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Abstract

Recent pT-integrated cross section measurements of the ground-state charm mesons and baryons, D0,
D+, D+

s , Λ+
c , and Ξ0

c , are used to evaluate the charm fragmentation fractions and production cross
section per unit of rapidity at midrapidity (|y|< 0.5), in pp collisions at

√
s = 5.02 TeV at the LHC.

The latter is dσ cc/dy||y|<0.5 = 1165±44(stat)+134
−101(syst) µb. These measurements were obtained for

the first time in hadronic collisions at the LHC including the charm baryon states, recently measured
by ALICE at midrapidity. The charm fragmentation fractions differ significantly from the values
measured in e+e− and ep collisions, providing evidence of the dependence of the parton-to-hadron
fragmentation fractions on the collision system, indicating that the assumption of their universality
is not supported by the measured cross sections. An increase of a factor of about 3.3 for the frag-
mentation fraction for the Λ+

c with a significance of 5σ between the values obtained in pp collisions
and those obtained in e+e− (ep) collisions is reported. The fragmentation fraction for the Ξ0

c was ob-
tained for the first time in any collision system. The measured fragmentation fractions were used to
update the cc cross sections per unit of rapidity at |y|< 0.5 at

√
s = 2.76 and 7 TeV, which are about

40% higher than the previously published results. The data were compared with perturbative-QCD
calculations and lie at the upper edge of the theoretical bands.

*See Appendix A for the list of collaboration members
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The study of heavy-flavour hadron production in proton–proton (pp) collisions provides an important test
for quantum chromodynamics (QCD) calculations. The transverse-momentum (pT) differential cross
sections of charm mesons measured in pp collisions by the ALICE [1–5], ATLAS [6], CMS [7], and
LHCb [8–10] experiments at the LHC and the STAR [11] experiment at RHIC, as well as in pp collisions
by the CDF [12] experiment at the Tevatron, are described within uncertainties by perturbative-QCD
(pQCD) calculations having next-to-leading order (NLO) accuracy with all-order resummation of next-
to-leading logarithms, such as FONLL [13–15] and NLL [16–20]. These calculations are based on
the factorisation theorem, according to which the pT-differential cross sections are computed as the
convolution of three terms: (i) the parton distribution functions (PDFs) of the incoming (anti)protons, (ii)
the partonic cross section, calculated as a perturbative series in powers of the strong coupling constant αs,
and (iii) the fragmentation functions which describe the transition from charm quarks into charm hadrons.
The latter, in these calculations, are typically parametrised from measurements performed in e+e− or ep
collisions [21], under the assumption that the hadronisation of charm quarks into charm hadrons is a
universal process independent of the colliding systems. Accordingly, measurements of charm mesons
were exploited in the past to derive a measurement of the charm production cross section at hadron
colliders, by scaling the production cross section of the D mesons with the corresponding charm-quark
fragmentation fraction, f (c→ D), taken from e+e− collisions [1, 3, 9–11, 22].

Recent measurements of charm-baryon production at midrapidity in pp collisions showed an enhance-
ment of the Λ+

c /D0 [23–26] and Ξ
+,0
c /D0 [27–29] ratios for pT < 6−8 GeV/c with respect to the ones

measured in e+e− collisions. These measurements suggest a significant difference of the fragmentation
fractions of charm quarks into charm baryons in hadronic collisions at LHC energies compared to those
measured in e+e− and ep collisions. These findings are similar to those obtained in the beauty sector by
the CDF Collaboration at the Tevatron [30] and by the LHCb Collaboration at the LHC [31, 32]. Several
models based on different assumptions, like the inclusion of hadronisation via coalescence [33, 34], or
considering a set of yet-unobserved higher-mass charm-baryon states [35], or including string formation
beyond the leading-colour approximation [36], have been proposed to explain the baryon enhancement.
Updates of the fit to the measured fragmentation functions of c→ Λ+

c in e+e− collisions were also
performed [37, 38] without improving the agreement between data and model calculations. These obser-
vations required a new approach for evaluating the charm-quark production cross section at midrapidity
and the charm-quark fragmentation fractions based on the measurements of both charm mesons and
baryons.

The measurements described above not only provide constraints to pQCD calculations but are also im-
portant as references for the investigation of the charm-quark interaction with the medium created in
heavy-ion collisions. In particular, in the context of the heavy-ion programme at the LHC, the cc pro-
duction cross section per nucleon–nucleon collision is a fundamental ingredient for the determination of
the amount of charmonium production by (re)generation in the quark–gluon plasma (QGP) [35, 39–41],
a mechanism that is supported by J/ψ measurements in nucleus–nucleus collisions at the LHC [42, 43].

In this Letter, the charm fragmentation fractions and the charm production cross section per unit of
rapidity at midrapidity (|y| < 0.5) in pp collisions at

√
s = 5.02 TeV are reported. The results were

obtained by considering the contribution based on the measurement of the ground-state charm hadrons
D0, D+, D+

s , Λ+
c , and Ξ0

c by the ALICE Collaboration [5, 24, 28].

The ALICE experiment and its performance are presented in detail in [44, 45]. The main detectors
used for the measurements presented here are the Inner Tracking System, the Time Projection Chamber
and the Time-Of-Flight detector for vertexing, tracking, and particle identification purposes. The data
from pp collisions at

√
s = 5.02 TeV were collected during the 2017 run with a minimum bias trigger,

and they correspond to an integrated luminosity Lint= (19.3 ± 0.4) nb−1 [46]. D mesons were recon-
structed from their decays D0→ K−π+, D+→ K−π+π+, D+

s → φπ+→ K−K+π+, and D∗+→ D0π+,
and charm baryons from their decays Λ+

c → pK0
S, Λ+

c → pK−π+, and Ξ0
c → Ξ−e+νe. The charge conju-
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Figure 1: Transverse-momentum integrated production cross sections of the various charm meson [4, 5, 48] and
baryon [24, 25, 28] species per unit of rapidity at midrapidity normalised to that of the D0 meson measured in pp
collisions at

√
s = 5.02 TeV. The measurements are compared with PYTHIA 8 calculations [36, 49] (left panel)

and with results from a SHM [35] (right panel) (see text for details). For J/ψ the inclusive cross section was used.
The J/ψ/D0 ratio, as well as the model calculations for the Ω0

c/D0 ratio, are multiplied by a factor 30 for visibility.

gates are measured as well and the results are averaged. The cross sections of D0 and D+ mesons were
measured down to pT = 0 [5]. The cross sections for D∗+ and D+

s mesons were measured down to pT = 1
GeV/c, corresponding to about 80% of the integrated cross section [4]. The Λ+

c baryon cross section was
measured down to pT = 1 GeV/c, corresponding to about 70% of the integrated cross sections [24, 25].
The Ξ0

c baryon was measured down to pT = 2 GeV/c, corresponding to about 40% of the integrated cross
section [28]. The systematic uncertainties of the meson and baryon measurements include the follow-
ing sources: (i) extraction of the raw yield; (ii) prompt fraction estimation; (iii) tracking and selection
efficiency; (iv) particle identification efficiency; (v) sensitivity of the efficiencies to the hadron pT shape
generated in the simulation; (vi) pT-extrapolation for the hadrons not measured down to pT = 0. In
addition, an overall normalisation systematic uncertainty induced by the branching ratios (BR) [47] and
the integrated luminosity [46] were considered.

Figure 1 shows the pT-integrated production cross sections per unit of rapidity of the various open- and
hidden-charm meson (D+, D+

s , D∗+, and J/ψ) [4, 5, 48] and baryon (Λ+
c and Ξ0

c) [24, 25, 28] species,
obtained in pp collisions at

√
s = 5.02 TeV, as the average of particle and antiparticle, and normalised to

the one of the D0 meson. When computing the ratios between the different hadron species, systematic
uncertainties due to tracking, the feed-down from beauty-hadron decays, the pT-extrapolation, and the
luminosity were propagated as correlated. For the Ξ0

c baryons, the additional contribution to the beauty
feed-down systematic uncertainty due to the assumed Ξ

0,−
b -baryon production relative to that of Λ

+
b

baryons [28, 29] was considered as uncorrelated with the uncertainties related to the beauty feed-down
subtraction for the other charm hadron species. In the J/ψ/D0 ratio all the systematic uncertainties
were propagated as uncorrelated, with the exception of the luminosity uncertainty. The treatment of the
systematic uncertainties is also the same for the computation of the other quantities reported here.

In the left panel of Fig. 1 the experimental data are compared with results from the PYTHIA 8 genera-
tor, using the Monash 2013 tune [49], and tunes that implement colour reconnections (CR) beyond the
leading-colour approximation [36]. In the Monash 2013 tune, the parameters governing the heavy-quark
fragmentation are tuned to measurements in e+e− collisions. The CR tunes introduce new colour re-
connection topologies, including junctions, that enhance the baryon production and, to a lesser extent,

3



Fragmentation fractions and charm production cross section ALICE Collaboration

charmonia. The three considered tunes (Mode 0, 2, and 3) apply different constraints on the allowed
string reconnections, taking into account causal connections of dipoles involved in a reconnection, and
time dilation effects caused by relative boosts between string pieces. While multiparton interactions
(MPI) are observed in PYTHIA 8 to significantly increase the charm quark production, a modification of
the relative abundances of the charm hadron species, with the relative baryon enhancement, is observed
only when the MPI are coupled to a color reconnection mode beyond the leading color approxima-
tion [49]. It is observed that for the open charm meson ratios the PYTHIA 8 generator predictions with
the different tunes are fairly similar and describe the measurements within uncertainty, except for the
D+/D0 ratio, which is overestimated by about 15%. However, this difference has a significance of only
1 standard deviation of the combined statistical and systematic uncertainties. Significant differences in
the PYTHIA 8 predictions are observed when comparing them with the measured baryon-to-meson ra-
tios. The Monash 2013 tune is observed to underestimate the Λ+

c /D0 and Ξ0
c/D0 ratios by nearly 8σ

and 2.3σ , respectively. It is significantly different from all the CR tunes, which provide an increase
of the baryon-to-meson ratio. Mode 2 is the PYTHIA 8 tune describing the Λ+

c /D0 ratio; however, it
still underestimates the Ξ0

c/D0 ratio by about 2σ . For the J/ψ/D0 ratio the CR tunes provide a better
description than the Monash 2013 tune. However, all PYTHIA 8 tunes underestimate the measurement.
In the simulations, as in the experimental measurement, the J/ψ cross section consists of the prompt
and beauty feed-down contributions. The fraction of J/ψ from the decay of b-hadrons is about 15% for
pJ/ψ

T > 1.3 GeV/c [50–52].

In the right panel of Fig. 1, the measurements are compared with two versions of a statistical hadro-
nisation model (SHM) [35]. One is based on the charm baryon states included by the Particle Data
Group (PDG) [47], while the other version includes an augmented set of charm baryon states, given
by predictions of the relativistic quark model (RQM) [53]. Both versions are reported for two different
hadronisation temperatures (Th) [35]. The two Th values of 160 MeV and 170 MeV used in the model
are above the temperature of 156.5 MeV reported from a fit to the light-flavour hadron yields in cen-
tral Pb–Pb collisions [54, 55]. The implementation of the two hadronisation temperatures leads only to
small variations in the meson-to-meson ratios, while more significant changes are observed in the baryon
sector. The charm mesons D0, D+, and D+

s and baryons are dominantly populated by strong decays
from higher-lying charm resonances. Therefore, changes due to an increased temperature on yield ratios
relative to D0 are due to subtle effects. In particular, in the meson-to-meson ratios a weak sensitivity
to temperature and no change due to the added baryons is visible. For the charm baryons, even with
the standard PDG spectrum, there is a stronger sensitivity to a temperature increase (dashed and dash-
dotted red lines in the right panel of Fig. 1). The additional baryon states almost double the fraction of
the ground-state Λ+

c in the system relative to the PDG scenario, when a hadronisation temperature of
170 MeV is used, and the resulting Λ+

c /D0 ratio becomes comparable to the ALICE measurement [24].
A similar conclusion is drawn for the production cross section of Σ

0,+,++
c baryons in pp collisions at√

s = 13 TeV [56]. The Ξ0
c/D0 ratio is observed to increase by a factor 1.3 with respect to the PDG case.

With this increase of the Ξ0
c yield, the model calculation is compatible with the measurement within

1.8σ . No model calculation is available for the J/ψ/D0 ratio.

The cc production cross section per unit of rapidity at midrapidity (dσ cc/dy||y|<0.5) was calculated by
summing the pT-integrated cross sections of all measured ground-state charm hadrons (D0, D+, D+

s ,
Λ+

c , and Ξ0
c). The contribution of the Ξ0

c was multiplied by a factor of two, in order to account for
the contribution of the Ξ+

c . The production cross sections of the Ξ0
c and Ξ+

c baryons were found to be
compatible within experimental uncertainties in pp collisions at

√
s = 13 TeV [29]. The contribution of

J/ψ to the charm production cross section at midrapidity was considered negligible with respect to the
other hadron species. Given the absence of measurements of Ω0

c baryon production at hadron colliders,
an asymmetric systematic uncertainty was assigned assuming a contribution equal to the one of Ξ0

c con-
sidering the prediction of the Catania model [34]. This uncertainty was summed in quadrature with the
other extrapolation uncertainties. Two correction factors for the different shapes of the rapidity distri-
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Table 1: Charm-quark fragmentation fractions into charm hadrons, f (c→ Hc) determined from measurements
in pp collisions at

√
s = 5.02 TeV. Statistical and systematic uncertainties are reported separately. To obtain the

complete fragmentation of a c quark, an additional contribution equal to the one of the Ξ0
c should be added to

account for the Ξ+
c . The f (c→ Λ+

c ) includes the feed-down from Σ
0,+,++
c baryons. The sum of the fragmentation

fractions adds up to unity within uncertainties, not counting here the D∗+, which feeds into the D0 and D+ mesons.

Hc f (c→ Hc)[%]

D0 39.1±1.7(stat)+2.5
−3.7(syst)

D+ 17.3±1.8(stat)+1.7
−2.1(syst)

D+
s 7.3±1.0(stat)+1.9

−1.1(syst)

Λ+
c 20.4±1.3(stat)+1.6

−2.2(syst)

Ξ0
c 8.0±1.2(stat)+2.5

−2.4(syst)

D∗+ 15.5±1.2(stat)+4.1
−1.9(syst)

butions (RS) of charm hadrons and cc pairs were considered. The first factor accounts for the different
rapidity distributions of charm hadrons and single charm quarks, and it was evaluated to be unity in the
relevant rapidity range based on FONLL calculations. A 2% uncertainty on this factor was evaluated
from the difference obtained with PYTHIA 8. The second correction factor was computed as the ratio
(dσ cc/dy)/(dσ c/dy), which was estimated from NLO pQCD calculations (POWHEG [57]) to be 1.03.
A 3% uncertainty on this factor was estimated from the difference among the values obtained by varying
the factorisation and renormalisation scales independently by a factor of 2 in the POWHEG calculation
and using different sets of PDFs (CT10NLO [58], CT14NLO [59], CT18NNLO [60], CTEQ66 [61], and
NNPDF31NNLO [62]). The resulting cc cross section per unit of rapidity at midrapidity is

dσ cc

dy

∣∣∣∣pp, 5.02 TeV

|y|<0.5
= 1165±44(stat)+63

−67(syst)+98
−38(extr)±43(BR)±42(RS)±24(lumi) µb. (1)

The reported uncertainties in Eq. 1 named (extr) and (BR) refer to extrapolation uncertainties of the
charm-hadron cross sections not measured down to pT = 0 and to the uncertainties of the branching ratios.
The extrapolated fraction of the cross section is smaller than 20%. More details on the extrapolation
uncertainties are reported in [5, 25, 28].

The charm fragmentation fractions, f (c→Hc), which represent the probabilities of a c quark to hadronise
into a given charm hadron, are listed in Table 1. They were obtained by dividing the pT-integrated cross
section of each measured hadron species by the sum of the cross sections of the different ground-state
charm hadron species, considering twice the contribution of the Ξ0

c baryon. An asymmetric uncertainty
to account for the possible sizeable contribution of Ω0

c was added as done for the evaluation of dσ cc/dy.

In the left panel of Fig. 2 the fractions f (c→ Hc) are compared with values derived from experimental
measurements performed in e+e− collisions at LEP and B factories as well as in ep collisions [63]. The
fragmentation fractions measured at midrapidity in pp collisions at the LHC are different from the ones
measured in e+e− and ep collisions, confirming significant evidence that the assumption of universality
(collision-system independence) of parton-to-hadron fragmentation is not valid as reported in [4, 24, 28].
The fractions f (c→ Hc) measured in e+e−, including the Λ+

c baryon, are in agreement with a standard
canonical SHM [64]. The Λ+

c /D0 ratio measured at midrapidity in pp and p–Pb collisions at the LHC
is different from the one measured at forward rapidity by the LHCb Collaboration [8, 65] as discussed
in [23, 25].
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Figure 2: Left: Charm-quark fragmentation fractions into charm hadrons measured in pp collisions at
√

s =
5.02 TeV in comparison with experimental measurements performed in e+e− collisions at LEP and at B factories,
and in ep collisions at HERA [63]. The D∗+ meson is depicted separately since its contribution is also included
in the ground-state charm mesons. Right: Charm production cross section at midrapidity per unit of rapidity as a
function of the collision energy. STAR [11] and PHENIX [66] results, slightly displaced in the horizontal direction
for better visibility, are reported. Comparisons with FONLL [13–15] (red band) and NNLO [67–69] (violet band)
pQCD calculations are also shown.

An increase of about a factor 3.3 for the fragmentation fractions for the Λ+
c baryons with respect to

e+e− and ep collisions, and a concomitant decrease of about a factor 1.4–1.2 for the D mesons, are
observed. The significance of the difference considering the uncertainties of both measurements, is
about 5σ for Λ+

c baryons. This in turn decreases the fragmentation into D0 mesons at midrapidity by
6σ with respect to the measurements in e+e− and ep collisions. In previous measurements in e+e− and
ep collisions no value for the Ξ0

c was obtained and the yield was estimated according to the assumption
f (c→Ξ+

c )/ f (c→Λ+
c ) = f (s→Ξ−)/ f (s→Λ0)∼ 0.004 [63]. The fraction f (c→Ξ0

c) was measured for
the first time and f (c→ Ξ0

c)/ f (c→ Λ+
c ) = 0.39±0.07(stat)+0.08

−0.07(syst) was found [28]. A first attempt
to compute the fragmentation fractions in pp collisions at the LHC was performed in [63] assuming
universal fragmentation, since at that time the measurements of charm baryons at midrapidity were not
yet available. The measurements reported here challenge that assumption.

The updated fragmentation fractions obtained for the first time taking into account the measurements of
D0, D+, D+

s , Λ+
c , and Ξ0

c at midrapidity in pp collisions at
√

s = 5.02 TeV, allowed the recomputation of
the charm production cross sections per unit of rapidity at midrapidity in pp collisions at

√
s = 2.76 and

7 TeV. The Λ+
c /D0 ratios measured in pp at different collision energies, as well as the Ξ0

c/D0 ratio, are
compatible [25, 28, 56]. The charm cross sections were obtained by scaling the pT-integrated D0-meson
cross section [1, 3] for the relative fragmentation fraction of a charm quark into a D0 meson measured
in pp collisions at

√
s = 5.02 TeV and applying the two correction factors for the different shapes of the

rapidity distributions of charm hadrons and cc̄ pairs. The pT-integrated D0-meson cross section was used
because at the other energies not all charm hadrons were measured and the D0 measurements are the
most precise. The uncertainties of the fragmentation fraction (FF) were taken into account in calculating
the cc production cross section as was the uncertainty introduced by the rapidity correction factors. The
BR of the D0→ K−π+ decay channel was also updated, considering the latest value reported in the
PDG [47].
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The resulting cc cross sections per unit of rapidity at midrapidity are

dσ cc

dy

∣∣∣∣pp, 7 TeV

|y|<0.5
= 1347±97(stat)±104(syst)±11(BR)±+142

−105 (FF)±44(RS)±47(lumi) µb, (2)

and

dσ cc

dy

∣∣∣∣pp, 2.76 TeV

|y|<0.5
= 1126±303(stat)+258

−429(syst)+397
−53 (extr)±9(BR)±+119

−88 (FF)±61(RS)±21(lumi) µb (3)

for
√

s = 7 and 2.76 TeV, respectively. The updated cc cross sections at
√

s = 2.76 and 7 TeV are about
40% higher than the previously published results [1, 3], reflecting the differences in the fragmentation
into charm baryons measured in e+e− and pp collisions.

In the right panel of Fig. 2, the measured cc cross sections are compared with FONLL and NNLO predic-
tions as a function of the collision energy. The NNLO values were obtained by the authors of [67, 68] by
applying to the central value of the FONLL dσ cc/dy a K factor (NNLO/NLO) calculated with a modified
version of the top++ code [69] with parameter values as in [67, 68] and using the relative scale uncer-
tainties obtained at NNLO with top++. The cc cross sections are also compared with the STAR [11] and
PHENIX [66] results measured in pp collisions at

√
s = 200 GeV. The STAR measurement is obtained

by scaling the D0 and D∗+ cross sections by the charm-quark fragmentation fractions measured in e+e−

collisions from the CLEO and BELLE experiments [63]. The PHENIX cc cross section is obtained from
the measurement of the cross sections of electrons from semileptonic heavy-flavour hadron decays. Both
results are compatible within uncertainties with the upper edge of the FONLL and NNLO bands. The
cc cross sections measured at the three LHC collision energies are higher than the upper edge of the
FONLL and NNLO bands; however, they are compatible within approximately one standard deviation
of the experimental uncertainty. The theoretical uncertainties are estimated as a convolution of the pQCD
calculations obtained by varying the factorisation and renormalisation scales. The uncertainties of the
PDFs and of the charm-quark mass are also included in the uncertainties of both calculations and are
determined with FONLL as described in [15].

In summary, the charm production cross section per unit of rapidity at midrapidity in pp collisions at√
s = 5.02 TeV was determined by exploiting recent measurements of the ground-state charm hadrons,

including for the first time the measured baryon states. The charm fragmentation fractions f (c→ Hc)
were computed for the first time in hadron collisions at the LHC using measurements of charm baryons
at midrapidity, and they were found to be different from those measured in e+e− and ep collisions. This
observation indicates that the hadronisation of charm quarks into charm hadrons is not a universal process
among different collision systems. The fragmentation fraction for the Ξ0

c baryon was measured for the
first time and found to be sizeable. Finally, the charm production cross section per unit of rapidity at
midrapidity, in pp collisions at

√
s = 5.02 TeV at the LHC was measured and lies at the upper edge of

the theoretical pQCD calculations.
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