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Conditioned Variational Autoencoder for top-N
item recommendation

Tommaso Carraro1[0000−0002−3043−1456], Mirko Polato1[0000−0003−4890−5020],
and Fabio Aiolli1[0000−0002−5823−7540]

Department of Mathematics, University of Padova, Padova, Italy

Abstract. In this paper, we propose a Conditioned Variational Autoen-
coder (C-VAE) for constrained top-N item recommendation where the
recommended items must satisfy a given condition. The proposed model
architecture is similar to a standard VAE in which the condition vector
is fed into the encoder. The constrained ranking is learned during train-
ing thanks to a new reconstruction loss that takes the input condition
into account. We show that our model generalizes the state-of-the-art
Mult-VAE collaborative filtering model. Moreover, we provide insights
on what C-VAE learns in the latent space, providing a human-friendly
interpretation. Experimental results underline the potential of C-VAE
in providing accurate recommendations under constraints. Finally, the
performed analyses suggest that C-VAE can be used in other recommen-
dation scenarios, such as context-aware recommendation.

Keywords: recommender systems, collaborative filtering, implicit feed-
back, variational autoencoder, top-N recommendation

1 Introduction

Recommender system (RS) technologies are nowadays an essential component
for e-services. Generally speaking, an RS aims at providing suggestions for items
(e.g., movies, songs, news) that are most likely of interest to a particular user [20].
Since the first appearance of RSs, Collaborative Filtering (CF) [23,13] has af-
firmed of being the de facto recommendation approach. CF exploits similarity
patterns across users and items to provide personalized recommendations. La-
tent Factor models, in particular Matrix Factorization (MF), have dominated the
CF scene [7,19,16,18] for years, and this has been further emphasized with the
deep learning rise [4]. A growing body of work has shown the potential of (deep)
neural network approaches to face the recommendation problem. In the last few
years, plenty of neural network-based models have raised the bar in terms of
recommendation accuracy, such as NeuCF [5], CDAE [26], and EASE [22], to
name a few.

Recently, generative approaches have attracted the researchers’ attention to
the top-N recommendation task. The first generative models that appeared in the
RS literature were based on Generative Adversarial Networks [25,11,24,3]. The
GAN-based trend has been followed by a series of Variational Autoencoder-based
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2 T. Carraro et al.

(VAE, [12]) methods, which have soon gained much success overshadowing GAN-
based ones. The seminal Variational approach for CF has been Mult-VAE [15].
After that, other VAE-based models have been proposed, such as [14] and [8]
for the content-based recommendation. In particular, the latter work is highly
related to ours since it extends the Conditional VAE [27,17] to collaborative
filtering (discussed in Section 2.4).

Here, we extend the Mult-VAE model [15] for conditioned recommendations
in the top-N setting. Conditions are intended in a generic sense and they can
be both content-based or contextual-based [1]. It is important to underline that
the way conditions are treated in our training is different from the one proposed
in [8]. In our setting, a condition represents a constraint, and thus the provided
recommendations must satisfy the constraint to be accepted. For example, in a
movie recommendation system a user can ask for movies that belong to a specific
genre.

We designed our model as a generalization of Mult-VAE, and hence if trained
without the conditions they are equivalent. Treating the conditions as we do al-
lows the model to be versatile making it potentially applicable as a content-based
as well as a context-aware recommender. Additionally, thanks to the training
process, the latent space shows nice properties that can be exploited to give
a human-friendly interpretation of the model. Our experimental analyses show
that our method can achieve state-of-the-art performance on different bench-
mark data sets.

In summary, our main contributions are:

1. we propose a Conditioned VAE for top-N recommendation, dubbed C-VAE,
able to manage conditioned recommendations. We define the C-VAE archi-
tecture and a new conditioned loss, with which our model is able to learn
the relationships between items and conditions;

2. we provide a descriptive as well as a quantitative comparison with state-of-
the-art approaches;

3. we provide a in-depth analysis of the properties of the learned latent space
giving a human-friendly interpretation.

The remainder of the paper is structured as follows. Section 2 provides the
background useful to follow the rest of the paper. Section 3 describes the pro-
posed method, while Section 4 shows the performed evaluation. Finally, Section 5
wraps up the paper and gives some possible future research paths.

2 Background

This section provides the notations (Section 2.1) and background knowledge
(Section 2.2) useful to fully understand the rest of the paper.

2.1 Notation

In this section we provide some useful notation used throughout the paper. We
refer to the set of users of a RS with U , where |U| = n. Similarly, the set of
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items is referred to as I such that |I| = m. The set of ratings is denoted by
R ≡ {(u, i) | u ∈ U ∧ i ∈ I, u rated i}. Each item i is assumed to belong to a
set of categories C(i) ⊆ C, where C ≡ {C1, C2, . . . , Cs} is the set of all possible
categories s.t. |C| = s.

Moreover, since we face top-N recommendation tasks, we consider the binary
rating matrix with R ∈ Rn×m, where users are on the rows and items on the
columns, such that rui = 1 iff (u, i) ∈ R. Given R, ru{0, 1}m indicates the
column binary vector corresponding to the user u. We add a subscription to
both user and item sets to indicate, respectively, the set of items rated by a
user u (i.e., Iu) and the set of users who rated the item i (i.e., Ui). Finally, we
indicate with c = [c1, ..., cs]

> the column binary condition vector, where cj = 1
if and only if ∃i ∈ Iu such that i belongs to the category Cj .

2.2 Variational Autoencoder

The VAE is a generative model that assumes the input x is generated according
to the following generative process: z ∼ pθ∗(z) and x|z ∼ pθ∗(x|z), where the
dimensionality of z is (generally) much lower than x. In other words, VAE as-
sumes that the input vector x is modeled as a function of an unobserved random
vector z of lower dimensionality. VAE aims at estimating the parameters θ∗ by
maximizing the likelihood of the data (Maximum Likelihood Estimation, MLE),

i.e., θ̂ = arg maxθ∈Θ pθ(x). Computing the MLE requires solving

pθ (x) =

∫
pθ(x|z)pθ(z)dz

which is often intractable. However, in practice, for most z, pθ(x|z) ≈ 0. The
key idea behind VAE is to sample values of z that are likely to have produced
x, and compute pθ(x) just from those. To do this, we need an approximation
qφ(z|x) of the true posterior distribution that returns a distribution over z that
are likely to produce the input. To make this problem tractable, it is assumed
that qφ follows a specific family of parametric distributions, usually a normal
distribution with 0 mean and unitary variance. The closeness between qφ(z|x)
and the assumed posterior distribution pθ(z|x) is ensured by the minimization
of the Kullback-Liebler divergence (KL), which can be written as:

KL(qφ(z|x)‖pθ(z|x)) = Eqφ(z|x) [log qφ(z|x)− log pθ(x, z)] + log pθ(x). (1)

After some rearrangements of Equation (1) it is possible to write the so-
called Evidence Lower BOund (ELBO) [12], which naturally defines the objective
function that VAE wants to maximize:

log pθ(x) ≥ Eqφ(z|x) [log pθ(x|z)]−KL(qφ(z|x)‖pθ(z))

= L (x; θ, φ) .

This loss can be interpreted as a reconstruction loss (first term), plus the so-
called KL loss which acts as a kind of regularization term.
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In practice, pθ and qφ are parametrized by two (deep) neural networks, i.e.,
the decoder (fθ) and the encoder (gφ), respectively. These parameters are op-
timized using stochastic gradient ascent with the aid of the reparameterization
trick [12], that allows to compute the gradient w.r.t φ. To this end, the encoder
network provides the parameters which define the distributions over each ele-
ment of z, i.e, mean µ and variance σ. The sampling over the Gaussian distribu-
tion is performed via an additional input ε, which allows the reparameterization
z = µ + ε� σ, where � is the Hadamard product.

2.3 Variational Autoencoder for collaborative filtering

In [15], Liang et al. propose a VAE for collaborative filtering called Mult-VAE.
Mult-VAE takes as input the user-item binary rating matrix and learns a com-
pressed latent representation (the encoder) of the input. These latent represen-
tation is then used to reconstruct the input (the decoder) and to impute the
missing ratings. The top-N recommendation is computed by taking, for each
user, the N items with the highest reconstructed ratings.

Differently from the standard VAE, Mult-VAE uses a multinomial log like-
lihood rather than the classical Gaussian likelihood. Authors believe that the
multinomial distribution is well suited for modeling implicit feedback [15]. More-
over, Mult-VAE employs a β-VAE loss [6] in which the hyper-parameter β is
added to the loss as a trade-off parameter between the reconstruction loss and
the KL loss.

2.4 Style Conditioned Recommendation (SCR)

In [8] a style conditioned variational autoencoder is proposed. The conditional
schema followed by SCR is similar to the standard Conditional VAE [27,17]. The
style conditioning is achieved with the addition of a user style profile vector to
both the input of the encoder and the decoder. This style vector representation
is learned though another network using side information. The rest of the model
as well as the training of the network is the same as in a standard VAE, where
the input of the encoder and the decoder is the concatenation of their input with
the style vector.

3 Conditioned Variational Autoencoder

In this section we present C-VAE for top-N recommendation. We first underline
the differences with the state-of-the-art (Section 3.1), and then we define the
architecture (Section 3.2) as well as the new loss (Section 3.3) of our model.

3.1 Preliminaries

Once learned the user style profile, the conditioning proposed in [8] is fixed for
the user. The only way to force different styles is by acting directly in the latent
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space by injecting a specific style via a one-hot encoded style vector. With this
trick the decoder network is driven to reproduce inputs with a specific style.
However, this is a post-training step, and hence only the decoding is influenced
by the injection.

Since our conditions represent constraints, in C-VAE the conditional vector
is fed into the encoder network, and the training process guarantees that the
learned latent representation depends on the given condition. In this way, dif-
ferent conditions map the user onto (potentially) different regions of the latent
space. In Section 4.7 we show that this is a nice property when it comes to
interpret the model. C-VAE differs from SCR in the following main aspects:

– C-VAE is architecturally simpler than SCR (Section 3.2);
– C-VAE is more versatile than SCR and it is a natural generalization of the

Mult-VAE (Section 2.3) model;
– C-VAE learns the correlations between users and conditions (SCR only learns

a specific conditioning for each user).

3.2 Architecture

C-VAE follows the architecture of Mult-VAE with the addition of a conditional
vector to the input of the encoder network. The conditional vector is concate-
nated with the user rating vector after the dropout layer. The dropout layer
(implemented in [15] but not reported in the paper) gives to the VAE denois-
ing capabilities, which have shown of being effective in making recommenda-
tions [15]. The conditional vector c ∈ {0, 1}s is defined as a one-hot vector over
the s possible conditions. It is noteworthy that the condition, differently from
SCR, is not fed into the decoder network.

Figure 1 depicts the network architecture of our model, while Figure 2 pro-
vides an overview of the architectural differences between Mult-VAE, SCR, and
C-VAE.

3.3 Conditioned loss function

A core difference between our C-VAE and SCR is the way the training works.
Since we treat the conditioning as a constraint, the reconstruction must take
this into account. This means that, in general, the expected output is a filtered
version of the input, where the items that do not satisfy the constraint are
dropped. This is achieved by our model via a modified loss function.

The loss function we try to minimize is a conditioned version of the Mult-VAE
loss [15]:

Lβ (ru, c; θ, φ) = Eqφ(zu|ru,c) [log pθ (r̂u|zu, c)]− β ·KL (qφ (zu|ru, c) ‖p (zu, c))

where zu is the latent representation of the user u, and r̂u is ru filtered by the
condition c. The filtering is directly embedded in the reconstruction loss as:

log pθ (r̂u|zu, c) =
∑
i∈I
〈c,G>〉i rui log πi(fθ(zu))
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Fig. 1: High level illustration of the Conditioned VAE architecture.

where:

– π is the softmax function;
– 〈·, ·〉 indicates the inner-product operation;
– G ∈ {0, 1}m×s is the item-condition matrix, where gic = 1 iff item i satisfies

the condition c.

This reconstruction loss is what makes our model able to learn the relationship
between items and conditions. When conditions are not used, then all items are
assumed of satisfying the empty condition. Implementation-wise, this is achieved
by removing the dot product 〈c,G>〉, which is indeed always equal to the con-
stant vector 1. This leads the C-VAE loss to be the equal to the loss function
defined in [15], making C-VAE equivalent to Mult-VAE.

It is worth to underline that the filtering part can also be dependent from
both user and item. For example, in the case of context-aware recommenda-
tion [1], the conditioning can be defined in terms of the context, which is in-
fluenced by both users and items. In this case, the reconstruction loss must be
modified accordingly by defining a different condition matrix G. In this paper,
we focus on conditioning defined over the items’ content.

4 Experiments

In this section we present the experiments performed on C-VAE. We com-
pared C-VAE with Mult-VAE in terms of top-N recommendation accuracy (Sec-
tion 4.5). We simulate the conditioning on Mult-VAE by filtering its output
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Fig. 2: Overview of the architectural differences between (a) Mult-VAE, (b) SCR,
and (c) C-VAE. The dashed arrows denote a sampling operation, while the dotted
arrows indicate the conditional input.

according to the given condition. Finally, we analyze the latent space of C-VAE
which allowed us to shed some lights on what happens under hood.

4.1 Datasets

We performed our experiments on three real-world data sets, chosen in such a
way that they contained items side information to construct the conditions.

MovieLens 20M1 (ml-20m): This data set contains user-movie ratings collected
from a movie recommendation service. We took the genres of the movies
as conditions. We removed the rarest genres (i.e., IMAX, Film-Noir and the
neutral genre (no genres listed)) because they were poorly represented
in the data set. For the rest of the pre-processing we followed the same
procedure as in [15].

Yelp2: This data set is a subset of Yelp’s businesses, reviews, and user data.
It was originally put together for the Yelp Data set Challenge. We took
the categories of the businesses as conditions. We kept the 20 most popu-
lar restaurant categories as described in [21]. Afterwards, since we work on
implicit feedback we binarized explicit data by keeping ratings of three or
higher. Finally, we only kept users who have reviewed at least four restau-
rants and restaurants that have been reviewed by at least ten users.

Netflix Prize3: This is the official data set used in the Netflix Prize compe-
tition. As of ml-20m, we took the genres of the movies as conditions. Since

1 https://grouplens.org/datasets/movielens/20m/
2 https://www.yelp.com/dataset
3 https://www.kaggle.com/netflix-inc/netflix-prize-data

https://grouplens.org/datasets/movielens/20m/
https://www.yelp.com/dataset
https://www.kaggle.com/netflix-inc/netflix-prize-data
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the dataset does not include information about the genres, we developed
a script to fetch these information from the IMDb4 database. We used the
title and year of the movies to query the database. Netflix dataset originally
contained 17770 movies but only 12279 matched with IMDb. The retrieved
movies-genres mapping is available at this URL5. As in movielens, we re-
moved the rarest genres, i.e., Talk-Show, Film-Noir, Short, Reality-TV,
News and Game-Show. For the rest of the pre-processing we followed the same
procedure as in [15].

Table 1 summarizes the information about the data sets after the pre-processing
presented above.

Table 1: Composition of datasets after pre-processing.
ml-20m Yelp Netflix

# of users 136,466 125,679 459,133
# of items 19,619 22,824 11,844
# of categories 17 20 21
# of interactions 19.3M 2.9M 88.8M
% of interactions 0.7 0.1 1.6
# of held-out users 10,000 9,000 40,000

# training examples 1,728,205 759,955 6,826,774
# validation examples 144,179 47,364 699,901
# test examples 143,965 46,847 700,393

4.2 Conditions computation

Potentially, during the training of C-VAE it might be possible to condition each
user with every possible conditions combination. However, the size of the training
set would be in the order of O(n ·s2). We decided to limit its size by conditioning
users one category at a time, i.e., ‖c‖1 = 1. If a condition is never satisfied by the
user’s item set Iu then the condition is simply not considered in the training.
In the training set we also considered the users without any condition (akin
Mult-VAE).

The bottom part of Table 1 summarizes the size of the training, validation
and test sets after the computation of the conditions.

4.3 Model architecture

An overview of the architecture of our model is presented in Section 3.2. We fol-
lowed the implementation as in [15], where an L2 normalization and a dropout

4 https://www.imdb.com/
5 https://github.com/bmxitalia/netflix-prize-with-genres

https://www.imdb.com/
https://github.com/bmxitalia/netflix-prize-with-genres
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layer (p = 0.5) are applied to the input ru before it is fed to the encoder. The
encoder network is composed of a fully connected layer made of 600 neurons with
tanh as activation function. The encoder outputs the mean and the standard de-
viation of a Gaussian distribution, that are represented with two fully connected
layers made of 200 neurons and linearly activated. The decoder network is com-
posed of a fully connected layer made of 600 neurons with tanh as activation
function. Finally, the decoder linearly outputs the scores over the entire items
set.

Recalling that m = |I| and s = |C|, the neural architecture of our model can
be summarized as [m+ s =⇒ 600 =⇒ 200 =⇒ 600 =⇒ m]. For Mult-VAE
we used the same architecture.

4.4 Model training and hyper-parameters tuning

For both Mult-VAE and C-VAE the network weights are initialized with Xavier
uniform initializer, while biases are normally initialized with 0 mean and stan-
dard deviation 0.001. We used the Adam optimizer with learning rate 0.001. For
the tuning of the hyper-parameter β we used the procedure explained in [15].
As a reminder, this is the procedure we followed:

– we trained the model annealing β in such a way to reach 1.0 at the end of
the training;

– we selected the β value corresponding to the highest validation score in terms
of nDCG@100 [9];

– we re-trained the model annealing β in such a way to reach the selected value
at the end of the training.

In our experiments we found that the best values for β are 0.07 for ml-20m,
0.35 for Yelp and 0.05 for Netflix. We used a batch size of 500 for Yelp and
ml-20m, while for Netflix a batch size of 1000. We trained the models for 100
epochs on every data set and we kept the model which corresponded to the best
validation score. We used early stopping to stop the training if no improvements
were found on the validation score for 5 consecutive epochs.

4.5 Experimental results and discussion

In this section we compare C-VAE and Mult-VAE in terms of top-N reocmmen-
dation quality. We used recall@k and nDCG@k as ranking-based metrics. While
recall@k considers all items ranked within the first k to be equally important,
nDCG@k uses a monotonically increasing discount to emphasize the importance
of higher ranked items. We did not have the chance to compare our method
with SCR because authors did not provide the implementation of their method.
Experiments have been performed using the rectorch6 python library. To quan-
titatively compare our proposed method with Mult-VAE we used three different
types of evaluation:

6 https://github.com/makgyver/rectorch

https://github.com/makgyver/rectorch
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1. total: measures how well the model performs in general, that is when the
test set contains both users with conditions and users without conditions;

2. normal: measures how well the model performs without conditioning, that
is when test set contains only users without conditions;

3. conditioned: measures how well the model performs with conditioning, that
is when the test set contains only users with conditions.

Since Mult-VAE does not directly handle the conditioning, we filtered its output
according to the condition and we computed the ranking only on those items
that satisfy the condition. It is worth to notice that this filtering gives Mult-VAE
a huge advantage because it greatly narrows down the item set. Clearly, C-VAE
instead performs the ranking over the whole item set.

To validate and test the models, for each validation/test user we fed 80% of
user ratings to the network and reported metrics on the remaining 20% of the
ratings history (for Yelp we used 50/50 proportions due to its sparsity). Table 2
reports the obtained results.

Table 2: Comparison between C-VAE and Mult-VAE on selected benchmark
data sets. Standard errors are between 0.001 and 0.003. r stands for recall, while
n stands for nDCG. Each metric is averaged across all test users.

Dataset Method
Total Normal Conditioned

r@20 r@50 n@100 r@20 r@50 n@100 r@20 r@50 n@100

ml-20m
C-VAE 0.638 0.786 0.509 0.385 0.527 0.410 0.666 0.816 0.521
Mult-VAE 0.645 0.792 0.517 0.394 0.537 0.420 0.674 0.822 0.529

Yelp
C-VAE 0.311 0.459 0.238 0.139 0.235 0.143 0.392 0.564 0.282
Mult-VAE 0.311 0.460 0.238 0.134 0.233 0.143 0.394 0.567 0.282

Netflix
C-VAE 0.590 0.751 0.494 0.335 0.444 0.374 0.613 0.778 0.504
Mult-VAE 0.601 0.758 0.504 0.352 0.457 0.389 0.623 0.785 0.515

From the table, it is possible to observe that C-VAE obtains state-of-the-art
results, even though generally a bit lower than Mult-VAE. We want to emphasize
one more time that C-VAE performs the ranking over all items, while Mult-VAE
only on the subset of items satisfying the condition. This shows that our method
is able to learn the relationships between items and categories, since it is able
to push the items that belong to the target category at the top of the ranking.

4.6 Analysis of the C-VAE produced rankings

Since we obtained promising results in terms of ranking accuracy, we decided to
analyze the categories distribution on the rankings produced by C-VAE. Thanks
to the conditioned loss, C-VAE learns how to filter the items in such a way to
focus its attention on the items belonging to the target category. To further
validate this argument, we plot the distribution over the rankings produced by
C-VAE for the items satisfying the conditions. The plot has been computed on
the ml-20m training users and is shown in Figure 3. It clearly shows that most of
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the items of the target category have been placed in the top positions, showing
that C-VAE learns to push the right items at the top.

1 5000 10000 15000 20000
0

5 · 104

105

ranking position

ite
m

co
un

t

Fig. 3: Number of items of the target category per ranking position.

A further check have shown that in the first 100 positions of the ranking
C-VAE is always able to put only items satisfying the input condition.

4.7 Latent space exploration

Given the promising results discussed previously, we decided to further inves-
tigate the inner representations of C-VAE. In particular, to explore the latent
space of the C-VAE model we took 2000 random users from the original ml-20m
data set (no genres have been removed). We analyzed their learned latent rep-
resentations by conditioning all of them on each genre, and also without the
condition. We performed Principal Component Analysis (PCA) [10] and consid-
ered only the first 5 principal components.

We noticed that the first principal component separates the (no genre listed)

genre from all the other genres. Thus, we decided to remove this neutral genre
and the first principal component. We also observed that the fourth principal
component (not illustrated here) stretches the clusters on a single dimension,
underling that even with the same conditioning users still have different tastes.
Principal components 2 and 5 showed really good properties giving an intuitive
understanding of the genres correlation. Figure 4 (left hand side) plots these
components.

Looking at the figure, the following observations can be done:

– popular and common genres (e.g., Action, Comedy, Drama, Romance) are
placed close to the center of the latent space, while less popular ones (e.g.,
Film-noir, Children, Animation) are placed far aside;

– very different genres are placed distant from each other, while similar genres
are placed near to each other. For example, War is distant from Children

and Animation, while it is close to Drama and Romance;
– the not conditioned representations (in black) are placed at the center of the

space. We argue that when C-VAE recommends movies without the condi-
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Fig. 4: (left) Second and fifth, (right) third and fifth components of PCA per-
formed on selected users latent representations on ml-20m.

tion, it computes the unconditioned ranking and the most popular genres
become more likely.

The 2D plot of the third and fifth principal components (right hand side of
Figure 4) offers a different perspective with respect to the previous one. We argue
that the third principal component captures the emotional theme of the genres.
For example, Mistery and Horror have similar emotional components (e.g.,
anxiety, tension, fear) and they almost completely overlap. Similar considerations
can be done for Children-Fantasy and War-Western.

5 Conclusions and future work

In this paper, we presented a novel method for conditioning the top-N item rec-
ommendation process. We developed a conditioned extension of Mult-VAE [15],
which relies on a novel loss function that is crucial for the training of our method.
We compared our method with the state-of-the-art for top-N recommendation,
i.e., Mult-VAE, and we showed that C-VAE reaches similar performance in both
the conditioned as well as the non conditioned top-N recommendation tasks. Ad-
ditionally, we explored the learned latent space of C-VAE and we observed that
is able to capture not only the relationships between items and categories, but
also the relationships between categories themselves. We also offered an intuitive
and human-like interpretation of the latent representation.

As long as we perform content-based recommendations our model is less
powerful than the filtered Mult-VAE, but in context-aware scenarios C-VAE
can capture patterns between users, items and the interactions between them,
while Mult-VAE cannot be applied since the filtering is no longer applicable.
In conclusion, it is our intent to extend our evaluation to other open research
topics, in particular context-aware and also group recommender systems [2].



Conditioned Variational Autoencoder for top-N item recommendation 13

References

1. Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems, pp. 191–
226. Springer US, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-
6 6, https://doi.org/10.1007/978-1-4899-7637-6_6

2. Boratto, L.: Group recommender systems. In: Proceedings of the 10th
ACM Conference on Recommender Systems. p. 427428. RecSys 16,
Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2959100.2959197, https://doi.org/10.1145/2959100.

2959197

3. Chae, D.K., Kang, J.S., Kim, S.W., Lee, J.T.: Cfgan: A generic collaborative fil-
tering framework based on generative adversarial networks. In: Proceedings of
the 27th ACM International Conference on Information and Knowledge Manage-
ment. p. 137146. CIKM 18, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3269206.3271743, https://doi.org/

10.1145/3269206.3271743

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)

5. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural col-
laborative filtering. In: Proceedings of the 26th International Conference
on World Wide Web. p. 173182. WWW 17, International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE (2017). https://doi.org/10.1145/3038912.3052569, https://doi.org/10.

1145/3038912.3052569

6. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.M., Mo-
hamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a con-
strained variational framework. In: ICLR (2017)

7. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: 2008 Eighth IEEE International Conference on Data Mining. pp.
263–272 (2008)

8. Iqbal, M., Aryafar, K., Anderton, T.: Style conditioned recommendations.
In: Proceedings of the 13th ACM Conference on Recommender Systems.
p. 128136. RecSys 19, Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3298689.3347007, https://doi.org/

10.1145/3298689.3347007
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