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1 Introduction

The recent discovery that specific irrelevant perturbations [1] of field theories in dimension
d = 2 can be addressed using exact flow equations [2, 3] and other powerful mathematical
tools [4–6], has triggered a fair amount of research activity. Particularly striking are the
observed links with string theory [3] and topological gravity [7], together with the AdS/CFT
interpretation of these perturbations [8]. The main motivations to study these novel class
of models are the deepening of our general knowledge on non-renormalisable Quantum
Field Theories and to clarify aspects of quantum gravity.

In this paper, we work within the framework of Lagrangian field theories in space-time
dimension d ≥ 2 equipped with a metric tensor gµν = gµν(x) with Euclidean signature,
where x = (x0, x1, . . . , xd−1) is a set of local coordinates. We denote as

A =
∫

ddx√gL =
∫

ddx L̄ , (1.1)

g := det[gµν ] , ddx := dx0 dx1 . . . dxd−1 ,

a generic covariant action where L̄ := √gL is the Lagrangian density that depends on x
through a generic collection of N fields {ΦI}I∈{1,...,N} and their higher-order derivatives
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{∂µ1 . . . ∂µiΦI}(I,i)∈{1,...,N}×{1,...,n} for some n ≥ 1 and with ∂µ = ∂
∂xµ . The field content

of the theory is arbitrary, unless otherwise stated. Indexes of tensors are lowered and
raised using the metric gµν and its inverse gµν , respectively, and repeated indexes are
summed according to the Einstein notation. We shall denote with ηab the flat metric with
the same (Euclidean) signature of gµν . Following the standard convention, we use Latin
(Lorentz) and Greek (Einstein) indexes to distinguish between flat and curved reference
frames, respectively, and we adopt the tetrad formalism to move from one to the other as
customary.

This paper focuses on a family of deformations defined by the flow equation

∂Aτ
∂τ

=
∫

ddx√gO[r,d]
τ , Aτ0 = A , (1.2)

with perturbing operator 1

O[r,d]
τ := 1

d

(
r tr[Tτ ]2 − tr[T2

τ ]
)
, r ∈ R , d ≥ 2 , (1.3)

where τ ∈ R is the flow parameter and τ0 is a fixed value; Aτ =
∫

ddx L̄τ denotes the
deformed action and L̄τ the corresponding Lagrangian density; Tτ =

(
Tµτ,ν

)
µ,ν∈{0,...,d−1} is

a d×d matrix and Tµντ are the components of the (symmetric) Hilbert stress-energy tensor
associated to Aτ according to the standard prescription

Tµντ = −2
√
g

δAτ
δgµν

= −2
√
g

∂L̄τ
∂gµν

. (1.4)

We start by reviewing some facts about the most studied representative among this family
of deformations, namely the TT deformation of field theories in d = 2, from which the
present paper draws inspiration.

The TT deformation [2, 3] is described by the flow equation (1.2) with (r, d) = (1, 2),
i.e. the TT operator is given by

OTT
τ := O[1,2]

τ = 1
2
(
tr[Tτ ]2 − tr[T2

τ ]
)

= det[Tτ ] , (1.5)

where in the last equality we used the Cayley-Hamilton Theorem. The TT−deformed
action Aτ can be obtained either directly by solving explicitly the flow equation (1.2) or
indirectly using a field-dependent coordinate transformation [7, 9] (see also [10]) which
provides an efficient tool to derive also solutions of the TT−deformed equations of mo-
tion [9, 11] and integrals of motion [12]. Let us also mention that an alternative method
to compute TT-deformed actions is given by the light-cone gauge approach developed
in [13, 14].

As it was noted in [9], the coordinate transformation induces a specific field-dependent
deformed metric that defines a modified background in which the solutions of the seed

1It is important to stress that this paper is about classical field theories and, apart from the special
case (r, d) = (1, 2) [1], it is not known how to make the composite field (1.3) well-defined also at the
quantum level.
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theory are equivalent to the corresponding TT−deformed ones in flat space. In other
words, there exists a deformed metric that makes the seed theory dynamically equivalent2

to the deformed theory in flat space. Strictly speaking, this deformed metric is a pseudo-
metric since, for a generic field configuration there might exist a range of values of the
deformation parameter for which it becomes degenerate (see [9]).

Throughout the paper we will handle with pseudo-metrics — see (3.11) and (3.12) —
associated to the generalised operators (1.3) in arbitrary dimension d ≥ 2. However, we
shall refer to them simply as metrics neglecting the issue related to the degeneracy, since
it does not affect the general conclusions that emerge from our analysis.

In contrast to the TT operator, the geometric properties of the operators (1.3) for
d > 2 are essentially unknown. The interest toward such deformations is partially due
to the discovery first made in [15], that the operator O[ 1

2 ,4]
τ surprisingly links the Maxwell

theory with Maxwell Born-Infeld [16] and, in [17, 18], it was proven that the same link exists
between the ModMax theory [19] and its Born-Infeld-like extension [20], thus generalising
the result of [15].

The aim of this paper is to study the geometric properties of the family of deforma-
tions (1.2) through a metric approach. In section 2.1, we start by showing that (1.2) can be
interpreted as a modification of the background metric — at dynamical level — according
to a specific flow equation. In section 2.2 we prove that, for a generic field configuration,
such deformed metric is curved except for the specific case (r, d) = (1, 2) — corresponding
to the TT deformation — in which it remains flat, in accordance with the existence of a
coordinate transformation. In section 3.1, we develop a perturbative algorithm to solve the
flow equation for the metric and, in section 3.2, we show that under some assumptions on
the stress-energy tensor, the series yields an exact solution for the metric. In section 3.3 we
consider the class of abelian gauge theories in d = 4, whose stress-energy tensors meet the
conditions above-mentioned, and we derive an exact expression for the deformed metric
and the vierbein; appendix A contains the details of the derivation of the vierbein. Finally,
in section 4 we construct a class of modified scalar theories in d = 2 and their corresponding
TT deformation, as a dimensional reduction of the ModMax theory and its Born-Infeld-like
extension.

2 A TT−like deformation in d dimensions

For the purposes of the current paper, it is convenient to rewrite (1.3) as follows

O[r,d]
τ = 1

d
T̂τ,µνT

µν
τ , (2.1)

where we introduced the tensor

T̂τ,µν := fµνρσT
ρσ
τ = rgµνtr[Tτ ]− Tτ,µν , (2.2)

and
fµνρσ := r gµνgρσ − gµσgνρ . (2.3)

2Because the equivalence is at the level of the equations of motion.
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It is immediate to check that fµνρσ fulfils the following properties

fρσµν = fµνρσ , fνµσρ = fµνρσ , fµναβf
αβρσ = r (dr − 2) gµνgρσ + δρµδ

σ
ν . (2.4)

Notice that r = 0 and r = 2
d seems to be special cases since the last formula in (2.4)

simplifies.

2.1 Metric approach

In this section, we prove that (1.2) amounts to a modification of the background metric at
the level of the dynamics and we identify the flow equation that describes the evolution of
the metric. To this aim, we adopt the same logic followed by [6] in the TT context. Under
an infinitesimal deformation δτ of the parameter τ , (1.2) can be written as

Aτ+δτ (gµν) = Aτ (gµν) + δτ

∫
ddx√gO[r,d]

τ , (2.5)

where we explicitly reported the dependence of the action on the background metric for
future convenience. Let δgµν = δτ hµν be an infinitesimal deformation of the metric where
hµν is dynamical, and consider the action

Â(hµν) = Aτ (gµν + δτhµν) + c δτ

∫
ddx√g eµνρσhµνhρσ

= Aτ (gµν) + δτ

∫
ddx√g

[
c eµνρσhµνhρσ −

1
2hµνT

µν
τ

]
, (2.6)

where c is a real constant and we defined the tensor

eµνρσ := q gµνgρσ − gµσgνρ , q ∈ R . (2.7)

Notice that eµνρσ has the same form as fµνρσ, thus it fulfils the same properties (2.4) with
the substitution (fµνρσ, r)→ (eµνρσ, q). Moreover, the two tensors are trivially related via

eµνρσ = fµνρσ + (q − r) gµνgρσ . (2.8)

In the following we will fix the parameters (c, q) in (2.6) in terms of (r, d) by requiring that
the actions (2.5) and (2.6) are dynamically equivalent, i.e. they have the same equations
of motion

δAτ+δτ (gµν)
δΦI

= δAτ (gµν + δτhµν)
δΦI

∣∣∣∣
hµν=h∗

µν

⇐⇒ Aτ (gµν + δτh∗µν) ' Aτ+δτ (gµν) , (2.9)

where we introduced the symbol ' to denote the dynamical equivalence between the ac-
tions. Notice that in (2.9) we used the fact that

δÂ(hµν)
δΦI

= δAτ (gµν + δτhµν)
δΦI

, (2.10)

and the variation of Aτ (gµν + δτhµν) w.r.t. ΦI is performed before evaluating hµν to its on
shell value h∗µν .

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
5

We first compute the variation of Â(hµν) w.r.t. hµν and set it to zero to obtain
the equation of motion for hµν . Using the analogous of the properties (2.4) in which
(fµνρσ, r)→ (eµνρσ, q) and formula (2.8) we have

δÂ(hµν)
δhµν

= 0 ⇐⇒ 2c eµνρσhρσ −
1
2T

µν
τ = 0 ⇐⇒ 2c eµναβeαβρσhρσ −

1
2eµνρσT

ρσ
τ = 0

⇐⇒ 2c [hµν + q (dq − 2) gµνgρσhρσ]− 1
2 T̂τ,µν + r − q

2 gµνtr[Tτ ] = 0 .
(2.11)

Multiplying both sides of the last equation in (2.11) by gµν we obtain

gµνhµν = tr[Tτ ]
4c (dq − 1) . (2.12)

Finally, plugging (2.12) back into the last equation in (2.11) we can write the equation of
motion for hµν as hµν = h∗µν with

h∗µν := 1
4c

[
T̂τ,µν +

(
q

dq − 1 − r
)
gµνtr[Tτ ]

]
. (2.13)

The next step is to compute the variations of both Â(hµν) and Aτ+δτ (gµν) w.r.t. ΦI . For
Â(hµν) we have

δÂ(hµν)
δΦI

= δAτ (gµν + δτhµν)
δΦI

= δAτ (gµν)
δΦI

− 1
2δτ

[
√
g hρσ

∂T ρστ
∂ΦI

+
n∑
i=1

(−1)i∂µ1 . . . ∂µi

(
√
g hρσ

∂T ρστ
∂(∂µ1 . . . ∂µiΦI)

)]
, (2.14)

while for Aτ+δτ (gµν) we have
δAτ+δτ (gµν)

δΦI

= δAτ (gµν)
δΦI

+ δτ

[
√
g
∂O[r,d]

τ

∂ΦI
+

n∑
i=1

(−1)i∂µ1 . . . ∂µi

(
√
g

∂O[r,d]
τ

∂(∂µ1 . . . ∂µiΦI)

)]

= δAτ (gµν)
δΦI

+ 2δτ
d

[
√
g T̂τ,µν

∂Tµντ
∂ΦI

+
n∑
i=1

(−1)i∂µ1 . . . ∂µi

(
√
g T̂τ,ρσ

∂T ρστ
∂(∂µ1 . . . ∂µiΦI)

)]
.

(2.15)

Notice that in the last equality of (2.15) we used the fact that

∂O[r,d]
τ

∂X
= 1
d

(
T̂τ,µν

∂Tµντ
∂X

+ Tµντ
∂T̂τ,µν
∂X

)

= 1
d

[
T̂τ,µν

∂Tµντ
∂X

+ Tµντ

(
r gµν

∂ tr[Tτ ]
∂X

− ∂Tτ,µν
∂X

)]
= 1
d

[
T̂τ,µν

∂Tµντ
∂X

+ Tµντ

(
r gµνgρσ

∂T ρστ
∂X

− ∂Tτ,µν
∂X

)]
= 1
d

[
T̂τ,µν

∂Tµντ
∂X

+ (r gµνtr[Tτ ]− Tτ,µν) ∂T
µν
τ

∂X

]
= 2
d
T̂τ,µν

∂Tµντ
∂X

, (2.16)
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where X is any element of the set {∂µ1 . . . ∂µiΦI}(I,i)∈{1,...,N}×{1,...,n}. From (2.13), (2.14)
and (2.15) it is immediate to see that the equivalence (2.9) holds, in general, only if the
parameters (c, q) are chosen as follows

(c, q) =
(
− d

16 ,
r

dr − 1

)
=⇒ h∗µν = −4

d
T̂τ,µν . (2.17)

In the following, we shall impose the constraint (2.17). Using the identity

Aτ (gµν + δτhµν) = Aτ
(
gµν(τ + δτ)− δτ

[dgµν
dτ − hµν

])
, (2.18)

in (2.9), we obtain the following (constrained) dynamical equivalence
Aτ+δτ (gµν) ' Aτ (gµν(τ + δτ))

dgµν
dτ = −4

d
T̂τ,µν

, (2.19)

which has the following physical interpretation: the deformed theory Aτ+δτ with back-
ground metric gµν(τ) is dynamically equivalent to the theory Aτ with deformed background
metric gµν(τ + δτ), which evolves according to the second equation of (2.19).

Notice that (2.19) can be equivalently written as
Aτ (gµν) ' Aτ+δτ (gµν(τ + δτ))

dgµν
dτ = 4

d
T̂τ,µν

, (2.20)

which has the following physical interpretation: the theory Aτ with background metric
gµν(τ) is dynamically equivalent to the deformed theory Aτ+δτ with deformed background
metric gµν(τ + δτ), which evolves according to the second equation of (2.20).

2.2 Deformation of the Riemann tensor

In this section we briefly discuss the infinitesimal deformation of the Riemann tensor δRρσµν
induced by the infinitesimal deformation δgµν = −4

dδτ T̂τ,µν of the metric. Assuming that
the starting point is a d−dimensional flat space with metric ηab, i.e. the associated Riemann
tensor is Rijab = 0, then δgµν := δηabe

a
µe
b
ν where we defined δηab = −4

dδτ T̂τ,ab and eaµ = δaµ
is the trivial vierbein.

A standard computation leads to

δRijab = 2
d
δτ
(
∂b∂j T̂

i
τ,a − ∂a∂j T̂ iτ,b + ∂a∂

iT̂τ,jb − ∂b∂iT̂τ,ja
)
, (2.21)

for the Riemann tensor,

δRab = δRiaib = 2
d
δτ
(
∂i∂

iT̂τ,ab + (rd− 2r − 1) ∂a∂btr[Tτ ]
)
, (2.22)

for the Ricci tensor and

δR = Rab δη
ab + ηabδRab = 4

d
δτ (rd− r − 1) ∂a∂atr[Tτ ] , (2.23)

– 6 –
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for the scalar curvature. In (2.22) and (2.23) we used the additional constraint

∂aT̂τ,ab = r ∂btr[Tτ ] , (2.24)

coming from the conservation of the stress-energy tensor in flat space, i.e. ∂aT abτ = 0.
From (2.23) it follows that

δR = 0 ⇐⇒ r = 1
d− 1 . (2.25)

Let us consider separately the cases d = 2 and d > 2.

• case d > 2: from (2.21), it emerges that the deformation of the Riemann tensor
depends on the field configuration through the stress-energy tensor and it is,in general,
non-vanishing. Therefore, we conclude that the deformation induced by (1.3) modifies
the geometry of the space in a non-trivial way for d > 2.

• case d = 2: in this case the Riemann tensor has only one independent component,
i.e. the scalar curvature R. From (2.25) it follows that the operator O[r,2]

τ modifies
the geometry of the space for any r 6= 1. The case r = 1 is special and corresponds
to the TT operator OTT

τ = O[1,2]
τ which does not affect the geometry, in agreement

with the existence of a coordinate transformation.

3 Metric flow equation

In this section, we derive a system of differential equations that completely defines the
flow of the metric. Moreover, we develop a perturbative algorithm to find a power series
expansion for the solution to the metric flow equation.

The equivalence (2.20) leads to the following system of differential equations,
dgµν
ds = 4

d
T̂s,µν

∂Tµνs
∂s

= −2
d
√
g

∂

∂gµν

(√
g T̂s,ρσT

ρσ
s

) , (3.1)

where the second equation descends from (1.2) and (1.4). Using the properties

∂g

∂gµν
= g gµν , (3.2)

and
∂T̂s,µν
∂gρσ

= r
(
δρµδ

σ
ν tr[Ts] + gµνT

ρσ
s

)
− δρµT σs,ν − δρνT σs,µ + fµναβ

∂Tαβs
∂gρσ

, (3.3)

the second equation of (3.1) yields explicitly

∂Tµνs
∂s

= 4
d

[
T 2,µν
s − r Tµνs tr[Ts]−

1
4g

µν
(
r tr[Ts]2 − tr[T2

s]
)
− T̂s,ρσ

∂T ρσs
∂gµν

]
, (3.4)

– 7 –
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where we denoted Tn,µνs = Tµµ1
s gµ1µ2T

µ2µ3
s . . . gµn−1µnT

µnν
s . The key point of the com-

putation is that Tµνs depends on s both explicitly and implicitly through gµν . Using the
property

∂Tµνs
∂gρσ

= 1
2 (gµνT ρσs − gρσTµνs ) + ∂T ρσs

∂gµν
, (3.5)

we find that the total derivative of Tµνs w.r.t. s is

dTµνs
ds = ∂Tµνs

∂s
+ dgρσ

ds
∂Tµνs
∂gρσ

= 4
d

[
T 2,µν
s − 1

2 (dr + 2r − 1)Tµνs tr[Ts] + gµν

4
(
r tr[Ts]2 − tr[T2

s]
)]

. (3.6)

From the latter expression, the first equation of (3.1) and formula

d tr[Ts]
ds = d

ds (gµνTµνs ) =
(2
d
− r

)
tr[Ts]2 − tr[T2

s] , (3.7)

we can easily compute the total derivative of T̂s,µν as

dT̂s,µν
ds = d

ds (r gµνtr[Ts]− gµρT ρσs gνσ) , (3.8)

Upon explicit computation, we arrive to the system
dgµν
ds = 4

d
T̂s,µν

dT̂s,µν
ds = 4

d
T̂ 2
s,µν + αsT̂s,µν + βsgµν

, (3.9)

where we denoted T̂ns,µν = T̂s,µµ1g
µ1µ2 T̂s,µ2µ3 . . . g

µn−1µn T̂s,µnν and we defined

αs = 2
d

(1− dr) tr[Ts] , βs = dr − 1
d

(
r tr[Ts]2 − tr[T2

s]
)
. (3.10)

The system (3.9) completely defines the flow of the metric once an initial condition has
been chosen. The idea is to solve it for gµν(s) := gµν(s; s0) with initial condition gµν(s0) =
ηab e

a
µ e

b
ν for some s0, where eaµ = δaµ is the trivial vierbein. Such solution provides the

deformed background metrics that allow to boost or absorb the deformation of the action,
depending on the choice of the parameters s0 and s. In fact,

1) if s0 = τ and s = τ0: the action Aτ with metric ηab is dynamically equivalent to Aτ0

with metric
ĝµν(τ) = gµν(τ0; τ) ; (3.11)

2) if s0 = τ0 and s = τ : the action Aτ0 with metric ηab is dynamically equivalent to Aτ
with metric

ǧµν(τ) = gµν(τ ; τ0) . (3.12)

– 8 –
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3.1 Algorithm to solve the metric flow equation

In this section we compute the solution gµν(s) := gµν(s; s0) of (3.9) by means of a pertur-
bative approach which can be made algorithmic and implemented in a computer software.

The idea is to Taylor expand gµν(s) := gµν(s; s0) around s = s0 as

gµν(s) =
∞∑
n=0

g
(n)
ab (s0)
n! (s− s0)n eaµ ebν , (3.13)

where eaµ = δaµ is the trivial vierbein and

g(n)
µν (s) = dngµν

dsn , g
(n)
ab (s0) = eµa e

ν
b

dngµν
dsn

∣∣∣∣
s=s0

. (3.14)

We impose g(0)
ab (s0) = ηab and look for the coefficients {g(n)

ab (s0)}n≥1. The first two coeffi-
cients g(1)

ab (s0) and g(2)
ab (s0) descend trivially from (3.1) and yields

g
(1)
ab (s0) = 4

d
T̂s0,ab , (3.15)

g
(2)
ab (s0) =

(4
d

)2
T̂ 2
s0,ab + 4αs0

d
T̂s0,ab + 4βs0

d
ηab , (3.16)

where αs and βs are defined as per (3.10). To get {g(n)
ab (s0)}n≥3 we need to find a strategy

to compute g(n)
µν from g

(n−1)
µν . Using (3.9) and the flow equation for the inverse metric

dgµν
ds = −4

d
T̂µνs , (3.17)

we arrive at the recurrence relation

dT̂ ks,µν
ds = d

ds
(
T̂s,µρg

ρσT̂ k−1
s,σν

)
= αsT̂

k
s,µν + βsT̂

k−1
s,µν + T̂s,µρg

ρσ dT̂ k−1
s,σν

ds , ∀k ≥ 2 , (3.18)

which gives
dT̂ ks,µν

ds = 4
d
T̂ k+1
s,µν + kαsT̂

k
s,µν + kβsT̂

k−1
s,µν , ∀k ≥ 2 . (3.19)

Using (3.7), formula

d tr[T2
s]

ds = d
ds (gµνTµρs gρσT

σν
s ) = 2

d
tr[Ts]

(
r tr[Ts]2 + (1− 2dr) tr[T2

s]
)
, (3.20)

and the definition (3.10), we arrive at3

dαs
ds = α2

s − 2βs ,
dβs
ds = αsβs . (3.21)

Formulae (3.19) and (3.21) imply that g(n)
µν can be written as

g(n)
µν = c

(n)
0 gµν +

n∑
k=1

c
(n)
k T̂ ks,µν , ∀n ≥ 1 , (3.22)

3Notice that (3.21) is a system of differential equations that can be exactly solved for αs and βs as
functions of s. Currently, it is unclear to us whether such explicit solution might be helpful in computing
the metric or other quantities such as the action.
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where {c(n)
k }k∈{1,...,n} are polynomials in the variables αs and βs with real coefficients.

Therefore, the computation of g(n)
µν has been reduced to the computation of the coeffi-

cients {c(n)
k }k∈{1,...,n}. Differentiating (3.22) w.r.t. s and using (3.19), we easily obtain the

recurrence relations

c
(n+1)
0 = dc(n)

0
ds + βsc

(n)
1

c
(n+1)
k = 4

d
c

(n)
k−1 + dc(n)

k

ds + kαsc
(n)
k + (k + 1)βsc(n)

k+1 , 1 ≤ k ≤ n− 1

c(n+1)
n = 4

d
c

(n)
n−1 + dc(n)

n

ds + nαsc
(n)
n

c
(n+1)
n+1 = 4

d
c(n)
n

, (3.23)

where
dc(n)
k

ds = ∂c
(n)
k

∂αs

dαs
ds + ∂c

(n)
k

∂βs

dβs
ds . (3.24)

Formula (3.23) allows to recover (the coefficients of) {g(n)
µν }n≥3 from the initial condition

at n = 2

c
(2)
0 =

(4
d

)2
, c

(2)
1 = 4αs

d
, c

(2)
2 = 4βs

d
. (3.25)

For example, the coefficients of g(3)
µν are

c
(3)
0 = 8αsβs

d
, c

(3)
1 = 8

d2

(
α2
sd− βs(d− 6)

)
, c

(3)
2 = 48αs

d2 , c
(3)
3 =

(4
d

)3
. (3.26)

The implementation of the recurrence relations (3.23) corresponds to a couple of lines in
a Mathematica notebook. The first n = 100 terms of the sequence {c(n)

k }k∈{1,...,n} can be
obtained in less than a minute on a standard laptop. However, the task of finding a close
expression for g(n)

µν valid for all n ∈ N is highly non-trivial. In the next section we shall
consider special cases in which this task becomes feasible.

3.2 Exact solutions for the metric

In this section we show that for some values of r and under some assumptions on the
stress-energy tensor, it is possible to obtain a close expression for the coefficient g(n)

ab (s0)
valid for all n ≥ 1 and we are able to formally sum the series (3.13).

It is convenient to work with the matrix notation. Let us introduce the d× d matrices

G(n)(s) =
(
gµρg(n)

ρν

)
µ,ν∈{0,...,d−1}

, n ≥ 1 . (3.27)

Assume that the matrix Ts0 is diagonalisable, i.e. there exist an invertible matrix P and
a diagonal matrix D such that Ts0 = PDP−1. Moreover, assume that Ts0 has 2 (resp. 1)
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independent eigenvalues of multiplicity d
2 (resp. d) if d is even (resp. odd), namely

D =



diag
(
λ1, . . . , λ1︸ ︷︷ ︸

d
2 -times

, λ2, . . . , λ2︸ ︷︷ ︸
d
2 -times

)
, d ∈ 2N + 2

diag
(
λ, . . . , λ︸ ︷︷ ︸
d-times

)
, d ∈ 2N + 3

. (3.28)

3.2.1 Case r = 2
d

Under the assumption (3.28) one can show that, for all n ≥ 1

P−1G(n)(s0) P = (−1)n
(
−4
d

)
n

(2
d

tr[D]1d −D
)n

, (3.29)

where (x)n = Γ(x+n)
Γ(x) is the Pochhammer symbol. Whence

g
(n)
ab (s0) = (−1)n

(
−4
d

)
n
T̂ns0,ab , (3.30)

and (3.13) can be formally written as

gµν(s; s0) =
[(
η + (s− s0) T̂s0

) 4
d

]
ab
eaµ e

b
ν . (3.31)

Observe that, differentiating both sides of (3.31) w.r.t. s and using the first equation
of (3.1), we find

T̂s,µν = T̂s0,ac

[(
η + (s− s0) T̂s0

) 4
d
−1
]
ib
ηci eaµ e

b
ν . (3.32)

Let us make a few remarks:

• in d = 2, the condition (3.28) does not constrain the stress-energy tensor which has, in
general, 2 distinct eigenvalues. Therefore, (3.31) is the deformed metric associated to
the TT deformation of a generic theory in d = 2. Moreover, using the identifications

T 0
s0,0 = −Hs0 , T 1

s0,0 = T 0
s0,1 = iPs0 , (3.33)

where Hs0 and Ps0 are the energy and momentum densities and setting dx0 = 0, the
line element d`2 = gµν(s; s0) dxµdxν becomes

d`2 =
[
(1− (s− s0)Hs0)2 − ((s− s0)Ps0)2

] (
dx1)2 . (3.34)

Formula (3.34) resembles the modification of the “effective size” of the system at
quantum level (see, for example, equation (2.8) in [9]), which is ultimately a conse-
quence of the Zamolodchikov’s factorisation Theorem [1].

• in d = 4, (3.31) takes a particularly simple expression, being linear in s. It is natural
to ask whether also in this case the information of the quantum theory is hidden in
the line element d`2, in analogy to the d = 2 case.
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• all formulas can be analytically continued to d = 1, in which the field theory reduces
to a mechanical system. In this case, the tensors gµν and Tµs,ν reduce to the scalars
g00 = g and T 0

s,0 := −Es respectively, where Es is the energy, while the perturbing
operator is O[2,1]

τ = E2
τ (see [21, appendix A]). Moreover, from (3.32) using T̂s,00 =

−gEs we get
Es = Es0

1− (s− s0)Es0
, (3.35)

which matches the result of [21]. Notice that this is also the expression of the deformed
energy density of a Yang-Mills theory in d = 2 [15, 22, 23].

• it would be interesting to look for a match between the series expansion of the met-
ric proposed here and the perturbative results obtained in [24] for the Lagrangians
associated to abelian gauge theories in d ∈ 2N deformed by the operator O[ 2

d
,d]

τ .4

3.2.2 Case r = 1
d

Under the assumption (3.28) one can show that, for all n ≥ 1

P−1G(n)(s0) P =
(4
d

)n (1
d

tr[D]1d −D
)n

. (3.36)

Notice that the r.h.s. of the latter equation is identically zero if d is odd, due to the
definition (3.28). Then, restricting to the non trivial case in which d is even we have

g
(n)
ab (s0) =

(4
d

)n
T̂ns0,ab , d ∈ 2N+ 2 , (3.37)

and (3.13) can be formally written as

gµν(s; s0) =
[
exp

(4
d

(s− s0) T̂s0

)]
ab
eaµ e

b
ν , d ∈ 2N+ 2 . (3.38)

Let us stress again that, since the condition (3.28) does not constraint the stress-energy
tensor in d = 2, the latter solution holds for any theory in d = 2 deformed by the opera-
tor O[ 1

2 ,2]
τ .

The existence of an exact solution for the metric suggests that the action deformed by
the operator O[ 1

d
,d]

τ might have a close expression as well. In the following, we will address
the computation of the deformed Lagrangian density focusing on the simple case of a non-
interacting scalar field in d = 2. We leave the analysis of more complicated theories in
d = 2 as well as the extension to theories in d > 2 to a future publication.

It is possible to show that the solution to the flow equation

∂Lτ
∂τ

= O[ 1
2 ,2]
τ , (3.39)

with initial condition
L0 = 1

2η
ab∂aφ∂bφ , (3.40)

4We thank Hossein Babaei-Aghbolagh for suggesting to us the possibility to perform this comparison.
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is given by

Lτ = W (2τL0)
2τ

(1
2W (2τL0) + 1

)
, (3.41)

where W (x) is the Lambert function. It is surprising that

F (x) = −W (−x)
(1

2W (−x) + 1
)

=
∞∑
n=1

nn−2

n! xn , (3.42)

corresponds to the generating function associated to Cayley’s formula in graph theory.5

3.3 Abelian gauge theories in d = 4: the exact vierbein

The assumption (3.28) restricts the range of applicability of the results obtained in sec-
tion 3.2 for d > 2. However, in d = 4 there exists a whole class of field theories whose
stress-energy tensors fulfil the constraint (3.28): the abelian gauge theories, describing the
dynamics of one gauge field, i.e. the electromagnetic four-potential Aa (in flat space with
metric ηab).

We briefly review the proof of this fact, which can be found also in [18, appendix
A]. Let Fab = ∂aAb − ∂bAa be the field-strength associated to the gauge field and F̃ab =
1
2εabijF

ij the dual field-strength, where εabij is the Levi-Civita symbol with the choice
ε0123 = 1. Following [18], the stress-energy tensor of a generic abelian gauge theory can be
decomposed as

Tab = a(0)ηab + a(1)F 2
ab + a(2)F 4

ab , (3.43)

where a(0), a(1) and a(2) are functions of tr[F2] and tr[F4] with F =
(
F ab
)
a,b∈{0,...,3}.

A straightforward computation shows that the eigenvalues {λi}i∈{1,...,4} of the matrix
F are such that λ2 = −λ1 and λ4 = −λ3 (independently of the signature of the metric ηab)
whence it follows that the eigenvalues {λ̄i}i∈{1,...,4} of T = {T ab }a,b∈{0,...,3} are

λ̄i = a(0) + a(1)λ2
i + a(2)λ4

i , (3.44)

with λ̄2 = λ̄1 and λ̄4 = λ̄3.
We conclude that, for any representative of the family of abelian gauge theories belong-

ing to the flow of O[ 1
2 ,4]
τ — a notable example being ModMax Born-Infeld (see section 4)

— the deformed metrics (3.11) and (3.12) are given by

ĝµν(τ) =
(
ηab − (τ − τ0) T̂τ,ab

)
eaµe

b
ν ,

ǧµν(τ) =
(
ηab + (τ − τ0) T̂τ0,ab

)
eaµe

b
ν , (3.45)

where the tensors T̂τ,ab and T̂τ0,ab are both evaluated in flat space with metric ηab. Notice
that the expression of (3.45) matches that of the (pseudo) metric found many years ago
(see the lecture notes [16]) for the Maxwell Born-Infeld theory, using a completely different
approach.

5Cayley’s formula states that there are nn−2 labeled trees on n vertices (see, for example [25]).
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From the discussion of section 2.2 we know that, in general, (3.45) are curved. In
appendix A, we show that it is possible to give an exact expression for the pair of vierbein
êaµ := êaµ(τ) and ěaµ := ěaµ(τ) that fulfil

ĝµν(τ) = êaµ ê
b
ν ηab , ǧµν(τ) = ěaµ ě

b
ν ηab . (3.46)

Decomposing Tτ0,ab and Tτ,ab as per (3.43) with coefficients (a(0)
τ0 , a

(1)
τ0 , a

(2)
τ0 ) and

(a(0)
τ , a

(1)
τ , a

(2)
τ ), respectively, we obtain

êaµ(τ) =
√

Σ (τ0; τ) eaµ +
√
τ0 − τ

(
u(1)
τ Fcb + u(2)

τ F 3
cb

)
ηacebµ ,

ěaµ(τ) =
√

Σ (τ ; τ0) eaµ +
√
τ − τ0

(
u(1)
τ0 Fcb + u(2)

τ0 F
3
cb

)
ηacebµ , (3.47)

where we defined

u(1)
s =

√
2
(
a

(1)
s + Vs

4

)
√

4a(1)
s + Vs + a

(2)
s tr[F2]

, u(2)
s =

√
2a(2)

s√
4a(1)

s + Vs + a
(2)
s tr[F2]

,

Σ(s; s0) = 1 + (s− s0)
(
a(0)
s0 + 1

2a
(1)
s0 tr[F2] + 1

2a
(2)
s0 tr[F4]

)
, (3.48)

and
Vs =

√(
4a(1)

s
)2 + 8a(1)

s a
(2)
s tr[F2] + 2

(
a

(2)
s
)2 (tr[F2]2 − 2tr[F4]) . (3.49)

We observe that if a(2)
s = 0 relations (3.48) drastically simplify and (3.47) reduces to

êaµ(τ) =
√
σ(τ0; τ) eaµ +

√
(τ0 − τ) a(1)

τ F ab e
b
µ ,

ěaµ(τ) =
√
σ(τ ; τ0) eaµ +

√
(τ − τ0) a(1)

τ0 F ab e
b
µ , (3.50)

with
σ(s; s0) = 1 + (s− s0)

(
a(0)
s0 + 1

2a
(1)
s0 tr[F2]

)
. (3.51)

Relevant examples of models such that a(2)
s = 0 are ModMax and its Born-Infeld-like

extension, that we shall briefly discuss in the next section.

4 ModMax and its Born-Infeld-like extension

Let us recall that the ModMax (MM) theory [19] represents a marginal deformation of the
Maxwell theory described by the Euclidean action AMM

γ =
∫

d4xLMM
γ with

LMM
γ = cosh(γ)S − sinh(γ)

√
S2 − P 2 , (4.1)

where γ is a real parameter and we defined the invariants6

S := 1
4FabF

ab , P := 1
4 F̃abF

ab =
√

det[F] . (4.2)

6Notice that the definition of the invariants (4.2) becomes in Minkowski signature SM = −S and PM :=
−iP . Correspondingly, the Lagrangian density in Minkowski signature becomes LMM

M (γ) = −LMM(γ).
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One can associate to (4.1) a Born-Infeld-like extension (MMBI) [20] that is described by
the action AMMBI

τ,γ =
∫

d4xLMMBI
τ,γ with

LMMBI
τ,γ = −1 + SMMBI

2τ , SMMBI =
√

1 + 4τLMM
γ + 4τ2P 2 . (4.3)

Clearly AMM
0 = AM and AMMBI

τ,0 = AMBI
τ where AM and AMBI

τ are the Maxwell (M) and
the Maxwell Born-Infeld (MBI) action respectively. A simple computation shows that the
components of the stress-energy tensor associated to (4.3) take the simple form

(TMMBI
τ,γ )ab = aMMBI

τ,γ ηab + bMMBI
τ,γ F 2

ab , (4.4)

with coefficients

aMMBI
τ,γ = P 2

SMMBI

(
2τ + sinh(γ)√

S2 − P 2

)
+ 1− SMMBI

2τ ,

bMMBI
τ,γ = 1

SMMBI

(
S sinh(γ)√
S2 − P 2

− cosh(γ)
)
. (4.5)

Using (4.4) and (4.5) it is possible to show (see [18]) that the action AMMBI
τ,γ belongs to the

flow of the irrelevant operator O[ 1
2 ,4]
τ with initial condition AMM

γ at τ = 0 for any value of γ.
Interestingly, in [17] it was made the important observation that the action AMMBI

τ,γ

belongs to the flow of the marginal operator

Õ[4]
γ :=

√
−O[ 1

4 ,4]
γ = 1

2

√
tr[T2

γ ]− 1
4tr[Tγ ]2 , (4.6)

with initial condition AMBI
τ at γ = 0 for any value of τ . This fact has been shown in [17]

by means of a perturbative expansion around γ = 0. Let us briefly report here the exact
computation at finite values of γ. Using (4.4) and (4.5) one has

1
2

√
tr[(TMMBI

τ,γ )2]− 1
4tr[TMMBI

τ,γ ]2 = bMMBI
τ,γ

√
S2 − P 2 . (4.7)

On the other hand,

∂LMMBI
τ,γ

∂γ
= 1
SMMBI

(
S sinh(γ)− cosh(γ)

√
S2 − P 2

)
= bMMBI

τ,γ

√
S2 − P 2 , (4.8)

whence the equivalence

∂LMMBI
τ,γ

∂γ
= 1

2

√
tr[(TMMBI

τ,γ )2]− 1
4tr[TMMBI

τ,γ ]2 . (4.9)

4.1 Dimensional reduction from d = 4 to d = 2

It is well known [26] that there is a deep connection between the theories of Nambu-Goto
in d = 2 and Maxwell Born-Infeld in d = 4. In fact, particular solutions of Maxwell Born-
Infeld are also solutions of Nambu-Goto in static gauge with two transversal scalar fields.
In this section, we show that this link can be lifted to the Born-Infeld-like extension of
ModMax.
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In analogy with [26], we consider a specific field configuration consisting in the scat-
tering of plane waves along the direction x1, which corresponds to the requirements

Aµ := Aµ(x̄) , ∂1A0 − ∂0A1 = 0 , (4.10)

where x̄ = (x0, x1) denotes the restricted set of local coordinates on the plane. Let us
identify φa(x̄) := Aa+1(x̄) with a ∈ {1, 2}. Then, the constraint (4.10) implies the fol-
lowing reduction Fab(x) → F̄ab(x̄), where F̄ab has only four non-vanishing (independent)
components that depends on the derivative of the scalar fields {φi}i∈{1,2} w.r.t. x̄:

F̄02 = ∂0φ1 , F̄03 = ∂0φ2 , F̄12 = ∂1φ1 , F̄13 = ∂1φ2 . (4.11)

Consequently, the invariants (S, P ) as per (4.2) reduce to (S̄2, P̄2), where we defined

S̄N := LS,N , P̄N := −
√

det[HN ] , (4.12)

with HN,ab the following symmetric tensor

HN,ab =
N∑
i=1

∂aφi ∂bφi , HN =
(
Ha
N,b

)
a,b∈{0,1} , (4.13)

and

LS,N = 1
2tr[HN ] = 1

2

N∑
i=1

ηab∂aφi ∂bφi , (4.14)

the Lagrangian density describing N non-interacting and massless scalar fields {φi}i∈{1,...,N}
in d = 2. Performing the transformation (S, P )→ (S̄2, P̄2) in (4.1) and (4.3) we obtain(

LMM
γ ,LMMBI

τ,γ

)
→
(
LMS,2
γ ,LMSBI,2

τ,γ

)
, (4.15)

where we defined the following family of Modified Scalar (MS) theory involving N ≥ 1
scalar fields {φi}i∈{1,...,N} with Lagrangian density7

LMS,N
γ = cosh(γ) S̄N − sinh(γ)

√
S̄2
N − P̄ 2

N , (4.16)

and its Born-Infeld-like extension (MSBI)

LMSBI,N
τ,γ = −1 + SMSBI,N

2τ , SMSBI,N =
√

1 + 4τLMS,N
γ + 4τ2P̄ 2

N . (4.17)

Clearly LMS,N
0 = LS,N and LMSBI,N

τ,0 = LNG,N
τ where LNG,N

τ is the Nambu-Goto Lagrangian
density in a d = N + 2 target space and imposing the static gauge condition. A simple
computation shows that the components of the stress-energy tensor associated to (4.17) are

(TMSBI,N
τ,γ )ab = aMSBI,N

τ,γ ηab + bMSBI,N
τ,γ HN,ab , (4.18)

7Notice that for N = 1 one obtains LMS,1
γ = e−γLS,1.
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with coefficients

aMSBI,N
τ,γ = P̄ 2

N

SMSBI,N

2τ + sinh(γ)√
S̄2
N − P̄ 2

N

+ 1− SMSBI,N

2τ ,

bMSBI,N
τ,γ = 1

SMSBI,N

cosh(γ)− S̄N sinh(γ)√
S̄2
N − P̄ 2

N

 . (4.19)

Using (4.18) and (4.19), it is not difficult to prove that LMSBI,N
τ,γ belongs to the flow of the

TT operator with LMS,N
γ as initial condition at τ = 0, for any value of γ. Moreover, LMSBI,N

τ,γ

belongs to the flow of the marginal operator

Õ[2]
γ := −

√
−O[ 1

2 ,2]
γ = − 1√

2

√
tr[T2

γ ]− 1
2tr[Tγ ]2 , (4.20)

with LNG,N
τ as initial condition at γ = 0, for any value of τ .

Moving from Euclidean (x0, x1) to complex coordinates (z, z̄) := (x1+ix0, x1−ix0) and
introducing the components (T, T̄ ,Θ) of the stress-energy tensor in the coordinates (z, z̄)
which are related to (T00, T11, T01) in the coordinates (x0, x1) according to the standard
convention [1]

T = π

2 (T00 − T11 + 2iT01) , T̄ = π

2 (T00 − T11 − 2iT01) , Θ = π

2 (T00 + T11) , (4.21)

then (4.20) can be rewritten in an alternative way as

Õ[2]
γ = − 1

π

√
Tγ T̄γ . (4.22)

We conclude this section by noticing that the previous results admit a natural general-
isation to the case of N scalar fields {φi}i∈{1,...,N} interacting with a generic potential
V = V (φ1, . . . , φN ). Taking inspiration from (4.16) and (4.17), we consider the following
Lagrangian density

LMS,N,V
γ = LMS,N

γ + V , (4.23)

and its Born-Infeld-like extension

LMSBI,N,V
τ,γ = LMSBI,N

τ̄ ,γ + V

1− τV , (4.24)

with τ̄ = τ (1− τV ). It is a matter of a simple computation to show that LMSBI,N,V
τ,γ belongs

to the flow of the TT operator with LMS,N,V
γ as initial condition at τ = 0, for any value of γ.

Moreover, LMSBI,N,V
τ,γ belongs to the flow of the marginal operator (4.20) with LNG,N

τ̄ + V
1−τV

as initial condition at γ = 0, for any value of τ .
Finally, notice that a perturbation of a CFT in d = 2 with the square root of the

TT operator was introduced in [27] in the study of the relation between relativistic and
ultra/non-relativistic conformal algebra (see also [28] for further interesting results on this
subject).
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5 Conclusions

This paper discusses important geometric features of specific TT-type deformations in
arbitrary dimensions. Various aspects and open problems deserve further investigation.

The first natural question is whether there exist physically acceptable theories, in
d 6= 1, 2, 4, whose stress-energy tensors fulfil the constraint (3.28). More generally, it would
be important to find an exact formula for the deformed metric without imposing strong
constraints on the stress-energy tensor eigenvalues. For example, a milder assumption
would be the tracelessness of the stress-energy tensor in flat space, which drastically sim-
plifies the perturbative series. Nevertheless, we were unable to obtain a closed expression
for the deformed metric. In d > 2 and besides Born-Infeld nonlinear electrodynamics,
the general properties of this TT-induced geometric deformation and its phenomenological
features as a perturbation of classical field theory problems are unknown and certainly
deserve some investigation. Moreover, it remains an important open question whether the
simple expression for the truncated metric (3.45) could lead to some exact quantum result
in d = 4, for example, the Casimir energy in specific geometries.

A further possible line of research concerns the extension of the current setup to en-
compass the TT-like deformation in arbitrary dimensions introduced in [29] and the defor-
mation of supersymmetric theories [30–32]. Concerning the results of section 4, it would
be nice to understand the properties of the Modified Scalar theories, viewed as marginal
deformations of free boson CFTs.

Finally, let us mention that the article [33] about T 2 deformations of large N holo-
graphic CFTs appeared a day after the first version of the current paper was available
on ArXiv. The perturbing operator considered in [33] is of the form (1.3) with r = 1

d−1 .
The setup and methodologies adopted in the two papers are similar in spirit but slightly
different, and it may be very instructive to explore the eventual connection between them.
Moreover, [33] motivated the search for a one-parameter extension of our initial results,
which were restricted to the case r = 2

d .
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operator (4.20) generates the γ-flow of the Lagrangian (4.17), the setup is slightly more
general, but the main equations and conclusions are in total agreement with ours.

A Deformed vierbein for abelian gauge theories in d = 4

Let us start from the general solution (3.31) for d = 4

gµν(s; s0) =
(
ηab + (s− s0) T̂s0,ab

)
eaµe

b
ν . (A.1)

We look for the vierbein ēaµ := ēaµ(s; s0) such that

gµν(s; s0) = ēaµ ē
b
ν ηab . (A.2)

Then, êaµ and ěaµ that fulfil (3.46) are obtained from ēaµ as follows

êaµ(τ) = ēaµ(τ0; τ) , ěaµ(τ) = ēaµ(τ ; τ0) . (A.3)

First of all, we decompose the stress-energy tensor Ts0,ab in flat space as

Ts0,ab = a(0)
s0 ηab + a(1)

s0 F
2
ab + a(2)

s0 F
4
ab , (A.4)

which implies that

T̂s0,ab = 1
2ηabtr[Ts0 ]− Ts0,ab

= ηab

(
a(0)
s0 + 1

2a
(1)
s0 tr[F2] + 1

2a
(2)
s0 tr[F4]

)
−
(
a(1)
s0 F

2
ab + a(2)

s0 F
4
ab

)
. (A.5)

Thus (A.1) becomes

gµν(s; s0) = eaµ e
b
ν ηab + (s− s0) eaµ ebν

(
ηab

[
a(0)
s0 + 1

2a
(1)
s0 tr[F2] + 1

2a
(2)
s0 tr[F4]

]
− a(1)

s0 F
2
ab − a(2)

s0 F
4
ab

)
. (A.6)

We make the following ansatz for ēaµ

ēaµ =
√

Σ(s; s0) eaµ +
√
s− s0

(
u(1)
s0 Fcb + u(2)

s0 F
3
cb

)
ηacebµ , (A.7)

where we defined

Σ(s; s0) = 1 + (s− s0)
(
v(0)
s0 + v(1)

s0 tr[F2] + v(2)
s0 tr[F4]

)
, (A.8)

and the coefficients (u(1)
s0 , u

(2)
s0 , v

(0)
s0 , v

(1)
s0 , v

(2)
s0 ) must be fixed in terms of (a(0)

s0 , a
(1)
s0 , a

(2)
s0 ). Using

the ansatz (A.7) and formula (A.8) together with the fact that Fab and F 3
ab are anti-

symmetric tensors, we have

ēaµ ē
b
ν ηab = Σ(s; s0) eaµ ebν ηab − (s− s0)

[(
u(1)
s0

)2
F 2
ab + 2u(1)

s0 u
(2)
s0 F

4
ab +

(
u(2)
s0

)2
F 6
ab

]
eaµ e

b
ν

= eaµ e
b
ν ηab + (s− s0) eaµ ebν

(
−F 2

ab

[1
8
(
u(2)
s0

)2 (2 tr[F4]− tr[F2]2
)

+
(
u(1)
s0

)2]
+ ηab

[
v(0)
s0 + v(1)

s0 tr[F2] + v(2)
s0 tr[F4]

]
− F 4

ab

[
2u(1)

s0 u
(2)
s0 + 1

2
(
u(2)
s0

)2 tr[F2]
])

,

(A.9)
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where in the last equality we used the Cayley-Hamilton Theorem to write

F 6
ab = 1

2F
4
ab tr[F2] + 1

8F
2
ab

(
2 tr[F4]− tr[F2]2

)
. (A.10)

Imposing the equivalence between the r.h.s. of (A.6) and (A.9) we obtain

u(1)
s0 =

√
2
(
a

(1)
s0 + Vs0

4

)
√

4a(1)
s0 + Vs0 + a

(2)
s0 tr[F2]

, u(2)
s0 =

√
2a(2)

s0√
4a(1)

s0 + Vs0 + a
(2)
s0 tr[F2]

,

v(0)
s0 = a(0)

s0 , v(1)
s0 = 1

2a
(1)
s0 , v(2)

s0 = 1
2a

(2)
s0 , (A.11)

with
Vs0 =

√(
4a(1)

s0

)2 + 8a(1)
s0 a

(2)
s0 tr[F2] + 2

(
a

(2)
s0

)2 (tr[F2]2 − 2tr[F4]) . (A.12)
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