
Journal of Instrumentation
     

PAPER • OPEN ACCESS

Identification of hadronic tau lepton decays using a
deep neural network
To cite this article: A. Tumasyan et al 2022 JINST 17 P07023

 

View the article online for updates and enhancements.

You may also like
A new calibration method for charm jet
identification validated with proton-proton
collision events at s = 13 TeV
The CMS collaboration, Armen Tumasyan,
Wolfgang Adam et al.

-

The ATLAS Fast TracKer system
The ATLAS collaboration, G. Aad, B.
Abbott et al.

-

Performance of the CMS muon trigger
system in proton-proton collisions at (s) =
13
The CMS collaboration, A.M. Sirunyan, A.
Tumasyan et al.

-

This content was downloaded from IP address 151.32.35.158 on 20/01/2023 at 19:59

https://doi.org/10.1088/1748-0221/17/07/P07023
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/16/07/P07006
/article/10.1088/1748-0221/16/07/P07001
/article/10.1088/1748-0221/16/07/P07001
/article/10.1088/1748-0221/16/07/P07001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvIX8ct_wB1um3QbXy3kHhKkK0miCbnlDMCxSIYc-IQK1fXkocsRFZQVMVuHY8Hk4ZfVs-_LVt0_Wcml2B5sXVGZsJqLjNPwt8Yfw7tyYLqbz8eGoFqN4rfQNzGpIAimU9V_fuMJnjeLVKQ8kOjHs17Xb0lhjHCOhIDR6VTBVFZv8eqQ6jmAp_GZL9lVHUKfS4NFvh8bZl18PoFdoN-_RDGg241VJDm1jUhH5QSGaVtO6U3Se_7uYCxtYAjDdkSvSeHvdQG0cJVOB1BHfF5e6HEdqhivGKRxjUCYD2YAmpvRw&sai=AMfl-YTrg9lUkPv7JipIuRNzdRqkI1AqsO1rNyg7rPKHB2gO2AvK-luQWgRaQ2_c_ASnaNhul_ejqfjAlYhFSr6UDQ&sig=Cg0ArKJSzB0Fo51uhIgG&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/toyota-fellowship%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3D2023ECSTYIF


2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
7
0
2
3

Published by IOP Publishing for Sissa Medialab

Received: January 20, 2022
Revised: April 3, 2022
Accepted: May 25, 2022
Published: July 13, 2022

Identification of hadronic tau lepton decays using a deep
neural network

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Abstract: A new algorithm is presented to discriminate reconstructed hadronic decays of tau
leptons (τh) that originate from genuine tau leptons in the CMS detector against τh candidates that
originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from
all reconstructed particles in the vicinity of a τh candidate and employs a deep neural network
with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly
improved performance compared with the previously used one. For example, the efficiency for
a genuine τh to pass the discriminator against jets increases by 10–30% for a given efficiency for
quark and gluon jets. Furthermore, a more efficient τh reconstruction is introduced that incorporates
additional hadronic decay modes. The superior performance of the new algorithm to discriminate
against jets, electrons, and muons and the improved τh reconstruction method are validated with
LHC proton-proton collision data at
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1 Introduction

Tau leptons play a crucial role in determining the nature of the 125GeV Higgs boson [1–5], in
searching for additional Higgs bosons [6–13], and in searching for other new particles [14–16].
Since tau leptons most frequently decay to hadrons and neutrinos, all these analyses require the
efficient reconstruction and identification of hadronic tau lepton decays (τh). In this paper, we
introduce a new algorithm to identify τh candidates coming from hadronic tau lepton decays in
the CMS detector and measure its performance with collision data from the CERN LHC. The new
algorithm is based on a deep neural network (DNN) that significantly improves the performance
of the τh identification. Furthermore, we discuss an optimized τh reconstruction algorithm that
includes additional τh decay modes.
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Hadronic tau lepton decays are reconstructed and identified as follows. First, τh candidates are
reconstructed in one of their decay modes with the “hadrons-plus-strips” algorithm [17–19], which
reconstructs its decay mode and the visible four-momentum, i.e. the four-momentum of all decay
products except for the neutrinos. Second, the τh candidates are identified as coming from genuine
τh decays rather than from jets, electrons, and muons. Quark and gluon jets often constitute the
most important source of background since they are produced abundantly in proton-proton (pp)
collisions at the LHC.

Previously, τh candidates were reconstructed only in their main decaymodes: one-prong decays
with and without π0s, and three-prong decays without π0s. Now, we also consider three-prong τh
decays with π0s, which account for 7.4% of all τh decays. Furthermore, three-prong τh decays are
recovered in which one of the charged hadrons is either not reconstructed as a charged hadron or
not even as a track.

The identification of τh candidates in CMS previously proceeded with separate discriminators
against jets, electrons, and muons [18, 19]. The discriminators against jets and electrons combined
information fromhigh-level input variables (i.e. derived quantities, such as the transversemomentum
𝑝T sum of particles near the τh axis) using a multivariate analysis (MVA) classifier based on an
ensemble of boosted decision trees. A similar approach is used for τh identification by the ATLAS
collaboration [20, 21]. Our previous discriminator againstmuonswas based on explicit thresholds of
a few discriminating observables. Here, we introduce a new τh identification algorithm, DeepTau,
based on a DNN that simultaneously discriminates against jets, electrons, and muons. The DNN
uses a combination of high-level inputs, similar to previous algorithms, and information from all
reconstructed particles in the vicinity of the τh candidate. The information from all reconstructed
particles near the τh axis is processed with convolutional layers [22–24] in pseudorapidity-azimuth
(𝜂–𝜙) space. Convolutional layers have been developed in the context of image recognition and are
based on the premise that a fragment of the input, e.g. an image, can be processed independently of
its position, exploiting the translational invariance of the problem. In a given physics analysis, the
superior performance of such an algorithm leads to an increase of the signal efficiency for a given
target background rate from jets, electrons, or muons misidentified as τh, which typically translates
directly into superior sensitivity or precision of the analysis.

Similar approaches have been proposed and employed in the context of τh reconstruction and
identification as well as in the classification of jets. Identification algorithms for τh using shallow
neural networks were studied at LEP [25]. The ATLAS collaboration developed an algorithm to
identify visible τh decay products with a recurrent DNN [26]. The ATLAS and CMS collaborations
also use DNNs to identify jets as coming from decays of b quarks [27–30]. In particular, the
DeepJet algorithm [30] employs multiclass classification to identify jets as coming from gluons,
leptons, b quarks, c quarks, or light quarks. Convolutional layers have been used in algorithms
that identify large-radius jets as originating from the decays of high-𝑝T heavy particles, e.g. in the
DeepAK8 algorithm that identifies jets with 𝑝T > 200GeV as coming from decays of top quarks
or decays ofW, Z, or Higgs bosons [31].

This paper is structured as follows. After an overview of the CMS detector and the event
reconstruction in section 2, the recent advances in the τh reconstruction are discussed in section 3.
Section 4 describes the new τh identification algorithm based on neural networks and gives an
overview of its performance with simulated events. The performance of the algorithm with LHC
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collision events is then discussed in section 5. The paper is summarized in section 6. Tabulated
results are provided in the HEPData record for this analysis [32].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,
a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the 𝜂 coverage provided by the barrel and endcap detectors. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and the
relevant kinematic variables, is reported in ref. [33].

2.1 Event reconstruction

The particle-flow (PF) algorithm [34] reconstructs and identifies each individual particle in an
event, with an optimized combination of information from the various elements of the CMS
detector. The energy of photons is obtained from the ECAL measurement. The energy of electrons
is determined from a combination of the electron momentum at the primary interaction vertex,
as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum
of all bremsstrahlung photons spatially compatible with originating from the electron track. The
energy of muons is obtained from the curvature of the corresponding track. The energy of charged
hadrons is determined from a combination of their momentum measured in the tracker and the
matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters
to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies.

For each event, hadronic jets are clustered from all the PF candidates using the infrared-
and collinear-safe anti-𝑘T algorithm [35, 36] with a distance parameter of 0.4. Jet momentum is
determined as the vectorial sum of all particle momenta in the jet, and the simulation is, on average,
within 5 to 10% of the true momentum over the whole 𝑝T spectrum and detector acceptance.
Additional pp interactions within the same or nearby bunch crossings (pileup) can contribute
additional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To
mitigate this effect, charged particles identified as originating from pileup vertices are discarded and
an offset correction is applied to correct for remaining contributions [37]. Jet energy corrections
are derived from simulation to bring the measured response of jets to that of particle-level jets
on average. In situ measurements of the momentum balance in dĳet, photon+jet, Z+jet, and
multĳet events are used to correct any residual differences in the jet energy scale between data
and simulation [38]. Additional selection criteria are applied to each jet to remove jets potentially
dominated by instrumental effects or reconstruction failures [37].

The missing transverse momentum vector ®𝑝 missT is computed as the negative vector sum of the
transverse momenta of all the PF candidates in an event, and its magnitude is denoted as 𝑝missT [39].
The ®𝑝 missT is modified to include corrections to the energy scale of the reconstructed jets in the
event.

– 3 –
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The candidate vertex with the largest value of summed physics-object 𝑝2T is the primary pp
interaction vertex. The physics objects specifically used for this purpose are jets, clustered using
the jet finding algorithm [35, 36] with the tracks assigned to candidate vertices as inputs, and the
associated missing transverse momentum, taken as the negative vector sum of the 𝑝T of those jets,
which include tracks from leptons.

Muons are measured in the range |𝜂 | < 2.4, with detection planes made using three technolo-
gies: drift tubes, cathode strip chambers, and resistive plate chambers. The single muon trigger
efficiency exceeds 90% over the full 𝜂 range, and the efficiency to reconstruct and identify muons
is greater than 96%. Matching muons to tracks measured in the silicon tracker results in a relative
𝑝T resolution for muons with 𝑝T < 100GeV of 1% in the barrel and 3% in the endcaps. The 𝑝T
resolution in the barrel is better than 7% for muons with 𝑝T < 1TeV [40].

The electron momentum is estimated by combining the energy measurement in the ECAL
with the momentum measurement in the tracker. The momentum resolution for electrons with
𝑝T ≈ 45GeV from Z → ee decays ranges from 1.7 to 4.5%. It is generally better in the barrel
region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the electron
as it traverses the material in front of the ECAL [41].

Events of interest are selected using a two-tiered trigger system. The first level, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to select
events at a rate of around 100 kHz within a fixed latency of about 4 µs [42]. The second level,
known as the high-level trigger, consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz
before data storage [43].

2.2 Simulated event samples

Monte Carlo simulated event samples are used to optimize the τh reconstruction, as input for
the training of the neural network, and to validate the performance of the τh reconstruction and
identification. Unless explicitlymentioned, the simulated event samples include decays to all leptons
(ℓ), i.e. to electrons, muons, and tau leptons. The samples listed in the following are produced
separately for conditions corresponding to the 2016, 2017, and 2018 data-taking periods; a range
of versions of the different generators is used as specified below.

Events from the production of Z/𝛾∗ andW bosons in association with jets (Z+jets andW+jets)
are generated with MadGraph5_amc@nlo v2.2.2 or v2.4.2 [44] at leading order (LO) in per-
turbative quantum chromodynamics (QCD) with the MLM jet merging scheme [45]. A separate
Z+jets sample for the training, as well as diboson event samples (WW,WZ, and ZZ), are generated
with MadGraph5_amc@nlo at next-to-leading order (NLO) in perturbative QCD with the FxFx
merging scheme [46]. Events from top quark-antiquark pair (tt) and single top quark production are
generated with powheg v2.0 at NLO in perturbative QCD [47–52]. Events frommultĳet production
via the strong interaction, referred to as QCDmultĳet production, are generated at LO using pythia
8.223, 8.226, or 8.230 [53]. The pythia event generator is also used to produce heavy additional
gauge boson event samples at LO, Z′ → ℓℓ , with𝑚(Z′) ranging from 1 to 5 TeV. The generation of
125GeV Higgs boson (H) events via gluon fusion at NLO with H decays to tau leptons (H → ττ)
is also performed with the powheg 2.0 generator [54]. The NNPDF 3.0 or 3.1 parton distribution
functions are used as input in all the calculations [55, 56].
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The pythia program is used to simulate tau lepton decays, parton showering, hadronization, and
multiparton interactions, with version 8.223, 8.226, or 8.230 and tune CUETP8M1 or CP5 [57]. For
the Z′ → ℓℓ samples, tauola is used instead to simulate tau lepton decays [58]. Pileup interactions
are generated with pythia and are overlaid on all simulated events according to the luminosity
profile of the considered data. All generated events are passed through a detailed simulation of the
CMS detector with Geant4 [59]. The simulated and recorded events are reconstructed with the
same CMS reconstruction software.

3 The τττh reconstruction

The reconstruction of τh candidates is carried out with the hadrons-plus-strips algorithm. The
reconstruction proceeds in four steps, as summarized in the following and described in detail in
refs. [17–19].

First, seed regions are defined, with the goal of reconstructing one τh candidate per seed region.
Each seed region is defined by a reconstructed hadronic jet. The jets for the seeding are clustered
from all particles reconstructed by the PF algorithm using the anti-𝑘T algorithm with a distance
parameter of 𝑅 = 0.4. All particles in an 𝜂–𝜙 cone of radius Δ𝑅 ≡

√︁
Δ𝜂
2 + Δ𝜙

2
= 0.5 around the

jet axis are considered for the next steps of the τh reconstruction.
Second, π0 candidates are reconstructed using “strips” in 𝜂–𝜙 space in which the four-momenta

of electrons and photons are added, and charged-hadron (h±) candidates are selected using charged
particles from the PF algorithm as input.

Third, all possible τh candidates are reconstructed in a number of decay modes from the
reconstructed charged hadrons and strips. The τh four-momentum is obtained from summing the
four-momenta of the charged hadrons and strips used to reconstruct the τh candidate in a given
decay mode. An overview of the τ decay modes and their branching fractions is given in table 1.
There are seven different reconstructed τh decay modes, including three new ones (with respect to
the algorithm documented in ref. [19]) that target τ− → h−h+h−π0ντ decays and τh decays with
three charged hadrons of which one is not reconstructed as a charged particle:

1. h±, targeting τ− → h−ντ decays (charge-conjugate decays are implied);

2. h±π0, targeting τ− → h−π0ντ decays;

3. h±π0π0, targeting τ− → h−π0π0ντ decays;

4. h±h∓h±, targeting τ− → h−h+h−ντ decays;

5. h±h∓h±π0 (new), targeting τ− → h−h+h−π0ντ decays;

6. h±h±/∓ (new), targeting τ− → h−h+h−ντ decays;

7. h±h±/∓π0 (new), targeting τ− → h−h+h−π0ντ decays.

– 5 –
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Table 1. Decays of τ leptons and their branching fractions (B) in% [60]. The known intermediate resonances
of all the listed hadrons are indicated where appropriate. Charged hadrons are denoted by the symbol h±.
Although only τ− decays are shown, the decays and values of the branching fractions are identical for
charge-conjugate decays.

Decay mode Resonance B (%)
Leptonic decays 35.2

τ− → e−νeντ 17.8
τ− → µ−νµ ντ 17.4

Hadronic decays 64.8
τ− → h−ντ 11.5
τ− → h−π0ντ ρ (770) 25.9
τ− → h−π0π0ντ a1(1260) 9.5
τ− → h−h+h−ντ a1(1260) 9.8
τ− → h−h+h−π0ντ 4.8
Other 3.3

Fourth, a single τh candidate is chosen among all possible reconstructed τh candidates within
a seed region. Reconstructed τh candidates are subject to the following constraints:

• The mass of the reconstructed τh candidate is required to be loosely compatible with: (i)
the ρ (770) resonance if reconstructed in the h±π0 mode; (ii) the a1(1260) resonance if
reconstructed in either of the h±π0π0 and h±h∓h± modes [19]; or (iii) the expected mass
spectrum including the ρ (1450) resonance if reconstructed in the h±h∓h±π0 modes. The
mass of all h± candidates is assumed to be the charged-pion mass, in line with the output
from the PF algorithm.

• The τh charge needs to correspond to ±1, unless the τh candidate is reconstructed in a mode
with a missed charged hadron, in which case the charge is set to correspond to the charge of
the charged hadron with higher 𝑝T.

• All reconstructed h± and π0 need to be in the signal cone, defined with radius Δ𝑅 =

3.0/𝑝T(GeV) (with Δ𝑅 limited to the range 0.05–0.1) with respect to the τh momentum.

Among the selected τh candidates, the one with the highest 𝑝T is chosen. This τh candidate
can subsequently be discriminated against quark or gluon jets, electrons, and muons.

A large fraction of τh decays are reconstructed in their targeted decay modes, as inferred from
figure 1, which shows the fractions of reconstructed decay modes for generated τh with a given
decay mode that fulfil 𝑝T > 20GeV and |𝜂 | < 2.3. The fraction of generated τh not reconstructed
in any of the modes ranges from 11% for h± to 25% for h±π0. The overall reconstruction efficiency
is mostly limited by the ability to reconstruct tracks from charged hadrons of around 90% [34]. For
the decay modes without missing charged hadrons, the charge assignment is 99% correct for an
average Z → ττ event sample, 98% for τh with 𝑝T ≈ 200GeV, and 92% for τh with 𝑝T ≈ 1TeV.

The decay modes with missing charged hadrons recover 19% of the τ− → h−h+h−ντ decays
and 13% of the τ− → h−h+h−π0ντ decays. However, because of the missing charged hadron,
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Figure 1. Decay mode confusion matrix. For a given generated decay mode, the fractions of reconstructed
τh in different decay modes are given, as well as the fraction of generated τh that are not reconstructed. Both
the generated and reconstructed τh need to fulfil 𝑝T > 20GeV and |𝜂 | < 2.3. The τh candidates come from
a Z → ττ event sample with 𝑚ττ > 50GeV. Decay modes with the same numbers of charged hadrons and
one or two π0s are combined and labelled as “π0s”.

the charge assignment is only correct in ≈70% of the cases, as opposed to an average of 99% for
the other decay modes. Since most physics analyses apply requirements on the reconstructed τh
charge to suppress background events, these decay modes are only useful for analyses that are not
limited by background events. None of the current analyses within the CMS collaboration fall
into this category. Although we include the decay modes with missing charged hadrons in the
new τh identification algorithm, most of the subsequent results are shown only for reconstructed τh
candidates in one of the other decay modes, unless explicitly stated.

4 The τττh identification with a deep neural network

The newly developed τh identification algorithm uses a deep neural network structure. Its architec-
ture is based on the following three premises:

• Multiclass: previously, separate dedicated algorithms were used to reject electrons, muons,
or quark and gluon jets reconstructed as a τh candidate, either based on tree ensembles (jets
and electrons) or on a number of selection criteria (muons) [19]. Including electrons, muons,
and jets in the same algorithm is expected to both improve identification performance and to
reduce maintenance efforts.
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• Usage of lower-level information: the MVA discriminators used previously were built on
higher-level input variables and showed improved performance with respect to cutoff-based
criteria. However, jets hadronize and fragment in complex patterns, and particles from
concurrent interactions lead to similarly complex detector patterns. We expect that amachine-
learned algorithm, which uses a sufficiently large data set for the training and is able to exploit
lower-level information, can lead to improved performance. Therefore, information about all
reconstructed particles near the τh candidate is directly used as input to the algorithm.

• Domain knowledge: sets of handcrafted higher-level input variables used previously are
utilized as additional inputs to the information about the single reconstructed particles.
Although it should, in principle, be possible to achieve the same performance with and
without using these variables given a sufficiently large set of events for the training and a
suitable network architecture, the usage of the higher-level inputs may reduce the number
of training events needed and improve the convergence of the training, as seen in other
studies [30].

Various network architectures were considered under the constraints that they satisfy these
premises with manageable complexity. In particular, the algorithm must be trainable on the
available hardware, and both its memory footprint and evaluation time are subject to constraints
when used in the CMS reconstruction. To process the information on all reconstructed particles
near the τh axis, convolutional layers are employed. Compared with other approaches like fully
connected layers or graph-based structures, convolutional layers have two main advantages: they
have a smaller computational complexity and they are implemented efficiently in current deep
learning software. On the other hand, they require a partitioning of inputs, in the case at hand a
two-dimensional one in 𝜂–𝜙 space. As explained in the following, this partitioning both leads to
many empty input cells and cells in which information is lost since multiple particles are found.
The details of the architecture and the inputs are given in the following.

4.1 Inputs

4.1.1 Particle-level inputs

Two grids are defined in 𝜂–𝜙 space, centred around the τh axis, as displayed in figure 2: an inner
grid with 11×11 cells and a grid size of 0.02×0.02, and an outer grid with 21×21 cells and grid
size of 0.05×0.05. These two grids overlap, i.e. the information in the inner grid will also be part
of the information that is processed by the outer grid. For each grid cell, properties of contained
reconstructed particles of seven different types are used as inputs. If there is more than one particle
of a given type, only the highest 𝑝T particle is used as input. The various types are the five kinds of
particles reconstructed by the PF algorithm in the central detector, i.e. muons, electrons, photons,
charged hadrons, and neutral hadrons. The muons and electrons are reconstructed by dedicated
standalone reconstruction algorithms, which provide more specific information to distinguish them
from the other particles. For each particle, various types of information are taken into account, as
listed in table 2. The major tradeoffs defining the grid size are the computational cost and the loss
of information when more than one particle of a specific type is present in a grid cell. On average,
1.7% of the inner and 7.1% of the outer grid cells are occupied. Up to approximately 10% of the
occupied cells contain more than one particle of a specific type.

– 8 –
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Table 2. Input variables used for the various kinds of particles that are contained in a given cell. For each type
of particle, basic kinematic quantities (𝑝T, 𝜂, 𝜙) are included but not listed below. Similarly, the reconstructed
charge is included for all charged particles. An estimated per-particle probability for the particle to come
from a pileup interaction using the pileup identification (PUPPI) algorithm [61] is labelled as PUPPI. A
number of input variables that give the compatibility of the track with the primary interaction vertex (PV) or
a possible secondary vertex (SV) from the τh reconstruction are denoted as “Track PV” and “Track SV”.

Particle 𝑁var Inputs
PF charged hadron 27 Track PV/SV/quality, PUPPI, HCAL energy fraction
PF neutral hadron 7 PUPPI, HCAL energy fraction

Electron 37 Electron track quality, track/cluster matching, cluster shape
PF electron 22 Track PV/SV/quality, PUPPI
PF photon 23 Track PV/SV/quality, PUPPI

Muon 37 Track quality, muon station hits, ECAL deposits
PF muon 23 Track PV/SV/quality, PUPPI

0.1 0.2 0.3 0.40– 0.4 – 0.3 – 0.2 – 0.1

0.1

0.2

0.3

0.4

0

– 0.4

– 0.3

– 0.2

– 0.1

Figure 2. Layout of the grids in 𝜂–𝜙 space around the reconstructed τh axis used to process the particle-level
inputs for the convolutional layers of the DNN. The inner grid comprises 11×11 cells with a grid size of
0.02×0.02 and contains the signal cone with a radius of 0.05–0.1, which is defined in the τh reconstruction
(the charged hadrons and π0 candidates used to reconstruct the τh candidate need to be within the signal
cone). For high-𝑝T quark and gluon jets, the finer grid is also able to resolve the dense core of the jet. The
outer grid comprises 21×21 cells with a grid size of 0.05×0.05 and contains the isolation cone with a radius
of 0.5 that is used to define higher-level observables that correlate with quark or gluon jet activity.

The finer binning near the τh axis is motivated as follows: first, the τh decay products occur
predominantly in an 𝜂–𝜙 cone with radius 0.1 around the reconstructed τh axis. Second, high-𝑝T
jets are more collimated, so a finer grid is needed to capture all particles within them.

4.1.2 High-level inputs

The high-level input variables correspond primarily to those proven to be useful in the previous
MVA classifier [19]. These variables include: (i) the τh four-momentum and charge; (ii) the number
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of charged and neutral particles used to reconstruct the τh candidate; (iii) isolation variables; (iv)
the compatibility of the leading τh track with coming from the PV; (v) the properties of a secondary
vertex in case of a multiprong τh; (vi) observables related to the 𝜂 and 𝜙 distributions of energy
reconstructed in the strips; (vii) observables related to the compatibility of the τh candidate with
being an electron; and (viii) the estimated pileup density in the event. In all, there are 47 high-level
input variables.

4.1.3 Transformations

Input variables that are either integer in nature or have a significantly skewed distribution are
modified with a linear transformation such that the values lie in the intervals [−1, 1] or [0, 1]. Most
of the other input variables are subject to a standardization procedure, 𝑥 → (𝑥 − 𝜇)/𝜎, with 𝜇

denoting the mean of the distribution of 𝑥 and 𝜎 its standard deviation. The standardized inputs are
truncated to [−5, 5] to protect against outliers.

4.2 Architecture

The overall DNN architecture is visualized in figure 3. The goal of the DNN is to use and process
the inputs to optimally classify the τh candidate as belonging to a target class, which corresponds
to determining whether the reconstructed τh originates from a genuine τh, a muon, an electron, or
a quark or gluon jet. Three different subnetworks are created that independently process the inputs
from the high-level variables, the outer cells, and the inner cells. The outputs from these three
subnetworks are then concatenated and passed through four fully connected layers with 200 nodes
each and then to a final layer with four nodes that yield outputs 𝑥𝛼, with 𝛼 ∈ {jet, µ, e}. A softmax
activation function [62],

𝑦𝛼 = exp(𝑥𝛼)/Σ𝛽 exp(𝑥𝛽), (4.1)

is then applied to yield estimates 𝑦𝛼 of the probabilities for the τh candidate to come from each of
the four target classes (τh, jet, µ, e).

The two subnetworks that process the inputs from the inner and outer cells have similar
structures. As explained above, the main idea is to process the grids with convolutional layers [22–
24]. In our case, the large number of input parameters for each cell makes it computationally too
expensive to directly process the grid cells. To reduce the dimensionality, the inputs from each cell
of the inner and outer grid are first sent through a number of fully connected layers. Since these
layers act on single cells of the grids, with the full grid later on processed with convolutional layers,
these fully connected layers can also be considered as one-dimensional convolutional layers, and the
nodes can be considered as filters. For each cell, inputs from the electron, muon, and hadron blocks
are first processed separately in three fully connected layers with a decreasing number of nodes.
The outputs from the three separate processing blocks are then concatenated and passed through
four additional fully connected layers with a decreasing number of nodes. The 188 input parameters
are reduced to 64 output parameters (filters) for each cell that are input to the convolutional layers.

The convolutional layers each make use of 64 filters with size 3×3. These filters reduce the size
of the grid with each step by two in each dimension since no padding is applied (i.e. the grid is not
artificially extended with additional cells beyond the dimension of the grid). For both the inner cells
with a dimension of 11×11 and the outer cells with a dimension of 21×21, the convolutional layers
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Figure 3. The DNN architecture. The three sets of input variables (inner cells, outer cells, and high-level
features) are first processed separately through different subnetworks, whose outputs are then concatenated
and processed through five fully connected layers before the output is calculated that gives the probabilities
for a candidate to be either a τh, an electron, a muon, or a quark or gluon jet. The subnetwork for the
high-level inputs consists of three fully connected layers with decreasing numbers of nodes, taking 47 inputs
and yielding 57 outputs. The features of both the inner and outer cells are input to complex subnetworks.
In the first part, the observables in each grid cell are processed through a set of fully connected layers,
first separately for electrons/photons (containing both the features for PF electrons and electrons from the
standalone reconstruction), muons (similarly containing both features from PF and standalone muons), and
charged/neutral hadrons, passing through three fully connected layers each. The outputs are concatenated
and passed through four additional fully connected layers, yielding 64 outputs for each cell. The grids are
then processed with convolutional layers, which successively reduce the size of the grid. For the inner cells,
there are hence 5 convolutional layers that reduce the grid from 11×11 to a single cell; for the outer cells,
there are 10 convolutional layers that reduce the grid from 21×21 to a single cell. The numbers of trainable
parameters (TP) for the different subnetworks are also given for the different subnetworks.

are applied until the grid is reduced to a single cell. As a consequence, there are 5 convolutional
layers for the inner cells and 10 for the outer cells. For both the inner and the outer cells, the final
single cell implies that there are 64 outputs.

The 47 high-level input variables are processed by three fully connected layers with 113, 80, and
57 nodes, yielding 57 outputs. Taken together, the three subnetworks yield 185 output parameters
that are processed through a number of fully connected layers as explained above.

After each of the fully connected and convolutional layers, batch normalization [63] and
dropout regularization [64, 65] with a dropout rate of 0.2 are applied. Furthermore, nonlinearity
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is introduced by applying the parametric rectified linear unit activation function, which is given by
𝛼𝑥 for 𝑥 < 0 and by 𝑥 for 𝑥 ≥ 0, with 𝛼 being a trainable parameter [66].

A few alternative approaches were tried. First, networks using only high-level inputs and
an overall lower number of trainable parameters were tested. These showed significantly inferior
performance in terms of τh identification efficiency versus the misidentification probabilities for
jets, electrons, and muons, as clarified in figures 4, 6, and 7. Second, alternative approaches were
tried that were based on the idea of having two-dimensional grids for the particle-level inputs, but
with different input cell sizes and with differently organized convolutional layers, e.g. convolutional
layers with padding and pooling (combining the information from a number of nearby cells). The
chosen architecture yielded the best performance among the ones tested within the predefined
computing constraints.

4.3 Loss function and classifier training

The loss function is a sum of three different terms, given the four target classes (jet, µ, e, τh):

1. a regular cross-entropy term [62] for the τh target class,

2. a term implementing focal loss [67] for the binary classification of τh against all backgrounds
combined, and

3. another focal-loss term with three components for the classification as µ, e, or jet, each
combined with a smoothened step function that is nonzero only for τh candidates that are
sufficiently likely to be classified as τh.

The introduction of the two focal-loss terms gives superior performance compared with using
cross-entropy only. It is motivated by two considerations. First, analyses with τh candidates in the
final state, like the ones mentioned in the introduction, show the highest sensitivity for efficiencies
in the range 50–80%, whereas performance for the highest efficiencies and purities is less important.
Second, the classification performance as τh is more important than the classification as e, µ, or
jet; particularly in the high-purity regime where it is less important to distinguish between the three
other classes. The full definition of the loss function is given in appendix A.

For the training, events from the following simulated processes are used: Z+jets (NLO),
W+jets, tt , Z′ → ττ , Z′ → ee, Z′ → µµ (with 𝑚(Z′) ranging from 1 to 5 TeV), and QCDmultĳet
production. For testing, additional event samples are used, including H → ττ and Z+jets (LO)
event samples, and more event samples corresponding to the processes used for the training. The
event samples are simulated and reconstructed according to the 2017 data-taking conditions. The
prospective τh candidates need to fulfil 𝑝T > 20GeV and |𝜂 | < 2.3. The τh candidates are sampled
from the various event samples such that the contributions of the different classes (jet, µ, e, τh) and
in different (𝑝T, 𝜂) bins are the same. Additional weights are added to make the distributions from
the different classes uniform within each (𝑝T, 𝜂) bin. In total, around 140 million τh candidates are
used for the training, whereas 10 million are assigned as the validation samples.

The loss function is minimized with Nesterov-accelerated adaptive momentum estimation [68],
which combines the Adam algorithm [69] with Nesterov momentum. The training setup uses the
Keras library [70] with TensorFlow [71] as backend. The training was carried out with a single
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Nvidia GeForce RTX™ 2080 graphics processing unit. The training of the final classifier was run
for 10 epochs, with the training for an epoch lasting 69 hours on average. The best performance on
the validation samples has been obtained after 7 epochs.

The final discriminators against jets, muons, and electrons are given by

𝐷𝛼 (𝒚) =
𝑦τ

𝑦τ + 𝑦𝛼
, (4.2)

with 𝑦𝛼 taken from eq. (4.1) and 𝛼 ∈ {jet, µ, e}. In the following, these discriminators are labelled
as DeepTau discriminators against jets (𝐷jet), muons (𝐷µ ), and electrons (𝐷e).

4.4 Expected performance

The performance of the DeepTau discriminators is evaluated with the validation samples. Working
points are defined to guide usage in physics analyses and to derive suitable data-to-simulation
corrections. The target τh identification efficiencies for the various working points used in the wide
range of physics analyses with tau leptons are presented in table 3. The target τh identification
efficiencies are defined as the efficiency for genuine τh in the H → ττ event sample that are
reconstructed as τh candidates with 30 < 𝑝T < 70GeV to pass the given discriminator. The target
τh identification efficiencies range from 40 to 98% for 𝐷jet, from 99.5 to 99.95% for 𝐷µ , and from
60 to 99.5% for 𝐷e .

Table 3. Target τh identification efficiencies for the different working points defined for the three different
discriminators. The target efficiencies are evaluated with the H → ττ event sample for τh with 𝑝T ∈
[30, 70] GeV.

VVTight VTight Tight Medium Loose VLoose VVLoose VVVLoose
𝐷e 60% 70% 80% 90% 95% 98% 99% 99.5%
𝐷µ — — 99.5% 99.8% 99.9% 99.95% — —
𝐷jet 40% 50% 60% 70% 80% 90% 95% 98%

In figure 4, the performance of the𝐷jet discriminator is evaluated by studying the efficiencies for
quark and gluon jets and genuine τh to pass the discriminator and comparing it with the previously
used MVA classifier. All generated and reconstructed τh candidates in this figure and those that
follow are required to pass 𝑝T > 20GeV and |𝜂 | < 2.3, VVVLoose 𝐷e WP and VLoose 𝐷µ WP.
For the previously used MVA classifier, two curves are shown: the first curve corresponds to the
τh decay mode reconstruction as used in the previous publication and in previous physics analyses,
whereas the second curve includes the additional τh decay modes introduced in section 3, leading
to an overall increase of the MVA classifier performance, in particular for higher efficiency values.
The efficiency is evaluated separately for theW+jets and tt event samples. TheW+jets sample is
enriched in quark jets, whereas the tt event sample has a larger fraction of b quark and gluon jets
and has a busier event topology. The efficiencies are also evaluated separately for τh candidates
with 𝑝T < 100GeV and 𝑝T > 100GeV to test the performance in different 𝑝T regimes. For all
considered scenarios, the 𝐷jet discriminator shows a large improvement of the signal efficiency
at a given background efficiency compared with the previously used MVA classifier. At a given

– 13 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
7
0
2
3

0.4 0.6 0.8 1
 id. efficiencyhτ

2−10

1−10

1

 m
is

id
. p

ro
ba

bi
lit

y
hτ 

→
Je

t 

MVA vs. jets (JINST 13 (2018) P10005)

MVA (updated decay modes)

DeepTau vs. jets

jets from W + jets

 < 100 GeV
T

20 < p

 (13 TeV)CMS    Simulation

0.4 0.6 0.8 1
 id. efficiencyhτ

1
2

D
ee

pT
au

M
V

A

0.4 0.6 0.8 1
 id. efficiencyhτ

3−10

2−10

1−10

1

 m
is

id
. p

ro
ba

bi
lit

y
hτ 

→
Je

t 

MVA vs. jets (JINST 13 (2018) P10005)

MVA (updated decay modes)

DeepTau vs. jets

jets from W + jets

 > 100 GeV
T

p

 (13 TeV)CMS    Simulation

0.4 0.6 0.8 1
 id. efficiencyhτ

2
4

D
ee

pT
au

M
V

A

0.4 0.6 0.8 1
 id. efficiencyhτ

2−10

1−10

1

 m
is

id
. p

ro
ba

bi
lit

y
hτ 

→
Je

t 

MVA vs. jets (JINST 13 (2018) P10005)

MVA (updated decay modes)

DeepTau vs. jets

tjets from t

 < 100 GeV
T

20 < p

 (13 TeV)CMS    Simulation

0.4 0.6 0.8 1
 id. efficiencyhτ

2
4

D
ee

pT
au

M
V

A

0.4 0.6 0.8 1
 id. efficiencyhτ

3−10

2−10

1−10

1

 m
is

id
. p

ro
ba

bi
lit

y
hτ 

→
Je

t 

MVA vs. jets (JINST 13 (2018) P10005)

MVA (updated decay modes)

DeepTau vs. jets

tjets from t

 > 100 GeV
T

p

 (13 TeV)CMS    Simulation

0.4 0.6 0.8 1
 id. efficiencyhτ

2
4

D
ee

pT
au

M
V

A

Figure 4. Efficiency for quark and gluon jets to pass different tau identification discriminators versus the
efficiency for genuine τh. The upper two plots are obtained with jets from the W+jets simulated sample
and the lower two plots with jets from the tt sample. The left two plots include jets and genuine τh with
𝑝T < 100GeV, whereas the right two plots include those with 𝑝T > 100GeV. The working points are
indicated as full circles. The efficiency for jets from theW+jets event sample, enriched in quark jets, to pass
the discriminators is higher compared with jets from the tt event sample, which has a larger fraction of gluon
and b-quark jets. The jet efficiency for a given τh efficiency is larger for jets and τh with 𝑝T < 100GeV
than for those with 𝑝T > 100GeV. Compared with the previously used MVA discriminator, the DeepTau
discriminator reduces the jet efficiency for a given τh efficiency by consistently more than a factor of 1.8,
and by more at high τh efficiency. The additional gain at high 𝑝T comes from the inclusion of updated decay
modes in the τh reconstruction, as illustrated by the curves for the previously used MVA discriminator but
including reconstructed τh candidates with additional decay modes.
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efficiency for jets to pass the discriminator, there is a relative increase in signal efficiency of more
than 30% for the tightest working points and more than 10% for the loosest working points. The
larger gain at high 𝑝T is a consequence of the inclusion of additional decay modes in the τh
reconstruction.
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Figure 5. Efficiencies for simulated τh decays with |𝜂 | < 2.3 to pass the following reconstruction and
identification requirements: to be reconstructed in any decay mode with 𝑝T > 20GeV and |𝜂 | < 2.3 (black
dashed line), to be reconstructed in a decay mode except for those with missing charged hadrons (labelled
“2-prong” and shown as full black line), and to be reconstructed in a decay mode except the 2-prong ones
and to pass the Loose, Medium, or Tight working point of the 𝐷jet discriminator (blue lines), obtained with
a Z → ττ event sample. The efficiencies are shown as a function of the visible genuine τh 𝑝T obtained from
simulated decay products.

The 𝑝T dependence of the efficiency for genuine generated τh with 𝑝T > 20GeV to be
reconstructed with 𝑝T > 20GeV and to pass the 𝐷jet discriminator is shown in figure 5. The
reconstruction efficiency exceeds 80% for 𝑝T > 30GeV and is close to 90% for 𝑝T > 100GeV,
and is mostly limited by the charged-hadron reconstruction efficiency. If decay modes with missing
charged hadrons (the so-called two-prong decay modes) are excluded, the efficiency is reduced by
around 10%. The efficiency to additionally pass either of the shown working points of the 𝐷jet
discriminator (for reconstructed τh candidates without missing charged hadrons) is in line with the
target τh identification efficiencies listed in table 3.

The 𝐷e discriminator leads to a significantly improved rejection of electrons compared with
the MVA discriminator, as can be inferred from figure 6. The efficiencies for τh candidates (with
𝑝T > 20GeV, |𝜂 | < 2.3 and passing the VVVLoose 𝐷jet and VLoose 𝐷µ WP) and electrons to
pass the two discriminators are shown separately for τh and electrons with 20 < 𝑝T < 100GeV
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Figure 6. Efficiency for electrons versus efficiency for genuine τh to pass the MVA and 𝐷e discriminators,
separately for electrons and τh with 20 < 𝑝T < 100GeV (left) and 𝑝T > 100GeV (right). Vertical bars
correspond to the statistical uncertainties. The τh candidates are reconstructed in one of the τh decay modes
without missing charged hadrons. Compared with the MVA discriminator, the 𝐷e discriminator reduces the
electron efficiency by more than a factor of two for a τh efficiency of 70% and by more than a factor of 10 for
τh efficiencies larger than 88%. Furthermore, working points (indicated as full circles) are now provided for
previously inaccessible τh efficiencies larger than 90%, for a misidentification efficiency between 0.3 and 8%.

and 𝑝T > 100GeV. Within the range of applicability of the previously used MVA discriminator,
the 𝐷e discriminator increases the τh efficiency by consistently more than 10% for a constant
misidentification probability. For example, the τh efficiency increases from 87 to 99% for the
loosest working point of the two discriminators with an electron efficiency of around 7% for
𝑝T < 100GeV. Besides increasing the reach in τh identification efficiency, the new discriminator
also provides the possibility to reject electrons with an efficiency of 10−4 for a τh efficiency of 55%.
Similar, albeit slightly smaller, gains are observed for 𝑝T > 100GeV.

Gains are also observed in terms of the discrimination of τh candidates (with 𝑝T > 20GeV,
|𝜂 | < 2.3 and passing the VVVLoose 𝐷jet and VVVLoose 𝐷e WP) versus muons, as shown in
figure 7. Compared with the cutoff-based discriminator, the 𝐷µ discriminator leads to an increase
of the τh efficiency of around 0.5% for a given prompt muon efficiency. For the τh efficiency range
of 99.1–99.4% addressed by the cutoff-based discriminator, the 𝐷µ discriminator leads to a factor
of 3–10 larger prompt muon rejection, and thereby provides a significantly improved rejection
of prompt muons for analyses with hadronically decaying tau leptons, while leading to only a
percent-level loss of τh identification efficiency.

The performance results discussed so far have been obtained with simulated samples that are
consistent with the 2017 data-taking conditions. Moreover, after applying the discriminators to
simulated samples that correspond to the 2016 and 2018 data-taking conditions, we see consistent
performance, both in absolute terms and relative to other discriminators. Based on these findings,
the discriminators 𝐷e , 𝐷µ , and 𝐷jet have been recommended for all CMS analyses of LHC data
at
√
𝑠 = 13TeV.
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Figure 7. Efficiency for muons versus efficiency for simulated τh to pass the cutoff-based and 𝐷µ discrim-
inators, separately for muons and τh with 20 < 𝑝T < 100GeV (left) and 𝑝T > 100GeV (right). The four
working points are indicated as full circles. Vertical bars correspond to the statistical uncertainties. In both
𝑝T regimes, the 𝐷µ discriminator rejects up to a factor of 10 more muons at τh efficiencies around 99%, and
it leads to an increase of the τh efficiency for a similar background rejection by about 0.5%.

To summarize, the DeepTau discriminators against jets, electrons, and muons lead to large
gains in discrimination performance against various backgrounds. The gains in τh identification
efficiency at a typical jet or electron efficiency used in physics analyses amount to more than 30%
and 10%, respectively. Therefore, a large gain in reach is expected in physics analyses with tau
leptons, in particular for final states with two τh candidates. These improvements are confirmed by
physics analyses that already used the DeepTau discriminators [72–74].

5 Performance with
√
𝒔 = 13 TeV data

The performance of the τh reconstruction and of the DeepTau discriminators is validated with
collision data at

√
𝑠 = 13TeV. The total integrated luminosity for the 2016–2018 data collected

with the CMS detector and validated for use in analysis amounts to 138 fb−1, of which 36 fb−1 were
recorded in 2016, 42 fb−1 in 2017, and 60 fb−1 in 2018 [75–77]. The reconstruction and identification
efficiencies for τh are measured separately for the three data-taking years using a Z → ττ event
sample in the µτh final state, following methods similar to those established previously [19]. In
addition, measurements are made of the misidentification efficiency with which jets, electrons, and
muons are reconstructed and identified as τh candidates. All of these measurements are essential
ingredients for physics analyses that use τh candidates.

In this paper, we present a subset of the measurements that were carried out, mostly based on
the largest data set recorded in 2018. The identification efficiencies are generally measured for all
working points introduced above. We discuss a subset of measurements here only for representative
working points. Consistent results have been obtained for the other working points, and for the
2016 and 2017 data sets. We have not performed such efficiency measurements for the decay modes
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with missing charged hadrons; future analyses including these decay modes will need to derive
appropriate corrections. The full set of efficiency and energy scale corrections together with their
corresponding uncertainties is available for data analyses in the CMS collaboration.

5.1 Reconstruction and identification efficiency

Themeasurement of the τh reconstruction and identification efficiencies uses a µτh event sample that
is selected in the same way as in the previous measurement [19], with the following updates. Events
are recorded with a single-muon trigger with a nominal 𝑝T threshold of 24GeV and are required to
have at least one reconstructed and isolated muon with 𝑝T > 25GeV. The τh candidate is required
to be reconstructed with the decay mode finding algorithm, to have 𝑝T > 20GeV, and to pass a
given threshold on the 𝐷jet discriminator. In addition, the τh candidate needs to pass the VVLoose
working point of the 𝐷e discriminator and the Tight working point of the 𝐷µ discriminator, to
reject background from muons or electrons misidentified as a τh candidate. Additional criteria
are applied to increase the purity of events with genuine τh candidates, including a requirement

on the transverse mass of the muon and ®𝑝 missT (
√︃
2𝑝𝜇

T 𝑝
miss
T (1 − cosΦ) < 60GeV, where Φ is the

angle in the transverse plane between the muon momentum and ®𝑝 missT ) and a maximum difference
in 𝜂 between the reconstructed muon and the τh candidate (|Δ𝜂 | < 1.5). The resulting dataset is
enriched in Z → ττ events, with the residual contamination from other processes amounting to
approximately one fifth of the total yield (figure 10). In addition to the µτh event sample, a µµ

event sample is defined to normalize the Z → ττ event yields. This event sample is subject to the
same trigger and muon selection criteria as the µτh event sample, such that related uncertainties
partially cancel in the normalization scale factor.

The efficiencies are extracted from a maximum likelihood fit to the distribution of the recon-
structed visible invariant mass of the µτh system, 𝑚vis, and to the expected and observed event
yields in the µµ region. In the fit, the ratio of the observed and expected efficiency for a genuine τh
to pass the selection is incorporated as a free parameter, such that the fit yields a scale factor with
respect to the simulated efficiency. All known sources of systematic uncertainties are incorporated
into the fit. Uncertainties include the uncertainty in the integrated luminosity, uncertainties in
the muon trigger, identification, and isolation efficiencies, uncertainties due to the limited number
of simulated events, and uncertainties in the normalizations of tt , QCD multĳet, and Z/𝛾∗+jets
background. Since the scale factors are extracted after the full event selection, they incorporate any
differences between data and simulation of the full product of all reconstruction and identification
efficiencies. The scale factors are extracted from the maximum likelihood fit together with their
corresponding uncertainties using the asymptotic properties of the likelihood function [78].

The scale factors are extracted in different 𝑝T bins, 𝑝T ∈ {[20, 25], [25, 30], [30, 35], [35, 40],
[40, 50], [50, 70], >70GeV}, to account for a possible 𝑝T dependence of the extracted scale factors,
which would affect analyses that use different minimum 𝑝T thresholds or that analyze τh final
states from processes with different 𝑝T distributions. While analyses usually use all reconstructed
decay modes, except for the modes with missing charged hadrons so a parametrization in terms
of decay modes is not necessary, analyses that select events using the di-τh trigger algorithms
observe a different proportion of τh candidates reconstructed in the various decay modes. This is
a consequence of the dependency of τh trigger efficiency on the various decay modes. Therefore,
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scale factors are separately determined in four bins of reconstructed decay modes (h±; h±π0 or
h±π0π0; h±h∓h±; and h±h∓h±π0). These scale factors are shown in figure 8 for τh 𝑝T > 40GeV,
which corresponds to the minimum recommended threshold in analyses that use events recorded
with the di-τh trigger.

Since the reach in τh 𝑝T is limited in the Z → ττ sample, a separate off-shellW boson (W∗)
event sample is used to measure additional scale factors for τh 𝑝T > 100GeV in a τh-plus-𝑝

miss
T

final state without an additional hadronic jet, following closely the method discussed in ref. [19].
The requirement of high τh 𝑝T and high 𝑝

miss
T combined with the hadronic jet veto leads to an event

sample dominated by off-shellW∗ → τντ boson decays. The events are recorded with a trigger that
requires a large 𝑝missT . The efficiencies are obtained from a maximum likelihood fit to the transverse
mass distribution of the τh candidate and 𝑝

miss
T . To constrain the fiducial W∗ cross section in the

signal region, aW∗ → µνµ control region is also included in the fit.
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Figure 8. Data-to-simulation scale factors for genuine τh to be reconstructed as τh candidates and to pass
the Loose, Medium, and Tight working points of the 𝐷jet discriminator as a function of the τh candidate 𝑝T
(left). Vertical bars correspond to the combined statistical and systematic uncertainties in the individual scale
factors. The red hatched bands indicate the uncertainties for 𝑝T > 40GeV, obtained from a combination of
the individual measurements. The right plot shows the data-to-simulation scale factors for the τh candidates
with 𝑝T > 40GeV to pass the Medium 𝐷jet working point as a function of reconstructed τh decay mode.
The efficiencies are obtained with 2018 data and the according simulated events using a likelihood fit to the
distribution of the reconstructed 𝑚vis (µ, τh). The scale factors are shown separately for data taken in 2016,
2017, and 2018 (and the corresponding simulated events) and for the four main τh decay modes.

Figure 8 (left) shows the scale factors as a function of the reconstructed τh candidate 𝑝T
separately for the Loose, Medium, and Tight working points. The plots also show the uncertainties
for the τh candidates with 𝑝T > 40GeV, which are obtained from a constant fit up to 𝑝T values of
500GeV, assuming there is no statistically significant 𝑝T dependence of the scale factors. Beyond
500GeV, the uncertainties are enlarged because of the lack of τh candidates with such high 𝑝T
values, with the uncertainty at 1000GeV twice as large as at 500GeV.
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The 𝑝T-dependent uncertainties in the τh scale factors range from 2 to 5%. For the τh 𝑝T
spectrum in the Z → ττ sample, the combined scale factor uncertainty amounts to ≈2%. These
uncertainties are considerably smaller than in previous measurements, which reported combined
uncertainties of ≈6% [19]. The previous measurements used the “tag-and-probe” technique [79]
that only measured the identification efficiency for the discriminator under consideration and added
additional uncertainties in the reconstruction efficiency from independent measurements of single
charged-hadron reconstruction efficiencies. The measurement of the product of all reconstruction
and identification efficiencies with a maximum likelihood fit hence represents another important
improvement for physics analyses with τh final states, as it leads to a considerable reduction of the
systematic uncertainties related to the τh reconstruction and identification.

The data-to-simulation scale factors as a function of the τh decay mode are shown in figure 8
(right) for τh 𝑝T > 40GeV for the three data-taking years (2016, 2017, and 2018). The scale factors
are generally a bit smaller than one but consistent with unity within 10% (20% for the τh candidates
reconstructed in the h±h∓h±π0 decay mode). The scale factors below one can be traced back to
different origins, including the imperfect modelling of hadronization and an imperfect simulation
of the detector alignment and track hit reconstruction efficiencies.

5.2 The τττh energy scale

The τh energy scale is obtained from the same µτh event samples as the scale factors discussed in
the previous section, following the same method described in previous publications [19]. For the
main measurement discussed here, τh candidates are required to pass the Medium working point of
the 𝐷jet discriminator. Consistent results are obtained with cross-check measurements for various
working points of the 𝐷jet discriminator. To improve the a priori data-simulation agreement, scale
factors as described in the previous section are already applied to simulated samples with τh final
states.

Two different observables are used to measure the τh energy scale: the µτh invariant mass
(𝑚vis) and the reconstructed τh mass (𝑚(τh)). For τh candidates reconstructed in the h

± decay
mode, 𝑚(τh) is constant, so the measurement is only performed with the 𝑚vis observable.

Simulated templates of the 𝑚vis and 𝑚(τh) distributions are created for τh energy scale shifts
between ±3% in steps of 0.2%. For each shift, a maximum likelihood fit is performed, using the
combined expectation from the Z → ττ in the µτh final state and the background events, using the
set of systematic uncertainties discussed above. The observed value of the τh energy scale shift is
obtained from the distribution of the likelihood ratio together with the corresponding uncertainty.

The resulting relative differences between the τh energy scale in data and simulation are shown
in figure 9 separately for the two different measurements. The relative difference is given as
a correction, in percent, to a unit multiplicative factor applied to the τh four-momentum in the
simulation. The results obtained with the two methods are consistent with each other, and the τh
energy scale shifts are consistent with no data-simulation differences, with the largest difference
amounting to 1.5 standard deviations. The relative uncertainties range from 0.6% for the h±π0 and
h±h∓h± decay modes to 0.8% for the h± mode.

To validate the extracted scale factors and to illustrate the distributions used for the extraction
of the scale factors and the τh energy corrections, distributions of 𝑚vis and 𝑚(τh) are investigated,
requiring the τh to pass the Tight working point of the 𝐷jet discriminator (figure 10). These
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Figure 9. Relative difference between τh energy obtained in data and simulated events for the four main
reconstructed τh decay modes for the 2018 data set. The results are obtained from fits to the distribution
of either the reconstructed 𝑚vis (µ, τh) (blue lines) or 𝑚τh

(black lines). The horizontal bars represent the
uncertainties in the measurements. The measured values are consistent with no shift of the τh energy scale
between data and simulation, with the largest difference amounting to 1.5 standard deviations.

distributions are obtained from amaximum likelihood fit to the µτ data, applying the same selection
used in the extraction of the scale factors. This fit incorporates the derived scale factors and energy
corrections with their uncertainties, together with the full set of systematic uncertainties used in the
scale factor extractions. In the fit to data, the Z → ττ normalization is a freely floating parameter.
Data and predictions agree within the uncertainties, indicating that the derived scale factors and
energy corrections lead to a good and complete description of the data, including the description of
the different τh decay modes.

5.3 Lepton and jet misidentification efficiencies

The efficiencies for electrons, muons, and jets to pass the respective DeepTau discriminators are
measured with dedicated event samples, following closely the measurements explained in detail
in ref. [19]. The efficiencies for electrons and muons to be reconstructed and misidentified as τh
candidates are measured with Z → ℓℓ events (ℓ ∈ {e, µ}) where one ℓ is misreconstructed as a
τh candidate; the event is reconstructed as an ℓτh final state. The efficiencies are extracted with
the tag-and-probe method, where ℓ candidates that pass a given working point of the 𝐷µ or 𝐷e
discriminator end up in the pass region and those that do not pass in the fail region. A maximum
likelihood fit is performed to obtain the efficiencies. The distribution used in the pass region is
the invariant ℓτh mass (𝑚vis), whereas the fail region is included as a single bin. Similar to the
extraction of the τh efficiencies, all relevant uncertainties are included in the maximum likelihood
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Figure 10. Distribution of the reconstructed visible invariant mass of the µτh system, 𝑚vis (µ, τh) (left) and
of the visible invariant τh mass (right). Vertical bars correspond to the statistical uncertainties. The event
selection corresponds to the one in the measurement of the τh reconstruction and identification efficiencies
and uses the Tight working point of the 𝐷jet discriminator. The distributions incorporate all measured scale
factors and energy corrections and are scaled to the outcome of a maximum likelihood to the observed data
with the Z → ττ contribution freely floating. The electroweak background combines contributions from
single top quark, diboson, andW+jets processes as well as Z (→ ττ)+jets events where the reconstructed τh
originates from a jet misidentified as a τh candidate instead of one of the produced tau leptons. In the 𝑚(τh)
distribution, the Z → ττ contributions are shown separately for the different τh decay modes.

fit. To reject background from jets reconstructed as τh candidates, the candidates are also required
to pass the Medium working point of the 𝐷jet discriminator. An additional parameter is introduced
in the fit that scales the contributions in the pass and fail regions simultaneously and corresponds
to the scale factor for the efficiency to pass the 𝐷jet discriminator. This approach is based on the
assumption that the probability for electrons or muons to pass the 𝐷jet discriminator is independent
of the probability to pass the 𝐷e or 𝐷µ discriminator. Another parameter is introduced for electrons
misreconstructed as τh candidates that allows for a shifted energy scale.

The eτh events for the measurement of the scale factors for electrons to pass different working
points of the 𝐷e discriminator are recorded with a single-electron trigger with a 𝑝T threshold of
35GeV. The efficiencies for electrons to pass the different working points in data and simulated
events as well as the ratio of the efficiencies are shown in figure 11. The efficiencies are derived
separately in the ECAL barrel region (|𝜂 | < 1.46) and the ECAL endcap region (|𝜂 | > 1.56). The
observed and expected efficiencies agree within a few percent for the Loose and VLoose working
points in the barrel and within 11% in the endcap region. For tighter working points, scale factors
are obtained that are significantly different from one and that are generally greater than one in the
barrel, with a maximum scale factor of 1.61 ± 0.28 for the VTight working point, and smaller in
the endcap.

The µτh events for the measurement of the scale factors for muons to be misreconstructed and
misidentified as τh candidates are recorded with a single-muon trigger with a threshold of 27GeV.
The leading muon is required to have 𝑝T > 28GeV, and the transverse mass of the muon and ®𝑝 missT
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Figure 11. Observed and expected efficiencies for electrons to pass different 𝐷e working points. Vertical
bars correspond to the combined statistical and systematic uncertainties in the individual scale factors. The
electrons are required to be reconstructed as a τh candidate and to pass the medium 𝐷jet working point.
The efficiencies are shown separately for electrons with |𝜂 | < 1.46 (left), corresponding to the ECAL barrel
region, and |𝜂 | > 1.56 (right), corresponding to the ECAL endcap regions.

is required to be smaller than 30GeV. The resulting data-to-simulation scale factors are extracted
from a fit to the 𝑚vis distribution and are shown in figure 12. The scale factors are shown separately
for the Loose and Tight working points, and for five different bins in |𝜂 |. Although the scale factors
are consistent with each other for the different working points and consistent with unity for four
of the |𝜂 | bins, they differ significantly from one for |𝜂 | > 1.7. As a result of the high rejection
power of 𝐷µ , muons that are not discarded belong to atypical regions of the phase space, far from
the bulk of the distributions. For such uncommon muons, we observe that the simulation does not
model the data well, especially for observables related to the muon track quality at large |𝜂 |; this
is compatible with being the cause of the sizeable data-to-simulation difference at |𝜂 | > 1.7. The
large 𝐷µ scale factors at |𝜂 | > 1.7 have no notable impact on physics analyses because of the small
probability for muons to pass any 𝐷µ working point and the limited extent of the region presenting
large data-to-simulation differences.

For ameasurement of the efficiency for jets to pass the𝐷jet discriminator, events are selected that
are consistentwith aW(→ µνµ )+jet topology. Similar to the previously discussedmeasurement, the
events are recorded with a single-muon trigger with a 𝑝T threshold of 27GeV, and the reconstructed
muon is required to have 𝑝T > 28GeV. Furthermore, there must be exactly one central jet with
𝑝T > 20GeV and |𝜂 | < 2.3, and events with additional reconstructed muons or a reconstructed
electron passing loose identification criteria are rejected. To select a pure sample of W+jets
events, the transverse mass of the muon and 𝑝

miss
T is required to be greater than 60GeV. The

reconstructed jet serves as a probe for the measurement of the jet-to-τh misidentification efficiency.
The efficiencies for jets to be reconstructed as τh candidates and to pass the Loose and Tight 𝐷jet
working points are shown in figure 13 as a function of reconstructed jet 𝑝T. In the measurement
of the efficiency, background events with genuine τh candidates are subtracted. The observed and
expected efficiencies agree within the uncertainties.
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Figure 12. Observed and expected efficiencies for muons to pass the loose (left) and tight (right) 𝐷µ working
points. Vertical bars correspond to the combined statistical and systematic uncertainties in the individual
scale factors. The muons are required to be reconstructed as τh candidates and to pass the Medium 𝐷jet
working point. The efficiencies are shown for several bins in |𝜂 |.
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Figure 13. Observed and expected efficiencies for quark and gluon jets with |𝜂 | < 2.3 to be reconstructed
as τh candidates with 𝑝T > 20GeV and to pass the loose (left) and tight (right) 𝐷jet working points. The
efficiencies are shown as a function of reconstructed jet 𝑝T and are obtained with data recorded in 2018 and
the corresponding simulated events. The shaded uncertainty band includes contributions from the limited
number of simulated events and from uncertainties in the jet energy scale and the 𝑝missT description. Besides
the statistical uncertainty in the observed events, the error bars in the ratio of data to simulation also include
uncertainties from the subtraction of events with genuine τh candidates, electrons, or muons. The efficiency
first rises with 𝑝T near the 20GeV threshold because it becomes more likely for a jet to give rise to a
reconstructed τh candidate that passes this threshold. For higher 𝑝T, the particle multiplicity in a quark or
gluon jet increases with 𝑝T. Therefore, the jets become easier to distinguish from genuine τh candidates and
the probability for quark or gluon jets to pass the 𝐷jet discriminator decreases with 𝑝T.
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6 Summary

A new algorithm has been introduced to discriminate hadronic tau lepton decays (τh) against jets,
electrons, and muons. The algorithm is based on a deep neural network and combines fully
connected and convolutional layers. As input, the algorithm combines information from individual
reconstructed particles near the τh axis with information about the reconstructed τh candidate and
other high-level variables. In addition, an improved τh reconstruction algorithm is introduced that
increases the overall efficiency of the reconstruction by explicitly considering the τh decay mode
with three charged hadrons and a neutral pion, and by applying looser quality criteria for the charged
hadrons in the case of three-prong τh decays. The performance of the new τh identification and
reconstruction algorithms significantly improves over the previously used algorithms, in particular
in terms of discrimination against the background from jets and electrons. For a given jet rejection
level, the efficiency for genuine τh candidates increases by 10–30%. Similarly, the efficiency for
genuine τh candidates to pass the discriminator against electrons increases by 14% for the loosest
working point that is employed in many analyses. Following its superior performance, CMS physics
analyses with tau leptons will significantly increase their sensitivities when using the new algorithm.
The superior performance of the algorithm is validatedwith collision data. The observed efficiencies
for genuine τh, jets, and electrons to be identified as τh typically agree within 10%with the expected
efficiencies from simulated events. The agreement is similar to the one observed with previous
algorithms and confirms the improvements.
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A Loss function

The loss function used for the training of the DeepTau algorithm has the form

𝐿 (ytrue, y; 𝜿, 𝜸,𝝎) = 𝜅τ 𝐻τ (y
true

, y;𝝎)︸                ︷︷                ︸+
(
𝜅e + 𝜅µ + 𝜅jet

)
𝐹cmb(1 − 𝑦

true
τ , 1 − 𝑦τ ; 𝛾cmb)︸                                                    ︷︷                                                    ︸

(a) Separation of all 𝛼 (b) Focused separation of
e, µ, jet from τh

+ 𝜅𝐹

∑︁
𝑖∈{e, µ , jet}

𝜅𝑖 𝜃 (𝑦τ − 0.1) 𝐹𝑖 (𝑦
true
𝑖 , 𝑦𝑖; 𝛾𝑖).︸                                                    ︷︷                                                    ︸

(c) Focused separation of τh from e, µ,

jet for 𝑦τ > 0.1 .

(A.1)
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Table 4. Parameters used in the definition of the loss function for the training of the DeepTau algorithm.

Location in eq. (A.1)
Parameter Value (a) (b) (c) Meaning
𝜅τ 2.0 X

Emphasis on

τh

separation𝜅e 0.4 X X X e
𝜅µ 1.0 X X X µ

𝜅jet 0.6 X X X jet
𝜅𝐹 5.0 X Emphasis on high τh efficiency

𝛾e 2.0 X

Focus on

e

separation𝛾µ 2.0 X µ

𝛾jet 0.5 X jet
𝛾cmb 2.0 X e, µ, jet

𝜔𝛼 varying X Sample normalization

Categorical cross entropy:

𝐻 (ytrue, y;𝝎) = −
∑︁
𝛼

𝜔𝛼 𝑦
true
𝛼 𝑦𝛼 ; 𝛼 ∈ {𝜏, e, µ, jet}.

Focal loss function:

𝐹 (𝑦true, 𝑦; 𝛾) = −𝑦true (1 − 𝑦)𝛾 log(𝑦) 𝐹 (𝑦true, 𝑦; 𝛾) = N 𝐹 (𝑦true, 𝑦; 𝛾) ,

where bold fonts indicate groups of parameters; 𝐻 (·, ·; ·) corresponds to the categorical cross
entropy and 𝐹 (·, ·; ·) to the focal loss function [67]; N is a factor to normalize 𝐹 (·, ·; ·) to unity in
the interval 0–1; and 𝜃 (·) is a smoothened step function that approaches 1 for 𝑦τ > 0.1. The focal
loss terms in eq. (A.1) (b) and (c) put more emphasis on the part of parameter space in which it
is more difficult to separate τh candidates from e, µ, and jets. The step function in eq. (A.1) (c)
disregards the part of parameter space in which the probability for the τh candidate to correspond
to a genuine τh is low, for which we are not interested in optimal separation between e, µ, and jets.

The values and meanings of the parameters 𝜿, 𝜸, and 𝝎 are given in table 4. The values of the
𝜅-factors are chosen such that the numerical values of the different components of the loss function
are close to each other, while putting more emphasis on the discrimination against jets, since jets
are the dominant source of background.
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