
However, our models are allowed to lie above the
observed source count distribution, because of unasso-
ciated sources. In this sense, the BLZ provides a lower
bound for our models (labeled BLZ

2c ).
3. Our BLL model has to explain at least the observed

source count distribution of BLLs, and thus also provides
a lower bound (labeled BLL

2c ).
4. In analogy to BLL, the FSRQ model also receives a lower

bound from the observed source count distribution
(labeled FSRQ

2c ).

Each of these constraints would give rise to a contribution to
the 4FGL χ2. However, a naive sum of the χ2 from the three
lower bounds would lead to double counting, since the BLL
and FSRQ sources also appear in the BLZ class. To avoid this,
we consider only the most constraining lower bound between
the BLZ case and the combination of BLLs and FSRQs, i.e.:

max , . 144FGL
2

ALL
2

BLZ
2

BLL
2

FSRQ
2( ) ( )c c c c c= + +

The upper bound from ALL is implemented as:

max , 0 . 15
i

N
S i

N
S i

i
ALL
2

d
d BLZ,

d
d ALL,

ALL,

2⎡
⎣
⎢⎢ ⎛

⎝⎜⎜
⎞
⎠⎟⎟

⎤
⎦
⎥⎥( )

( )åc
s

=
-

Here, the dN/dS in angle brackets denotes the model prediction
from Equation (12), and the dN/dS in round brackets is the
source count distribution extracted from the 4FGL catalog. The
model includes the sum of the BLLs and FSRQs, namely
〈dN/dS〉BLZ,i= 〈dN/dS〉BLL,i+ 〈dN/dS〉FSRQ,i. For this
contribution, we integrate over all redshifts and all values of
the photon spectral index. The remaining index i denotes the
flux bin, as summarized in Table 1. If the flux of the bin is
below the detection threshold Sthr, the bin is excluded from
the sum.

For the lower bounds, which relate to identified or associated
blazars, we would also like to consider the redshift information,
which is not directly provided in the 4FGL catalog. So we
extract the information from the 4LAC catalog (Ajello et al.
2020), which contains spectroscopic redshift measurements.
However, the redshift information in the 4LAC catalog is
incomplete, i.e., not all sources have a redshift measurement.

Since we only consider the identified or associated blazars as a
lower bound, this does not represent a problem, but it might not
be the most constraining option. Hence, we again consider two
cases. In the first case, we include redshift information and
compare our model in bins of a two-dimensional grid in
redshift and flux through

min , 0 . 16Sz
i j

N
S ij

N
S ij

ij
BLZ,
2

,

d
d BLZ,

d
d BLZ,

BLZ,

2⎡
⎣
⎢⎢⎢

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎤
⎦
⎥⎥⎥

( )
( )åc

s
=

-

In the second case, we disregard the redshift information by
integrating over the redshift. We define

min , 0 . 17S
i

N
S i

N
S i

i
BLZ,
2

d
d BLZ,

d
d BLZ,

BLZ,

2⎡
⎣
⎢⎢ ⎛

⎝⎜⎜
⎞
⎠⎟⎟

⎤
⎦
⎥⎥( )

( )åc
s

=
-

Depending on the model parameter point, either Equation (16)
or Equation (17) provides the stronger constraint. Similar to the
discussion above, we cannot use the sum of both χ2s, due to
double counting, so again we choose the most constraining
one:

max , . 18Sz SBLZ
2

BLZ,
2

BLZ,
2( ) ( )c c c=

As described in Equation (14), we select the lower bounds
by comparing BLZ

2c with the ones from the analysis of the
individual BLL and FSRQ source classes. In this latter case, we
can use the full information from the catalogs and compare the
models with the data from a three-dimensional grid of flux,
redshift, and photon spectral index. Again, since the redshift
information is incomplete, we define the χ2 as the maximum of
the two cases:

max , , 19Sz SM
2

M,
2

M,
2( ) ( )c c c= G G

where M stands for either BLL or FSRQ. The individual χ2s in
the two cases are defined by

min , 0 , 20Sz
i j k

N
S ijk

N
S ijk

ijk
M,
2

, ,

d
d M,

d
d M,

M,

2⎡
⎣
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⎞
⎠⎟⎟

⎤
⎦
⎥⎥⎥

( )
( )åc
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G

when redshift information is included, and by

min , 0 21S
i k

N
S ik

N
S ik

ik
M,
2

,

d
d M,

d
d M,

M,

2⎡
⎣
⎢⎢ ⎛

⎝⎜⎜
⎞
⎠⎟⎟

⎤
⎦
⎥⎥( )

( )åc
s

=
-

G

in the case with the flux and spectral index bins only.
To avoid a bias from the Galactic plane, we exclude small

latitudes with |b|< 30° from our analysis.

2.3.2. Fit to the CP Data

The fit of the APS is performed on the autocorrelation (i= j)
and cross-correlation (i≠ j) measurements, where i and j
denote the energy bins. The C

2
P

c is defined as

C C
. 22C

i j

ij ij

C

2 P meas P th
2

2
ij

P

P


[( ) ( ) ] ( )åc
s

=
-

Table 1
The Binning of the 4FGL Fit

Source
Class Variable Min Max

Number
of Bins Scaling

ALL S [cm−2 s−1] 10−10 10−7 10 log
Γ 1.0 3.5 1 linear

BLZ S [cm−2 s−1] 10−10 10−7 10 log
Γ 1.0 3.5 1 linear
z 0.0 4.0 6 log

in (1+z)
BLL S [cm−2 s−1] 10−10 10−7 10 log

Γ 1.6 2.4 5 linear
z 0.0 4.0 6 log

in (1+z)
FSRQ S [cm−2 s−1] 10−10 10−7 10 log

Γ 2.1 2.9 5 linear
z 0.0 4.0 6 log

in (1+z)
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The subscript meas refers the measured CP obtained in
Ackermann et al. (2018), while the subscript th denotes the
theoretical estimation of CP calculated as in Equation (9).
Finally,

C
2

ij
P

s are the uncertainties of the measured CP, again
taken from Ackermann et al. (2018).

2.4. Analysis Strategy

As anticipated above, we perform two fits in this work. The
first one utilizes only the 4FGL catalog, while the second one
additionally uses the CP measurement. The basic idea is as
follows. From the first fit, we obtain constraints on the GLF and
SED models of the two blazar populations in the flux regime of
resolved point sources. From there, we can extrapolate to the
unresolved flux regime and calculate the CP. As will become
clear in Section 2.5, this extrapolation agrees well with the
actual CP measurement. As such, we can go one step further
and also perform the second fit, which combines the resolved
point sources (4FGL) with the CP. This combined fit provides
GLF and SED models that are consistent with the gamma-ray
observations below the flux threshold of the 4FGL catalog.
When we derive the DM constraints in Section 3, the combined
fit serves as the baseline.

The large parameter space investigated in this work is
sampled using MULTINEST (Feroz et al. 2009). We use a
configuration with 800 live points, an enlargement factor of
efr= 0.7, and a stopping parameter of tol=0.1. In the
following, we present the results in the Bayesian statistical
framework.

2.5. Results for the GLF and SED of BLLs and FSRQs

As a result of our fits, we obtain the GLFs and SEDs of the
FSRQs and BLLs. The 4FGL categorization of the blazars into
the two classes is incomplete, which leaves some degeneracy.
We allow the fit to attribute the uncharacterized blazars either
to the BLLs or FSRQs. This is only possible because we fit
both source classes at the same time. We note that this
treatment leads to correlations of BLL parameters with FSRQ
parameters and vice versa. These correlations are important for
correctly assessing the uncertainty of the full blazar model, as,
for example, in Section 3, where blazars constitute the
background for our DM search.

The results are summarized in Table 2, where we state the
mean values and the 1σ uncertainty derived from the margin-
alized posterior for each parameter. Results are provided for
two setups. In the first setup, we only fit the resolved point
sources of the 4FGL catalog, while in the second setup, we fit
both the resolved sources and the APS data. The obtained
parameter values of the two setups are compatible within their
uncertainties. The GLF parameters of the FSRQ and BLL
models are well compatible with the parameter values of Ajello
et al. (2012) and Ajello et al. (2014), respectively. This means
that the GLF of the sources belonging to the fainter regime
probed in this work closely follow the one of the brighter end.
We note that we use a slightly different definition of the LDDE
than Ajello et al. (2012), which leads to slightly different
parameter values for p1

*, p2
*, and zc*.

Figure 2 shows the best fits and uncertainties of the dN/dS
from the combined fit to 4FGL+CP in comparison to the dN/
dS extracted from the 4FGL catalog. The four different panels
correspond to the different contributions to 4FGL

2c . In more
detail, the data points in the upper left panel show the dN/dS of

all sources from the 4FGL catalog (at |b|> 30°). The sum of
our models for the BLLs and FSRQs is in agreement with those
data. Because of the statistical technique that we adopted (see
above), it is expected to stay at the level or below those data
points. The open white data point is below the flux threshold,
so it is excluded from the analysis. The upper right panel shows
the data points of the dN/dS for all identified or associated
blazars. The different colors show the dN/dS in different
redshift bins, while the black points are summed over all
redshifts. Our model for the dN/dS of the BLLs plus FSRQs
lies, as expected, at the level or above the data points. In both
upper panels, the source count distribution is integrated over all
photon spectral indices, from 1.0 to 3.5. Furthermore, the upper
panels only show the constraints from the 4FGL catalog on the
sum of the BLL and FSRQ models. The two lower panels,
instead, look at the individual models for FSRQs and BLLs.
Furthermore, they focus on the dN/dS for specific bins of the
photon spectral index, corresponding to the peak of the
distribution for each class. The lower left panel compares the
dN/dS BLLs in the Γ bin from 1.9 to 2.1. Again, the different
colors correspond to different redshift bins, and the black
points contain the sum over all redshifts. Finally, the lower
right panel is the same as the left panel, but for FSRQs and a Γ
bin from 2.4 to 2.6. All in all, we see that our model matches
the constraints from the 4FGL catalog very well. We show
these plots only for the 4FGL+CP fit, but we note that they
look very similar for the 4FGL-only fit.
Figure 3 compares the CP measurement with the best-fit

model and uncertainty from the 4FGL+CP setup. The left panel
shows the CP autocorrelation, while the right panel shows an
example of cross-correlation, between the (8.3, 14.5)GeV
energy bin and all other energy bins. The sum of the BLL and
FSRQ models provides a good fit to the data. This was also the
case in the analysis of unresolved sources after 2 yr of Fermi-
LAT data (Di Mauro et al. 2014). In the meantime, however,

Table 2
The Fit Results of the GLFs

4FGL fit 4FGL+CP fit

FSRQ BLL FSRQ BLL

Alog Mpc10
3( [ ])- 9.35 0.37

0.62- -
+ 9.80 1.11

0.40- -
+ 9.65 0.47

0.61- -
+ 9.01 1.11

1.21- -
+

Llog erg s10( [ ])* 48.36 0.66
0.31

-
+ 47.85 0.52

0.79
-
+ 48.53 0.60

0.42
-
+ 47.26 1.09

0.75
-
+

γ1 0.57 0.09
0.15

-
+ 1.03 0.07

0.12
-
+ 0.72 0.09

0.13
-
+ 0.92 0.07

0.18
-
+

γ2 1.93 0.43
0.14

-
+ 1.95 0.45

0.16
-
+ 1.97 0.42

0.21
-
+ 1.88 0.38

0.12
-
+

zc* 0.93 0.27
0.20

-
+ 1.05 0.53

0.16
-
+ 0.87 0.24

0.14
-
+ 1.06 0.56

0.16
-
+

p1
* 5.86 5.02

2.15
-
+ 7.48 4.51

3.97
-
+ 8.37 3.35

3.78
-
+ 4.01 3.54

0.77
-
+

p2
* 0.88 0.14

0.77- -
+ 1.97 0.43

1.83- -
+ 0.77 0.11

0.67- -
+ 0.93 0.19

0.83- -
+

α 0.20 0.16
0.07

-
+ 0.28 0.13

0.14
-
+ 0.11 0.11

0.02
-
+ 0.31 0.07

0.17
-
+

μ
*

2.50 0.04
0.03

-
+ 2.03 0.04

0.04
-
+ 2.49 0.04

0.03
-
+ 2.05 0.04

0.03
-
+

σ 0.19 0.04
0.02

-
+ 0.22 0.05

0.03
-
+ 0.20 0.04

0.02
-
+ 0.19 0.03

0.02
-
+

β 0.06 0.05
0.02

-
+ 0.03 0.03

0.01
-
+

kCP 1.09 0.12
0.16

-
+

ALL
2c 1.7 2.9

BLZ
2c 3.0 2.7

BLL
2c 11.4 12.7

FSRQ
2c 7.4 8.0

4FGL
2c 20.5 26.3

C
2

P
c 81.0

χ2 20.5 107.3
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many more point sources were resolved and the CP measure-
ment decreased by a factor of about 10, making the latest data
much more sensitive to faint populations. Still, we find that
blazars explain the entire latest CP measurement. The feature at
200 GeV in our model (and also, less visible, in the data) is
related to a change in the analysis adopted for the measurement
from Ackermann et al. (2018): for energies below 200 GeV,
bright point sources are masked from the 4FGL catalog, but in
the last two bins at high energies, bright point sources are
masked using the 3FHL catalog. This leads to a change in the
actual Sthr, which explains the feature. The feature does not
appear in the right panel because for the cross-correlation the
masks of the two energy bins involved in the measurement
were joined (so when an energy bin below 200 GeV is present,
the mask is mostly provided by the point sources of the 4FGL
catalog). Note also from Table 2 that the nuisance parameter
kCP, introduced to allow for a possible rescaling of the flux
threshold sensitivity from the reference model, is within
uncertainties compatible with the default value of 1.

It is also interesting to look at the 4FGL-only setup, and to
use the extrapolation of the GLF and SED model to predict the
CP. As shown in Figure 4, our prediction agrees very well with
the measurement. We note that the CP is dominated by FSRQs
at low energies, below ∼2 GeV, while BLLs dominate at

higher energies. The domination of BLLs at high energies is
expected, since they have a harder SED than FSRQs. The fact
that there is a transition from FSRQs to BLLs in the CP at low
energies introduces a softening in the spectral index at low
energies. This softening has previously been interpreted as a
possible hint of a new source population (Ando et al. 2017).
The new CP data (Ackermann et al. 2018), and the detailed
treatment presented here, allow us to interpret it in terms of
FSRQs.
Figure 4 already hints that both BLLs and FSRQs are

required to describe the CP data. We better quantify this
statement in the following. Using the results of the 4FGL-only
fit, we calculate the posterior distribution of the C

2
P

c , assuming
(i) the sum of the FSRQs and BLLs, labeled all, and (ii) only
the BLLs. An FSRQ-only hypothesis is excluded, since it
cannot explain the high-energy CP data. In order to consider the
systematic uncertainty on the exact flux threshold, we profile
over the normalization of the Cp. The results in Figure 5 show
that the sum of the FSRQs and BLLs is preferred. Using the
full posterior of the 4FGL-only fit, and defining

exp 2C C
2

p p
( ) c= - , we calculate the Bayes factors of

hypotheses (i) and (ii), obtaining 4.0× 103. More details about
the calculation of the Bayes factors are given in Appendix B. In
this sense, the two physical populations (BLLs and FSRQs) are

Figure 2. Source count distributions of the 4FGL sources in bins of flux (S), photon spectral index (Γ), and redshift (z). The GLF is fitted to 4FGL+CP. The band
shows the 1σ Bayesian uncertainty. The black open (filled white) data point in the upper left panel is below the flux threshold and thus not included in the fit (see the
text for further details). In our statistical analysis, the data in the upper left panel are taken as the upper bounds, while for all the other panels they are the lower bounds.
The colored open data points show the identified BLLs (blue), FSRQs (orange), and BCUs (green). Those points are not included in the fit and are only shown for
comparison.
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clearly preferred over a single population of only BLLs or only
FSRQs. We note, however, that the preference for these two
populations is based on the catalog prior. As discussed in
Appendix A, the CP data are not sufficient to distinguish
between a scenario with one or two populations. Without the

catalog prior, a hypothetical and more general GLF and SED
can provide a good fit to the CP data.
Finally, Figure 6 shows a triangle plot with posterior

distributions for the parameters of the GLF and SED for the
BLL and FSRQ models. The posteriors correspond to the
4FGL+CP setup. The diagonal contains the marginalized one-
dimensional posteriors for each individual parameter, while the
panels in the lower half show the 1σ and 2σ contours for each
combination of two parameters. Since the BLL and FSRQ
models have the same functional form, we can combine them
into the same triangle, using different colors. We observe that
the SED parameters μ* and σ are well constrained for both
populations. The average photon spectral index of the BLLs is
μ*∼ 2.0, with a width of σ∼ 0.2. As expected, the FSRQs
follow a softer energy spectrum, with an average index of
μ*∼ 2.5 and a similar width. Also, the shape of the GLF at
small L is reasonably constrained. The index γ1 lies between
0.4 and 1.0 for the FSRQs and between 0.5 and 1.2 for the
BLLs, while the behavior at large L (see γ2) is less constrained.
We note the degeneracy between A and L*. This is because, in
both cases, at first order, their main impact on the fit is to
change the normalization of the GLF. The redshift dependence
is only weakly constrained due to degeneracies with other
parameters.
We provide the covariance matrix of our fits in the ancillary

files (arXiv version). This covers, to a first approximation, the
degeneracies and correlations of the fit parameters. As a final
comment, let us note that, clearly, the uncertainties on the
parameters of the BLLs and FSRQs show some level of mutual
correlation in the fit. It is only for the sake of clarity that we do
not show the entire triangle plot in Figure 6.

2.6. Blazar Contribution to the UGRB

We see that the measured gamma-ray angular correlations
require the presence of FSRQs and BLLs. Populations with a
GLF peaked at lower luminosities (like mAGNs and SFGs)
cannot account for the CP data. Thus, FSRQs and BLLs
provide an inescapable contribution to the UGRB intensity. In
Figure 7, we compare the UGRB measurement of Fermi-LAT
from Ackermann et al. (2015) with the prediction from our
models. The measurement accounted for the contribution of
point sources from the 2FGL catalog (Nolan et al. 2012). To be
consistent, we apply a flux threshold corresponding to the
2FGL catalog, taken from Ackermann et al. (2015), for the

Figure 3. Angular correlation of the 4FGL+CP fit. The shaded bands mark the 1σ Bayesian uncertainty.

Figure 4. The GLF is fitted to 4FGL sources and then extrapolated to the CP.
The band shows the 1σ Bayesian uncertainty.

Figure 5. Posterior distribution of the 4FGL-only fit for the C
2

P
c . We show the

distributions for three cases: considering the sum of the BLLs and FSRQs (all),
only the BLLs (BLL), and only the FSRQs (FSRQ).

8

The Astrophysical Journal, 933:221 (17pp), 2022 July 10 Korsmeier et al.



predictions in Figure 7. We conclude that blazars provide a
significant contribution to the UGRB, accounting for about
30% between 10 and 100 GeV. At energies below 1 GeV, the
contribution decreases to about 20%.

3. Bounds on WIMP DM

The UGRB observed by Fermi-LAT could conceal a signal
from DM particles. We focus our analysis on annihilating DM.
Since annihilation occurs universally in all DM structures, we
need to consider the gamma-ray emission from both the halo of
our galaxy and from extragalactic structures. We therefore have
two DM contributions to the anisotropy APS, one for the
Galactic halo and one from the extragalactic DM distribution
(the two contributions are not expected to cross-correlate).

Moreover, extragalactic structures host the same astrophysical
sources (BLLs and FSRQs) that we have discussed in previous
sections. This induces a cross-correlation term in the APS
between extragalactic DM and source emissions. All these
terms are properly modeled and taken into account in our
analysis, as outlined below. In the following, we will discuss
the contribution of DM only to the anisotropy signal CP, since
the contribution of DM halos to the source count distribution is
significantly suppressed as compared to that arising from
astrophysical sources in the resolved flux regime. A DM
contribution to the dN/dS could, in principle, emerge on top of
astrophysical sources only at very low fluxes.

Figure 6. Triangle showing the parameter constraints of the GLF of the FSRQs (amber) and BLLs (blue). Both constraints are derived from the fit to the 4FGL+CP
data. The panels on the diagonal show the marginalized posterior distributions of each single parameter, while the panels in the lower half show the 1σ and 2σ
uncertainty contours derived from the two-dimensional marginalized posterior for each combination of two parameters.
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3.1. Extragalactic DM Modeling

The APS of the cross-correlation between a source field X in
the energy bin i and a source field Y in the energy bin j reads
(Fornengo & Regis 2014)

C W W P k
ℓd

, , 23ℓ
X Y

i
X

j
Y X Y

2
i j i j⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( )ò

c
c

c c
c

c= =

whereWX(χ) is the window function of the field X, PXY(k, χ) is
the three-dimensional cross-power spectrum of the fluctuations
of the two fields, and χ denotes the comoving distance, related
to redshift by dχ= (c dz)/H(z).

The window function for annihilating DM is given by (Ando
& Komatsu 2006; Fornengo & Regis 2014)
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where ΩDM and ρc are the present-day cosmological abundance
of DM and the critical density of the universe, respectively,
mDM is the mass of the DM particle, Δ2(z) is the clumping
factor, and 〈σannv〉 denotes the velocity-averaged annihilation
cross section of DM particles, assumed here to be the same in
all DM halos. dNann/dE indicates the number of photons
produced per annihilation as a function of energy, and sets the
gamma-ray energy spectrum, and τ(E, z) denotes the optical
depth of the gamma-ray photons, which we model as in Finke
et al. (2010).

To determine the DM autocorrelation, we compute the three-
dimensional power spectrum with the so-called halo model
approach (see, e.g., the review in Cooray & Sheth 2002). For

X= Y=DM, we have
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where dnh/dM is the halo mass function, Plin(k, z) is the linear
matter power spectrum, bh(M) is the linear bias, and
u k M z,annˆ ( ∣ ) denotes the Fourier transform of the density
profile of the DM halos (see, e.g., see the Appendix of Cuoco
et al. 2015). We assume the Navarro–Frenk–White (NFW) DM
density profile (Navarro et al. 1996). All the ingredients in
Equations (24) and (25) are modeled as in Ammazzalorso et al.
(2020). The minimal and maximal halo masses are set at
M M10min

6
= - and M M10min

18
= , respectively.

To characterize the halo profile and the subhalo contribution,
we need to specify their mass concentration. The description of
the concentration parameter c(M, z) at small masses and for
subhalos is still an open issue, and provides our largest source
of uncertainty. In the following, we consider two models that
we name “LOW,” where we take the description of c(M, z)
from Correa et al. (2015), and “HIGH,” where we follow Neto
et al. (2007). They differ as to what concerns the extrapolation
of the concentration at low masses, leading to a difference of
about one order of magnitude in the final bounds on the
annihilation cross section, as shown in Section 3.4.
Clearly, the distribution of the extragalactic DM halos (and,

in turn, of the annihilation signal) has some level of correlation
with the blazar distribution, therefore inducing a cross-
correlation signal between DM and the blazars. The blazar
window function can be phrased as WBLA(z, E)= χ(z)2 〈fS〉,
with the mean flux defined as
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The three-dimensional power spectrum of the cross-correlation
between annihilating DM and the blazars is given by
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where bS is the bias of the blazars with respect to the matter
density, for which we adopt bS(Lγ, z)= bh[M(Lγ, z)]. The
relation M(Lγ, z) between the mass of the host halo and the
luminosity of the hosted blazar is taken from Camera et al.
(2015).

Figure 7. Contribution of BLLs and FSRQs to the UGRB intensity. The flux
threshold corresponds to the 2FGL catalog, both for the data points and the
model prediction. The band shows the 1σ Bayesian uncertainty.
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3.2. Galactic DM Modeling

For the modeling of the signal expected from the Galactic
subhalos, we follow the treatment of Ando (2009). In general,
the prediction of the APS for the Galactic component is the
sum of two contributions, one arising from the main halo and
the other originating from substructures. The main (smooth)
halo contribution is subdominant for multipoles above a few:
since we are dealing with multipoles larger than 50, it is here
neglected. For the substructure contribution, we consider an
antibiased subhalo distribution, corresponding to fiducial
model A1 of Ando (2009), with a boost factor for subhalos
set to unity.

The subhalo number density as a function of the distance f
from the center of the galaxy reads

n r f
M

r M

c

r
r

2
3

,
2 2

exp
2

, 29

E E E

E

sh
vir,MW

2
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2
1 3 1

2

E

E

⎜ ⎟ ⎜ ⎟
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p
g

a a a

a

=

´ -

a

a
-

-
- -
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where Mvir,MW is the Milky Way virial mass, αE= 0.68, γ is
the lower incomplete gamma function, r−2= 0.81 r200,MW,
c−2= rvir/r−2, and the fraction f of DM enclosed in subhalos is
fixed to 0.2. The minimal subhalo mass is set at
M M10min

6
= - . We do not include a truncation for the

subhalo distribution at large radii. The angle average number
density referred to our position in the galaxy is

n n r
1
2

d cos cos , 30sh
1

1

sh( ) ( ( )) ( )ò y y=
-

where r r s r scos 2 cos0
2 2( ( )) ( )y y= + - Å , r⊕= 8.5 kpc is

our distance from the center of the galaxy, s represents the
distance along the line of sight, and ψ is the angle between the
direction n̂ of observation and the direction to the Galactic
center.

Numerical simulations suggest that the mass distribution of
subhalos follows a power-law behavior with the mass M of the
subhalo, and can be written as

n
M

n r
M

M
M

d
d

1
, 31sh

sh
0

min min

0

⎜ ⎟⎛⎝ ⎞⎠( ) ( )a
=

- a-

where α0= 1.9.
The subhalo luminosity L for a subhalo with mass M

depends on the particle properties of DM, 〈σannv〉 and mDM, as
well as on the energy spectrum dNann/dE associated with the
channel under study. It reads

L
v M
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d
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With the above ingredients, the APS for the Galactic subhalo
contribution can then be expressed as
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where i and j refer to energy bins. The integral along the line of
sight is performed up to s r 258 kpcmax vir,MW= = , and starts at

s L S4min thr( )p= . In this specific case, we use a simplified
approach: instead of the full, i.e., Γ-dependent, flux threshold,
we use a fixed threshold averaged over Γ. More specifically,
the thresholds (corresponding to the flux from 1 to 100 GeV)
are set to Sthr= 10−10 cm−2 s−1 for the first 10 energy bins (the
4GFL threshold) and 2× 10−10 cm−2 s−1 for the two highest
energy bins (the 3FHL threshold). The value of smin is thus
chosen such that only unresolved Galactic subhalos are
considered in the determination of the APS. We adopted an
NFW profile for the internal density distribution of the
subhalos, and ush˜ denotes its Fourier transform. The maximal
halo mass for the subhalos in our galaxy Mmax= 1010Me.
In summary, the APS involving DM is given by the sum of

four terms—three extragalactic terms (the autocorrelation from
the extragalactic DM halos and the cross-correlations with the
BLLs and FSRQs) and the Galactic term, which is not expected
to cross-correlate with extragalactic source populations. Since
the DM contributions are not flat in multipole, but ℓ-dependent,
they are averaged in the multipole range considered for the
determination of the CP measurement in Ackermann et al.
(2018).

3.3. Statistical Framework

We derive bounds on the DM annihilation cross section as a
function of the DM mass by marginalizing over the
uncertainties in the astrophysical background model. This
means that we are not using the approximation of a fixed
background model obtained from the best fit of the blazar-only
case, on top of which the DM contribution is added.
The naive approach to considering the full uncertainty would

be to perform an extended parameter scan, which would
include the blazar parameters and the DM parameters at the
same time. However, this is computationally very expensive.
We instead use a method called “importance sampling” in order
to recycle the information from background-only fits, which
significantly speeds up the calculation. The same approach has
recently been used in a different context (Kahlhoefer et al.
2021).
One by-product of the MULTINEST scan is a set of parameter

vectors that follows the multidimensional posterior distribution.
This set is provided in the so-called equal-weights sample. We
will apply importance sampling to obtain the posterior
distribution of the full parameter space (blazars and DM) by
using the equal-weights set of the fit to blazars only.
First, we note that we can approximate the integral of the

product of the background, i.e., the blazar, posterior, and an
arbitrary function f over the blazar parameters, θblz, by a sum
over the parameter points in the set of the equal-weights
sample:

p

Z
f

N
f

d

1
, 34

lz
lz lz

lz

i
N

i

b
0 b 0 b

0
b

1 blz,

( ) ( ) ( )

( ) ( )


ò q

q q
q

q» å =

where 0 is the likelihood, Z0 is the evidence, and p0 is the
prior. The subscript 0 indicates quantities that refer to the fit
without DM. We note that the factor p Zlz lz0 b 0 b 0( ) ( ) q q is by
definition the posterior distribution. Furthermore, we know that
the integral over the prior p0(θblz) is normalized to 1. If we set
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f Zlz lzb 0 0 b( ) ( )q q= , we see that the evidence is given by

Z
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=

We can obtain the marginalized likelihood by integrating
over the background parameters:

d p, . 36lz lz lzDM b b DM b¯ ( ) ( ) ( ) ( ) òq q q q q=

Here, θDM= {mDM, 〈σannv〉} denotes the DM parameters,
,lzb DM( ) q q is the likelihood of the full parameter space, and

p(θblz) is the prior of the blazar parameters. Using
Equation (34), and assuming the same prior
(p(θblz)= p0(θblz)), we see that the integral of Equation (36)
is approximately given by the sums
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In the next step, we can turn this equation into an expression
for a marginalized χ2 by using the definition of our likelihood
( exp 22( ) c= - ):
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Finally, we obtain the DM limit at the 95% confidence level
from the requirement 3.842

DM ¯ ( )qcD .
In practice, we evaluate Equation (38) on a grid of mDM,

with 14 grid points logarithmically spaced between 10 GeV and
4 TeV. We note that the annihilation cross section 〈σannv〉 only
changes the normalization of the CP contributions, but not the
shape. The DM×DM contribution scales with 〈σannv〉2, while
the DM× BLZ contribution scales linearly with 〈σannv〉. So we
can tabulate the CP contributions of the background and DM at
a reference value of 〈σannv〉= 3× 10−26 cm3/s. The equal-
weights set contains 105( ) parameter vectors. After the
tabulation, the evaluation of Equation (38) takes about one
second. The importance sampling reduces the computing time
by about a factor of 10, since the typical number of evaluations
required for a full parameter scan of the blazar and DM
parameters requires 106( ) evaluations. A further advantage
of the importance sampling is that the tabulation can be
parallelized to an arbitrary degree, which is not possible for a
Monte Carlo–based parameter sampling with MULTINEST.

3.4. Constraints on DM Annihilation

We derive the constraints on the annihilation of DM into a
pair of bb¯ quarks, which serve as an illustrative example. The
limits for the other hadronic channels are expected to be at a
similar level. The left panel of Figure 8 shows the marginalized
Δχ2 in the plane of the DM mass and the annihilation cross
section, as derived from Equation (38). For DM masses
between 15 and 140 GeV, a small DM contribution slightly
improves the fit of the CP data. However, it is statistically not
significant. The maximal improvement of the 2c̄D is ∼3.5,
which corresponds to a local significance of less than 2σ and an
even smaller global significance. Consequently, we can derive

the DM limits as a function of the DM mass. In the fiducial
setup, namely, using the “LOW” model for the concentration–
mass relation of the DM halos (see Section 3), we can place an
upper limit of 〈σannv〉= 10−25 cm3 s−1 on the annihilation
cross section at the DM mass of 10 GeV. The limit gradually
weakens to 〈σannv〉= 3× 10−23 cm3 s−1 at 4 TeV. In a more
aggressive setting for the concentration parameter, i.e., the
“HIGH” model, we obtain a DM limit that is almost one order
of magnitude stronger. The plot in the left panel of Figure 8
shows the limits for the “LOW” model, while the comparison
between the two cases is shown in the right panel. In the
“HIGH” scenario, we can exclude a thermal WIMP for
mDM< 20 GeV.
As explained above, the measurement of the APS is

dominated by the Poisson noise term. For this reason, the
DM bounds in Figure 8 are weaker than the ones from other
probes of the UGRB (Di Mauro & Donato 2015; Charles et al.
2016), such as the total intensity energy spectrum and the
cross-correlation APS with gravitational tracers, which are less
affected by the noise being linear instead of quadratic (see, e.g.,
Figure 4 in Regis et al. 2015). There are also other strategies of
indirect DM searches using gamma rays, e.g., from the dwarf
spheroidal galaxies or the Galactic center, or using cosmic-ray
antiprotons. Those DM limits are typically stronger by 1–2
orders of magnitude (see, e.g., Leane 2020; Slatyer 2021 and
references therein), but those analyses are affected by different
systematic uncertainties.
In Figure 9, we show the contribution of all the different

components to the CP for two exemplary DM masses, of
100 GeV (left panel) and 1 TeV (right panel), in the “LOW”
scenario. The DM components are evaluated at the 〈σannv〉
values, corresponding to the limit shown in Figure 8 for that
DM mass. As expected, the blazar components are dominant,
and the DM only constitutes a subdominant part. The largest
DM contribution stems from the extragalactic DM halos,
closely followed by the contribution of Galactic DM subhalos,
which is smaller roughly by a factor of 2, while the contribution
of BLZ×DM is smaller by 1–2 orders of magnitude. The
uncertainty bands in Figure 9 represent the 1σ uncertainty in
the blazar background models. In the “HIGH” scenario, the
picture is similar, but with the DM contribution being strongly
dominated by the extragalactic term.
Finally, we stress again that the absence of a DM signal in

the CP provides further confirmation that the sum of the FSRQs
and BLLs fully explains the entire UGRB anisotropy, and that
no additional weak component is required to match the data.

4. Conclusions

In this work, we compared models of the GLF and SED of
blazars to the latest measurement of the energy spectrum of the
UGRB anisotropies (Ackermann et al. 2018) and the properties
of the resolved gamma-ray sources of the Fermi-LAT 4FGL
catalog. We considered two different blazar populations,
distinguishing between BLLs and FSRQs. We found that
BLLs and FSRQs can account for the totality of the UGRB
anisotropy, with BLLs dominating the APS at high energies,
and FSRQs being important at GeV energies. The derived
models well reproduce the size and spectral features observed
by Ackermann et al. (2018) and the properties of the source
number counts of the 4FGL catalog. Our analysis significantly
constrains the redshift and luminosity dependence of the blazar
GLF and the spectrum of the SED in the unresolved regime.
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We also calculate the contribution of the unresolved popula-
tions of FSRQs and BLLs to the the UGRB intensity spectrum,
finding a non-negligible contribution of about 30% between 10
and 100 GeV and about 20% at 1 GeV.

In the second part of the paper, we included a contribution to
the UGRB arising from annihilating DM, and performed a
global fit to derive constraints on the particle DM parameters.
We computed both Galactic and extragalactic DM contribu-
tions, and included cross-terms in the APS, due to the cross-
correlation of the blazars with the DM halos hosting them. The
dominant term arises from extragalactic DM halos, and
strongly depends on the poorly known description of DM
subhalos. To bracket the uncertainty, we considered two
different scenarios, “LOW” and “HIGH,” which lead to upper
limits of 〈σannv〉= 10−25 cm3 s−1 and
〈σannv〉= 1.5× 10−26 cm3 s−1, respectively, on the annihila-
tion cross section at the DM mass of 10 GeV, for annihilation
into bottom quarks.

The present analysis of the UGRB anisotropies is based on
the measurement of Ackermann et al. (2018), where no
evidence for an ℓ-dependent APS was found. Further data, and
more resolved sources, would allow us to reduce the level of
the Poisson noise CP and to measure an APS unveiling the
large-scale clustering of gamma-ray sources. This would allow
us to deepen our understanding of blazar populations, as well
as exploit the APS observable in a much more powerful way in
the context of DM bounds.
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Appendix A
One or Two Populations: A Phenomenological

Interpretation

In this paper, we have considered two blazar populations,
BLLs and FSRQs. Both populations are important, and their
sum provides a good fit to angular correlations of the UGRB. In
more detail, FSRQs provide the largest contributions to the CP
below a few GeV, while BLLs dominate at higher energies. As
a consequence, we found that FSRQs are responsible for the
softening of the CP at low energies, which is an interesting
result, because this softening has also been interpreted as a
possible hint of a new source population (Ando et al. 2017). In
a similar spirit, Ackermann et al. (2018) also claimed that the
CP data hints at two populations. On the other hand, in
Manconi et al. (2020), a good fit of the CP data is obtained with
one population, using a model that combines FSRQs and BLLs
into a single GLF and SED model.
Here, we explore the issue of one versus two populations

more thoroughly, by employing a phenomenological model for
the SED and GLF of two hypothetical source populations. The
phenomenological model is slightly simplified as compared to
the physical models for the GLFs and SEDs of the BLL and
FSRQ source populations used in the main text. The most
important difference is that the phenomenological model does
not include a redshift dependence. However, the CP data is not

Figure 8. 95% confidence level bounds on the annihilation cross section as a function of the DM mass, for annihilation into bb¯ . The colors in the left panel stand for
the value of the marginalized Δχ2 derived from Equation (38). The left panel shows the constraints in the “LOW” scenario, while the right panel reports the
comparison between the “LOW” and “HIGH” cases.
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sensitive to redshift information, because it is integrated along
the line of sight. We find that our model is sufficient to explore
the question regarding the number of source populations.
Furthermore, it has the clear advantage that large parts of the
computations can be done analytically. We find that the width
of the spectral index distribution is a key parameter for
distinguishing the scenarios of one or two populations.

A.1. Definition of the GLF and SED

The source count distribution as a function of the photon flux
S is modeled as a power law:

N
S
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S
S

d
d
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where A is an overall normalization, γ is the power-law index,
and S0 is a reference flux. In the following, S0 is fixed to
1× 10−10 cm2 s−1, and the fluxes S and S0 always refer to the
photon flux in the energy bin from 1 to 100 GeV. To relate the
flux S to the flux Si in a different energy bin i, we need the
SED, which we model as a power law with an exponential
cutoff:
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Here, K is the normalization, E0 is a reference energy, Γ is the
photon spectral index, and Ec is the energy of the exponential
cutoff. The exponential cutoff allows the mimicking of the
attenuation of gamma rays at high energies. By definition, the
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Finally, we allow for an intrinsic distribution of the photon
spectral indices, following a Gaussian with mean μ and width
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Then the CP of the unresolved point sources is given by
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where Ω(S, Γ) is the detector efficiency for resolving point
sources, which we model as a θ-function at a Γ-dependent flux
threshold, Sthr (see the main text). By considering photon
spectral indices between 1 and 3, the CP is then calculated as
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We note that all the energy information of the CP is encoded in
the factor si sj, such that, to a first approximation, the slope, γ,
of the dN/dS is degenerate with the overall normalization, A.
So we fix γ to a benchmark value of 2.2 in the following
analysis.

A.2. Fits and Results for the Phenomenological Model

In this section, we perform a total of four fits. The fits differ
by the number of source populations (one or two) and by the
inclusion of a distribution in the photon spectral index.
In the first two fits, we neglect the distribution of spectral

indices—namely, we force σ= 0. The first analysis then
employs a single source population, with the SED and GLF as
specified in the previous section. The free parameters are the
normalization of the GLF (A), the photon spectral index (μ),
and the energy cutoff of the SED (Ec). Furthermore, we use a
nuisance parameter (kCP) that varies the value of the flux
threshold (see the main text for more details). This fit has four
free parameters. In the second analysis, we use two source

Figure 9. Comparison of the CP from blazars and DM. The DM contribution is shown at 100 GeV (left) and 1 TeV (right), and computed in the “LOW” scenario, for
annihilation into bb¯ . In both panels, we choose a value of 〈σannv〉 of DM at the limit derived in Figure 8.
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populations, labeled a and b. They have the same functional
form, but different parameters: in particular, for the normal-
ization of the GLF and the photon spectral index. However, we
force them to have the same value for the cutoff, Ec. Together
with the nuisance parameter, this amounts to six free
parameters. To avoid an extra degeneracy in the fit, we restrict
the photon spectral indices to μa< μb.

The third and fourth fits are very similar to the first two, but
we allow for a distribution in Γ. Consequently, this leads to one
(σ) and two (σa and σb) more parameters in the fits,
respectively. We use the MULTINEST code to perform the four
fits and to obtain the posterior distributions presented in the
following. The uncertainties are stated in the Bayesian
statistical framework.

The results of our four fits are presented in Table 3 and
Figure 10. The χ2/degrees of freedom of all four fits are close
to 1, and we conclude that all of them give a good fit to the CP
data. However, when comparing the χ2s of the first and second
fits, i.e., the fits without the Γ distribution, we see that
including a second population reduces the total χ2 by 10.3,
which formally corresponds to a statistical shift by 2.8σ. So this

could be interpreted as a small hint of two populations.
However, if we look at the results with a Γ distribution, the
conclusion changes. Here, the χ2 only decreases by 0.2 when a
second population is introduced, which is not significant. So we
cannot distinguish between one or two populations based only
on the CP data. This can also be seen from the triangle plots in
Figure 10. Without allowing for a Γ distribution, the red
posterior contours (one population) are not fully included in
either the green or blue contours (population a or b of the two-
population fit). Furthermore, both populations, a and b, are
required to have a relatively high normalization of
A> 10−11 cm−2 s−1 sr−1. On the other hand, if we allow for
a Γ distribution, the red contours are fully included in both the
green and blue contours. And, in the case of two populations,
one of the normalizations A can be pushed to negligible values
of 10−12 cm−2 s−1 sr−1. We compare the CP energy autocorre-
lations of the best fit to the data in Figure 11. It is clearly visible
that, in the case without the Γ distribution, two populations
provide a better fit, while in the case with the Γ distribution
there is almost no difference.

Table 3
Fit Results of the Phenomenological Model

w/o Γ Distribution w/ Γ Distribution

1 pop. 2 pops 1 pop. 2 pops

pop. a pop. b pop. a pop. b

Alog cm s sr10
2 1( [ ])- - 12.18 0.16

0.17
-
+ 11.87 0.13

0.36
-
+ 11.88 0.17

0.34
-
+ 12.26 0.18

0.15
-
+ 11.71 0.20

0.81
-
+ 11.52 0.42

0.96
-
+

μ 2.11 0.03
0.04

-
+ 1.86 0.11

0.19
-
+ 2.50 0.29

0.18
-
+ 2.18 0.05

0.06
-
+ 2.02 0.07

0.22
-
+ 2.44 0.32

0.17
-
+

σ L L L 0.34 0.08
0.07

-
+ 0.30 0.09

0.13
-
+ 0.30 0.08

0.18
-
+

Elog GeVc10( [ ]) 2.19 0.13
0.12

-
+ 1.98 0.15

0.12
-
+ 1.88 0.12

0.10
-
+ 1.88 0.11

0.10
-
+

kCP 1.00 0.50
0.29

-
+ 1.00 0.50

0.29
-
+ 1.00 0.24

0.96
-
+ 0.97 0.42

0.38
-
+
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Figure 10. Triangle plots showing the best-fit region of the phenomenological model fitted to the CP data for the different fit setups. On the diagonal, we display the
marginalized likelihood for all parameters, and the remaining panels below the diagonal contain the 1σ and 2σ contours derived from the marginalized likelihood in
two dimensions for each parameter combination. The red contours and lines correspond to a fit with a single population, while the green and blue contours correspond
to the two different populations of the fit containing two populations (labeled “a” and “b”). Left panel: the phenomenological model with a fixed photon spectral index.
Right panel: the phenomenological model with a Gaussian distribution of the photon spectral index.
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Finally, we have a look at the CP energy correlation matrix
(the coefficients are defined asC C Cij ii jj

P P P ). By definition, the
diagonal coefficients are equal to one. If there was only one
source population with a single and fixed photon spectral
index, the offdiagonal coefficients would also be equal to 1.
Instead, the CP measurement (Ackermann et al. 2018) showed
that the offdiagonal coefficients are ∼0.6, which was
interpreted as an indication of two populations. In Figure 12,
we also show that a single source population with a distribution
of photon spectral indices provides the correct offdiagonal
pattern.

A.3. Conclusions

We conclude that, based on the CP measurement itself, it is
not possible to distinguish between two populations with
narrow spectral index distributions and a single population with
a broader distribution. In the latter case, the required value for
the width of the Γ distribution is 0.34 0.08

0.07s = -
+ . Additional

information can help to solve the riddle. In the analysis of the
main text, we included a physical model and the constraining
power from the 4FGL catalog. This allowed us to break the
degeneracy and to determine the presence of two populations,
BLLs and FSRQs.

Appendix B
Calculation of the Bayes Factor

In the main text, we use a physical model with two
populations, BLLs and FSRQs. Because of the 4FGL catalog
prior, this model is significantly preferred over a model with
only one BLL population. This can be quantified by the
calculation of the Bayes factor, which is briefly summarized
here. The Bayes factor is defined as the ratio of evidence
between the two hypotheses: two populations (labeled “all”)
and one population (labeled “BLL”). For flat priors, this
becomes

B
Z

Z

d

d
. B1

lz lz C lz

lz lz C LL

all

BLL

b 4FGL b ,all b

b 4FGL b ,BLL B

P

P

( ) ( )
( ) ( )

( )
 

 
ò
ò

q q q

q q q
= =

Here, C ,allP and C ,BLLP are the likelihoods for the CP data
using the sum of BLLs plus FSRQs and only BLLs,
respectively. We note that the CP likelihoods also depend on
the nuisance parameters θn, which we suppress in the notation.

In analogy to Equation (34), we can approximately replace the
integrals by sums,

B , B2i C i

i C i

,all blz,

,BLL BLL,

P

P

( )
( )

( )


q
q

»
å

å

where i runs over all the points in the equal-weights sample of
the 4FGL-only fit. Finally, we note one subtlety: the normal-
ization of the CP model strongly depends on the exact value of
the catalog threshold, which is only known approximately. To
take the uncertainty due to the threshold into account, we
profile over the CP normalization, individually for each
parameter point i. The mean renormalization factors are 1.04
and 1.16 for the hypotheses of two populations and one
population, respectively.

Appendix C
Resolving Previous UGRB Anisotropy Measurements

As mentioned in the main text, the UGRB emission is
exposure-dependent: the more the LAT observes, the more
sensitive is the survey to fainter sources, and consequently less
unresolved emission contributes to the UGRB. We show this
effect by comparing the UGRB anisotropy energy spectrum
measured by Fornasa et al. (2016), which masked sources from

Figure 11. Left panel: the phenomenological model with a fixed photon spectral index. Right panel: the phenomenological model with a Gaussian distribution of the
photon spectral index.

Figure 12. The CP energy correlation matrix for the phenomenological model
in the setup with only one population, but including a Γ distribution.
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the 3FGL source catalog (Acero et al. 2015), based on 4 yr of
the LAT survey, with the one in Ackermann et al. (2018). In
Figure 13, we report both measurements in red and black,
respectively. The difference between the two measurements,
which consider similar total mission times (7.5 yr in Fornasa
et al. 2016 and 8 yr in Ackermann et al. 2018), is mainly due to
the difference in the number of resolved sources masked away
from the analyzed maps: the 4FGL counts approximately 2000
more sources than the 3FGL. We test this by evaluating the
anisotropy energy spectrum of the populations of FSRQs,
BLLs, and BCUs of the 4FGL that are not yet resolved (i.e., not
present) in the 3FGL (let us call this ΔCP,4FGL−3FGL). We
verify that the sum of the best-fit model of the measurement in
Ackermann et al. (2018) plus the ΔCP,4FGL−3FGL reproduces
the anisotropy energy spectrum as measured by Fornasa et al.
(2016). In agreement with our expectations, the results in
Figure 13 show that there is a transition between FSRQs and
BLLs in the ΔCP,4FGL−3FGL when going from lower to higher
energies. So it is plausible to observe a similar transition in the
CP measurement of Ackermann et al. (2018).

This test is performed by only considering energies up to
10 GeV. The measurement by Ackermann et al. (2018) also
masks 3FHL sources above those energies, making the
comparison with Fornasa et al. (2016) less straightforward
and beyond the scope of this study.
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