reactions were performed in a ProFlex thermocycler (4484075

Applied Biosystems) with 30 cycles of amplification, to determine endogenous exon 30 inclusion, and a 53�C annealing temperature.

An additional reconditioning PCR for 3 cycles of amplification was undertaken using 2ul of the first PCR product (Thompson et al.,

2002). PCR products were detected and quantified using the QIAxcel DNA High Resolution Kit (1200) (929002, QIAGEN) with the

QIAxcel Advanced System capillary electrophoresis device (9002123, QIAGEN). The J value was used as a measure of exon 30

expression (Venables et al., 2009) (Table S6).

Digital droplet PCR (ddPCR) was performed using the QX200 Droplet Digital PCR System (1864001, Bio-Rad). Droplets were

generated using the QX200 Droplet Generator (1864002, Bio-Rad) in a total volume of 20mL containing cDNA corresponding to

20 ng of input RNA, 900nM/250nM final concentration of FLNA exon 30 primers/probe (Table S1), and 10mL of 2X ddPCR Supermix

for Probes (No dUTP) (1863024, Bio-Rad). PCR reactions were executed according to the manufacturer’s instructions as follows:

enzyme activation at 95�C for 10 min (1 cycle), denaturation at 94�C for 30s followed by annealing/extension at 55�C for 1 min (40

cycles), enzyme deactivation at 98�C for 10 min (1 cycle), and hold at 4�C. After PCR completion, droplets were processed with

the QX200 Droplet Reader (1864003, Bio-Rad) and analyzed using QuantaSoft software (1864011, Bio-Rad). Total events in each

sample replicate were quantitated using the mean copy number per ml (Table S6).

Cell viability and colony formation assays
Cell growth assays were performed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) (L11939.06, Alfa Ae-

sar) according to the manufacturer’s instructions. Briefly, 2000 PC3 cells were seeded into each well of a 96-well plate and grown to

�20–30% confluence prior to transfection with 100ng of pcDNA3.1-VO, pcDNA3-myc-Flna+ex30FLNA or pcDNA3-myc-Flna using

Viafect (E4981, Promega). After 72 hours, MTT was added to each well to a final concentration of 0.67 mg/mL and incubated at 37�C,
5% CO2 in a humidified incubator for 2 h. Subsequently, MTT reagent was removed, 100mL dimethyl sulfoxide (DMSO) (10213810,

Thermo Fisher Scientific) was added to eachwell and agitated at room temperature for 15mins. Absorbancewasmeasured at 560nm

and 630nm using the SpectraMax Plus384 microplate reader (Molecular Devices), and normalized by subtracting the 630nm value

from the 560nm value, and percentage viability was calculated as: the treatment absorbance divided by the DMSO control absor-

bance. All data were normalized to a vector only control (Table S6).

For colony formation assays, 200,000 PC3 cells were seeded in each well of a six well plate. Cells were transfected with 2ug of

pcDNA3.1-VO, pcDNA3-myc-Flna+ex30FLNA or pcDNA3-myc-Flna using Viafect (E4981, Promega). After 48 hours, cells were tryp-

sinized and counted, and 300 cells per condition were seeded into 6 well plates (three technical replicates per condition). Cells were

then grown for eight days to allow the formation of visible colonies. Media was removed, cells were washed 3x in PBS and then col-

onies were fixed using 100%methanol. Methanol was removed and crystal violet solution (0.05%w/v in H2O) was added to the plates

(C0775, Sigma-Aldrich). After 40 minutes, excess crystal violet was removed and plates were washed with H2O. Plates were imaged

on the Amersham Imager 600 chemidoc system (29-0834-61, GE Healthcare). Images were analysed using ImageQuantTL (GE

Healthcare) to accurately count the number of colonies in each condition. Crystal violet stain was dissolved by addition of 1mL

2% Triton X-100 to each well and agitation for 4 hours. Three x 200ul from each well was transferred to a clear bottom 96 well plate

and absorbance measured at 405nm and 560nm using the SpectraMax Plus384 microplate reader (Molecular Devices), and normal-

ised by subtracting the 405nm value from the 560nm value (Table S6).

For both functional assays, FLNA exon 30 expression was confirmed by endpoint PCR splicing assays as described above using

primers flanking the variable exon 30within FLNA (Table S1) with 25 cycles of amplification. PCR products were resolved through 3%

agarose gel in TBE (Tris-Borate-EDTA) containing GelRed DNA dye (41003, Biotium), imaged using the G-Box (Syngene), and ana-

lysed using Image Studio Lite v.5.2 (LiCoR).

Assessment of tumor purity constraints
The PC tumour microenvironment contains multiple cell types including benign basal and luminal epithelial cells, stromal cells, and

infiltrating immune cells (Bahmad et al., 2021). This cellular intratumoral heterogeneity may bias analysis of bulk sequencing data

(Aran et al., 2015). To assess this issue, tumor purity estimates for primary PC samples were retrieved from Aran et al. (Aran

et al., 2015) (Figure S6A). Samples was stratified the cohort into ‘‘high purity’’ (i.e. purity R90%) and ‘‘low purity’’ (i.e. purity

<90%) tumors (Figure S6B). Multivariate covariance analysis of cumulative SRG and TF expression, assessment of differentially ex-

pressed SRGs, and evaluation of alternatively splicing events were performed for both cohorts as described above (Figures S6C–

S6G).

Orthogonally, batch-corrected expression data (i.e. TPMs) of 349 primary PCs and 107 benign prostate tissues were deconvoluted

using the xCell algorithm (Aran et al., 2017) into cell-type scores that recapitulate the enrichment of distinct cell types. The resulting

infiltrate-specific scores were used to investigate the possible contribution of immune, stromal, or benign epithelial cells to PC tran-

scriptomes (Figures S6H–S6K).
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Finally, to assess whether infiltration levels higher than those observed in primary PCs could affect the identification of TFs regu-

lating SRG expression, a Monte Carlo simulation was implemented using batch-corrected normalized TPMs for 195 high purity (i.e.

purityR90%) primary PCs and 107 benign prostate samples. Artificial gene expression profiles were generated by merging comple-

mentary fractions of cancer and benign transcriptomes to simulate ten increasing levels of tumor purity p (ranging from 10% to

100%). For each p, the expression (TPM) of genes g in a tumor sample i was calculated as follows:

cp : gi =
�
gi 3

p

100

�
+

�
gbenign 3

ð1 � pÞ
100

�

where gbenign is the TPM value of g in a randomly selected benign prostate transcriptome. This procedure was repeated for 100 times

randomly selecting benign prostate samples. For each iteration, multivariable covariance analysis of cumulative SRG and TF expres-

sion was performed as describe above. For each purity level, the mean and standard deviation of the contribution of each TF to the

coefficient of determination (R2) of themodel were computed across the 100 iterations. Additionally, for each iteration and purity level,

differentially expressed SRGs upon FOXA1 high expression were identified as described above. For each SRG, a success rate (SR)

was defined as the number of times the gene was differentially expressed across the 100 iterations (Figures S6L and S6M).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details including the statistical tests used, p-value indications, number of experiments and dispersion and precision

measures can be found in the figures, figure legends or in the results. Graphical data of in vitro experiments represent the mean-

± standard error of the mean (SEM) of independent experiments and the two-tailed independent sample T-test was employed to

identify differences between groups with p-value < 0.05 taken to indicate statistical significance. The two-tailed Wilcoxon Rank

Sum test was used to compare distributions and the two-tailed Fisher’s exact test was used to compare proportions across condi-

tions. All statistical tests were performed using the R software (v.3.5.2).
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