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Abstract Previously, we showed that authentic peptide sequences could be obtained from 3.8-
Ma-old ostrich eggshell (OES) from the site of Laetoli, Tanzania (Demarchi et al., 2016). Here, we 
show that the same sequences survive in a >6.5 Ma OES recovered from a palaeosteppe setting 
in northwestern China. The eggshell is thicker than those observed in extant species and consis-
tent with the Liushu Struthio sp. ootaxon. These findings push the preservation of ancient proteins 
back to the Miocene and highlight their potential for paleontology, paleoecology, and evolutionary 
biology.

Editor's evaluation
This fundamental study substantially pushes the known preservation of protein sequences bound to 
mineral surfaces. The successful recovery of these sequences from late Miocene fossil eggshell also 
has important implications for taxonomic classification. This solid work encourages future paleopro-
teomic research on paleontological remains from deep antiquity and across various taxa. The paper 
will be of great interest to a wide range of paleoscientists.

Introduction
The oldest authenticated peptide sequences to date were reported in 2016 from 3.8-Ma-old ostrich 
eggshell (OES) from the site of Laetoli, Tanzania (Demarchi et  al., 2016). This finding had great 
scientific impact since it integrated computational chemistry (molecular dynamics simulations) as 
well as experimental data to propose a mechanism of preservation, concluding that mineral binding 
ensures the survival of protein sequences. Importantly, this study demonstrated that peptide-bound 
amino acids could survive into deep time even in hot environments. The effect of temperature on the 
kinetics of protein diagenesis has been described by several authors, both on the basis of actualistic 
experiments and of the quantification of the extent of degradation in ancient samples of known ages 
(Crisp et al., 2013; Demarchi et al., 2013; Hendy et al., 2012; Johnson et al., 1997; Kaufman, 
2006; Kaufman, 2003; Schroeder and Bada, 1976; Wehmiller, 2013; Wehmiller, 1977; Wehmiller 
and Belknap, 1978). This discovery has fuelled the analysis of ancient proteins from other mineral 
matrices, namely tooth enamel (Cappellini et al., 2019; Welker et al., 2020; Welker et al., 2019) in 
order to reconstruct phylogenies.
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The recovery of peptides has so far been limited to biomineral samples of Plio-Pleistocene age: our 
attempts at retrieving intact peptides from Cretaceous eggshell were unsuccessful, despite the fact 
that a genuine intracrystalline fraction of amino acids was preserved in the same sample (Saitta et al., 
2020). Here, we show that the same peptide sequences that exhibit strong binding to the calcite 
surface—and that were recovered from the Laetoli OES—also persist into the late Miocene, in a >6.5-
Ma-old eggshell sample from the Linxia Basin, northeastern Tibetan Plateau, China, Liushu Formation.

Results and discussion
The OES (IVPP V26107) was recovered from an area between the towns of Xinji and Songming, in 
Hezheng County, close to the border with Guanghe County, from mudstone facies of the Liushu 
Formation (Figure 1).

Both eggshell and skeletal remains are previously known from the Late Miocene Liushu Formation, 
Linxia Basin, of Gansu Province, where the mean annual temperature is ∼11◦C (Hou et al., 2005; Liu 
et al., 2016; Li et al., 2021; Wang, 2008). Age control on the highly fossiliferous units of the Lishu 
Formation is good (Deng et al., 2019; Deng et al., 2013; Zhang et al., 2012), with detailed correla-
tions across China as well as with Neogene deposits globally. These units have been assessed via new 

Figure 1. Map showing the location of the fossil eggshell site.

https://doi.org/10.7554/eLife.82849
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magnetostratigraphic data; most of the Hipparion fauna is estimated to be earlier than 6.4–6.5 Ma, 
with a lower Liushu transition to a Platybelodon fauna yielding age estimates of 11.1–12.5 Ma (Zhang 
et al., 2012). These dates agree with the prior estimates from biostratigraphic and magnetostrati-
graphic data (Deng et al., 2019; Deng et al., 2013). The recovery site is closer to the southern part of 
the basin near the Heilinding section of Zhang et al., 2012, which had an estimated minimum age of 
6.4–6.5 Ma (Chron 3An). In contrast, the candidate stratotype section, Guoniguo, that exposes lower 
parts of the Liushu, is north of the recovery area (Deng et al., 2019; Zhang et al., 2012).

Ostrich (Struthio) remains to have a long history of recovery from the late Miocene of northwest 
China (Buffetaut and Angst, 2021; Hou et al., 2005; Li et al., 2021; Lowe, 1931; Mikhailov and 
Zelenkov, 2020). The first reported ostrich fossils from China were from units of the ‘Hipparion 
Clay’ (Red Clay) dated between 6.54 and 7.18 Ma (Lowe, 1931; Zhu et al., 2008). Mikhailov and 
Zelenkov, 2020 concluded that the Wang, 2008 Liushu taxon is referable to Struthio and not pres-
ently supported as a distinct but related genus; it is proposed to be from a taxon larger than extant 
Struthio species with a thickness of ~2.4 mm consistent with the eggshell sampled here (Figure 2C).

Given the extreme antiquity of the samples, protein extraction was performed in an ultra-clean 
facility at the University of Copenhagen in order to minimize any chance of contamination, following 

Figure 2. Eggshell specimen (IVPP V26107): photographs (A, B) and CT scan (C).

https://doi.org/10.7554/eLife.82849
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Hendy et al., 2018. Furthermore, OES powders were bleached extensively to isolate the intracrystal-
line fraction only (as described by Demarchi et al., 2016), samples were analysed by LC-MS/MS using 
a new LC column, and six blanks (analytical and procedural) were included in the run, flanking the 
sample. Data analysis was equally cautious: raw tandem mass spectrometry data were used to recon-
struct potential peptide sequences starting from raw product ion spectra; only de novo peptides with 
an ALC (Average Local Confidence) score ≥80% were considered. This is the most stringent threshold 
that can be applied, and it signifies that all potential peptide sequences with lower confidence are 
discarded. The de novo peptides were searched against the Uniprot/Swissprot database (containing 
565,254 manually annotated and reviewed protein sequences). A database of common labora-
tory contaminants (common Repository of Adventitious Protein [cRAP]) was included in the search. 
Eleven unique peptide sequences were found to match the sequence of struthiocalcin-1 (Table 1), all 
containing the typical Asp-rich motif ‘DDDD’ (Figures 3 and 4), which had been shown in our previous 
paper to be the mineral-binding peptide belonging to the sequence of struthiocalcin-1 (SCA-1). Anno-
tated tandem mass spectra are shown in Figure 3 (ALDDDDYPKG) and Figure 3—figure supplement 
1 (ALDDDYPK), Figure 3—figure supplement 2 (SALDDDDYPKG), Figure 3—figure supplement 3 
(DDDDYPKGKH), Figure 3—figure supplement 4 (LDDDDYPKGK), Figure 3—figure supplement 
5 (SALDDDDYPK), Figure 3—figure supplement 6 (DDDDYPKGK), Figure 3—figure supplement 
7 (LDDDDYPKG), Figure 3—figure supplement 8 (DDDYPKGK), Figure 3—figure supplement 9 
(DDDDYPK), and Figure 3—figure supplement 10 (DDYPKGK).

Conclusions
We present the first evidence for peptide survival into the Miocene, confirming our previous (Plio-
cene) data and providing further support to the mechanism of preservation based on the binding 
of Asx-rich peptides to calcite surfaces (Demarchi et al., 2016). The sequence recovered from the 
Chinese specimen is identical to the peptides found in the 3.8 Ma Laetoli OES, thus also supporting 
the attribution of the Liushu ootaxon to genus Struthio. While the four Asp residues are conserved 

Table 1. Peptide sequences identified in sample IVPP V26107.

Scan Precursor mass z m/z Peptide sequence Peptide mass Error (ppm) Peptide –10lgP

5401 1107.472 2 555.246 ALDDDDYPKG 1107.472 5.7 27.24

5268 1050.457 2 526.236 ALDDDDYPK 1050.451 6.1 24.83

5051 1194.517 2 598.266 SALDDDDYPKG 1194.504 10.9 21.11

4984 1137.494 2 569.754 SALDDDDYPK 1137.483 10.1 29.94

4727 1137.494 2 569.755 SALDDDDYPK 1137.483 9.7 16.76

4565 1107.483 2 554.749 ALDDDDYPKG 1107.472 9.8 32.57

4565 1107.484 2 554.749 ALDDDDYPKG 1107.472 10.6 28.7

4443 1050.459 2 526.237 ALDDDDYPK 1050.451 7.6 17.62

4313 1050.461 2 526.235 ALDDDDYPK 1050.451 9.9 15.13

4199 1050.458 2 526.236 ALDDDDYPK 1050.451 7.2 16.35

4037 1036.442 2 519.230 LDDDDYPKG 1036.435 7.2 16.57

2724 1164.539 2 583.277 LDDDDYPKGK 1164.53 8.2 30.91

2502 866.335 2 434.176 DDDDYPK 866.335 6.9 18.46

2176 866.335 2 434.175 DDDDYPK 866.335 7.1 21.18

2026 866.338 2 434.176 DDDDYPK 866.329 10.1 19.07

1396 1051.454 2 526.734 DDDDYPKGK 1051.446 7.8 28.62

1138 936.427 2 469.221 DDDYPKGK 936.419 8.4 27.8

1046 1188.513 3 397.178 DDDDYPKGKH 1188.505 7.2 30.65

1042 821.398 2 411.706 DDYPKGK 821.392 7.6 17.39

https://doi.org/10.7554/eLife.82849
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Figure 3. Annotated product ion spectrum of peptide ALDDDDYPKG, m/z 554.749, −10lgP=32.57. Figure created using http://www.
interactivepeptidespectralannotator.com/PeptideAnnotator.html (Brademan et al., 2019).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Annotated product ion spectrum, ALDDDDYPK, m/z 526.236, –10lgP=24.83.

Figure supplement 2. Annotated product ion spectrum, SALDDDDYPKG, m/z 598.266, −10lgP=21.11.

Figure supplement 3. Annotated product ion spectrum, DDDDYPKGKH, m/z 397.178, −10lgP=30.65.

Figure supplement 4. Annotated product ion spectrum, LDDDDYPKGK, m/z 583.277, −10lgP=30.91.

Figure supplement 5. Annotated product ion spectrum, SALDDDDYPK, m/z 569.754, −10lgP=29.94.

Figure supplement 6. Annotated product ion spectrum, DDDDYPKGK, m/z=526.734, −10lgP=28.62.

Figure supplement 7. Annotated product ion spectrum, LDDDDYPKG, m/z=519.23, −10lgP=16.57.

Figure supplement 8. Annotated product ion spectrum, DDDYPKGK, m/z=469.221, −10lgP=27.8.

Figure supplement 9. Annotated product ion spectrum, DDDDYPK, m/z=434.174, −10lgP=21.18.

Figure supplement 10. Annotated product ion spectrum, DDYPKGK, m/z=411.706, −10lgP=17.39.

https://doi.org/10.7554/eLife.82849
http://www.interactivepeptidespectralannotator.com/PeptideAnnotator.html
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across several avian taxa, in some species, including other ratites, Asp can be substituted by Glu and 
some of the flanking residues are also variable (Demarchi et al., 2022, fig. S1); therefore, variability 
within this sequence could be informative for evolutionary relationships between extinct and extant 
taxa. The absolute age of the Chinese sample is greater than that of the African material (Demarchi 
et al., 2016), but, given the latitudinal differences between the two sites, it is likely to have experi-
enced lower temperatures throughout its burial history. This suggests that sequences of even greater 
antiquity may be recovered from biominerals harboring a closed system of proteins, particularly from 
sites in cold environments (e.g., high altitude and/or latitude).

Materials and methods
Sample preparation and analysis
A subsample of OES specimen IVPP V26107 was prepared in the ultra-clean facility at the University 
of Copenhagen, following the protocol of Demarchi et al., 2016; Demarchi et al., 2022 and omitting 
the digestion step. In brief, the fragment was powdered, bleached for 72 hr (NaOCl, 15% w/v) and 
demineralized in cold weak hydrochloric acid (0.6 M HCl). The acid was added in 200 µl increments 
until it stopped reacting, for a total volume of 1400 µl 0.6 M HCl. The extracts were exchanged in 
ammonium bicarbonate buffer (pH=7.8) using 3 kDa MWCO ultrafilters and the peptides were puri-
fied and concentrated using C18 Stage Tips (Cappellini et al., 2019; Rappsilber et al., 2007).

Prepared StageTips of the procedural blank and sample were eluted with 30 µl of 40% acetonitrile 
(ACN) 0.1% formic acid into a 96-well plate prior to LC-MS/MS analysis. To remove the ACN, the plate 
was vacuum centrifuged until approximately 5 µl remained. Samples were then resuspended with 6 µl 
of 0.1% trifluoroacetic acid (TFA) 5% ACN. Based on protein concentration results at 205 nm (Nano-
Drop, Thermo Fisher Scientific), 5 µl of each sample and procedural blank was then separated over a 
77 min gradient by an EASY-nLC 1200 (Proxeon, Odense, Denmark) attached to a Q-Exactive HF-X 
mass spectrometer (Thermo Fisher Scientific, Germany) using a 15 cm column. The column (75 μm 
inner diameter) was made in-house, laser pulled, and packed with 1.9 μm C18 beads (Dr. Maisch, 
Germany). Parameters were the same as those already published for historical samples (Mackie et al., 

Figure 4. Coverage of struthiocalcin-1 (SCA-1) in Miocene OES specimen IVPP V26107. Numbers indicate 
spectrum matches for each position in the sequence.

https://doi.org/10.7554/eLife.82849
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2018). In short, MS1: 120k resolution, maximum injection time (IT) 25 ms, scan target 3E6. MS2: 60k 
resolution, top 10 mode, maximum IT 118 ms, minimum scan target 3E3, normalized collision energy 
of 28, dynamic exclusion 20 s, and isolation window of 1.2 m/z. Wash-blanks consisting of 0.1% TFA 
5% ACN were also run in order to hinder cross-contamination. The LC-MS/MS run included, in this 
order: two wash blanks, one procedural blank, one wash blank, the OES sample, and two wash blanks. 
The data sets have been deposited to the ProteomeXchange Consortium via the Proteomics Identifi-
cations Database (PRIDE) partner repository with the identifier PXD035872.

Data analysis
Bioinformatic analysis was carried out using PEAKS Studio 8.5 (Bioinformatics Solutions Inc; Zhang 
et al., 2012). The Uniprot_swissprot database (downloaded 11/08/2021) was used for carrying out 
the searches and common contaminants were included (cRAP: http://www.thegpm.org/crap/). No 
enzyme was specified for the digestion and the tolerance was set to 10 ppm on the precursor and 
0.05 Da on the fragments. The thresholds for peptide and protein identification were set as follows: 
peptide score −10lgP≥15, protein score −10lgP≥20, and de novo sequences scores (ALC%)≥80.
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