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Abstract: The extraction of phenols from almond skin using water has not been applied before. The
purpose of this study was to obtain aqueous extracts from almond skin to be added to pork patties
to prolong their shelf life. Four different varieties of almonds were studied and aqueous extracts
were obtained. The antioxidant capacity and composition of phenol compounds of the extracts
were determined. Results showed that the use of water produces extracts with phenol compounds
and antioxidant capacity, with the Antoñeta variety presenting the best performance in terms of
antioxidant behavior. The most abundant phenolic compounds identified were isorhamentin-3-O-
rutinoside, catechin and protocatechuic acid, all of them had a hydrophilic character due to the –OH
groups in their molecules. The effect of almond skin extracts (ALMOND) on the shelf life of pork
patties was compared with the effects of a control without extract (CONTROL NEG) and a control
with sodium ascorbate (CONTROL POS). Throughout storage, values of pH, weight loss, headspace
composition, color, TBARs and psychrotrophic aerobic bacteria were studied. CONTROL POS
samples showed the lowest lipid oxidation values in comparison to CONTROL NEG or ALMOND
extract samples.

Keywords: almond by-product; aqueous extract; phenolic compound; antioxidant activity; pork
patty; shelf life

1. Introduction

In the last 10 years, almond has been the most produced tree nut worldwide [1], and
this tendency is still maintained. Almonds are produced for consumption as raw nuts and
for use in the manufacturing of several products (chocolates, cookies, marzipan; prepared
as almond butter, almond milk, etc.). The growing interest in almonds is based on their
properties as a reliable source of nutrients, such as lipids, proteins, minerals, vitamins
and dietary fiber. Moreover, almond seeds contain high concentrations of phenolic acid
compounds, including benzoic and cinnamic acid derivates (vanillic, caffeic, p-coumaric
and ferulic acids), flavonols (quercetin, kaempferol and isorhamnetin), anthocyanidins
(delphinidin and cyanidin) and procyanidins (B2 and B3) [2].

Consequently, as a result of the current increase in the consumption of almonds, the
almond industry faces the issue of high by-product stocks. This industry generates large
amounts of by-products, which represent up to 80% of the unprocessed production material
and consist of hulls (40–60% of total weight), shells (20–30%) and skins (4–8%) [2]. These
by-products are discarded annually, representing a substantial cost for the companies and
contributing to filing landfills without exploiting them. One of the easiest ways to take
advantage of these residuals is by burning them to obtain energy [2]. On the other hand,
other studies report innovative and alternative practices to reduce the environmental impact
of these by-products through their use as soil amendments [3], in animal feeding [4–6],
as activated carbons [7], for metal adsorption [8] or for dye adsorption [9]. In addition,
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some recent studies have focused on determining the total phenolic content (TPC) and
antioxidant properties of the kernel and hull of almonds as another option for valorizing
these by-products [10–13].

However, almond skin remains unexploited. The composition of this by-product
includes total dietary fiber, soluble dietary fiber, lipids and proteins [14]. In addition,
various studies have reported that it contains about 60–80% of the total phenolic compounds
in the nut [2,15]. Several authors have revealed the presence of the flavonol kaempferol-3-
O-glucoside and the flavanones isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside
and isorhamnetin aglycone, as well as naringenin-7-O-glucoside, epicatechin and catechin,
as the most abundant phenolics in almond skins [16–19]. Moreover, the chemical properties
of almond skin have been demonstrated, and possible alternative applications such as
the recovery of phenols and their use as dietary/nutraceutical supplements have been
described [17,20–23].

Most of the published research focused on the recovery of almond skin components
by use of solvents such as methanol, ethanol, acetone and hexane in different conditions
of concentration, pH and time of extraction [17–19,22,23] to define the optimal conditions
for obtaining functional extracts. On the other hand, considering that the almond extracts
could be directly included in food formulations, a “green” solvent as an alternative to the
organic solvents could represent a better choice.

To our knowledge, no studies have focused on extracting phenol compounds from
almond skin using water as a solvent. Water is the most environmentally friendly, easily
available, nontoxic and inexpensive solvent [24]. In addition, it has been used as an
alternative for recovering phenolic compounds from other vegetable by-products [25–28].

On the other hand, no evidence related to the possible implications of almond skin as a
natural food preservation additive has been found. However, a considerable amount of by-
products from the vegetable and fruit industry, rich in phenol compounds with antioxidant
activity, have been utilized to inhibit lipid oxidation and microorganism growth as well as
to improve color stability, especially in meat and meat products [25,28–33].

Thus, this study aimed to obtain aqueous extracts from almond skin from four different
varieties for addition as a natural additive to meat patties to prolong their shelf life, after
demonstrating their potential as antioxidants.

2. Materials and Methods
2.1. Chemical Standards and Reagents

The reagents sodium carbonate, di-sodium hydrogen phosphate, sodium carbonate,
potassium ferricyanide, potassium persulfate, ethylenediamine tetra acetic acid (EDTA)
and gallic acid were purchased from Scharlau (Barcelona, Spain). Folin–Ciocalteu’s phenol
reagent, absolute ethanol and trichloroacetic acid (TCA) were purchased from Panreac
(Castellar del Vallès, Barcelona, Spain). 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radi-
cal, Iron (II) Chloride 4-hydrate, 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylacid
(Trolox), (L)-Dehydroascorbic acid and malondialdehyde (MDA) were purchased from
Sigma Chemical Co. (Steinheim, Germany, and St. Louis, MO, USA). Propylgallate (PG)
was purchased from Acrōs Organics (Fair Lawn, NJ, USA). 2-Thiobarbituric acid (TBA) was
purchased from Merck KGaA (Darmstadt, Germany). The following standards were used:
phenolic acids—hydroxybenzoic acid, vanillic acid, protocatechuic acid; cinnamic acids—
chlorogenic acid, 4-coumaric acid; flavanols—catechin; flavonols—kaempferol, quercetin,
kaempferol-3-O-rutinoside, kaempferol-3-O-glucoside, isorhamnetin-3-O-rutinoside, rutin
or quercetin-3-O-rutinoside; flavanones—naringenin, eriodictyol, eriodictyol-7-O-glucoside
(Merck KGaA, Darmstadt, Germany).

2.2. Sampling

Almond fruits were harvested in August–September 2020 at the orchards of the
School of Agricultural Engineering located in Badajoz (Extremadura, Spain). Four different
varieties of almond (Prunus dulcis) were studied: Antoñeta, Guara, Soleta and Belona.
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These are four new varieties that face the issue of frost susceptibility since they blossom
in February. Processing was carried out in the pilot plant of the School of Agricultural
Engineering, in accordance with the usual process in an almond factory as follows: The
almond hull was removed and the shell was separated from the kernel using a nutcracker.
Subsequently, kernels were blanched in boiling water at 95 ◦C for 3 min, and later, the skin
was manually removed. Finally, skins were oven-dried at 95–98 ◦C for 10 h until constant
weight. The dried samples were packaged in vacuum bags and kept at room temperature
until the extraction procedure.

2.3. Aqueous Extraction Procedure

Aqueous extracts from almond skin (Antoñeta (n = 5), Guara (n = 5), Soleta (n = 5)
and Belona (n = 5)) were obtained following the procedure described by Andrés et al. [34]:
Samples were extracted using distilled water (ratio water/skin, 20 mL:1 g). Extractions
were performed using a shaking bath (J.P. SELECTA, Unitronic reciprocating shaking
bath, Barcelona, Spain), at 30 ◦C for 60 min. Then, the samples were cooled in ice and
filtered using a sieve with a 45 µm pore size (Filtra, Badalona, Spain). Afterward, the
clarified liquid obtained was centrifuged at 3000× g rpm for 10 min at 4 ◦C (EPPENDORF,
Centrifuge 5810-R, Madrid, Spain), and the supernatants were collected and stored at
−80 ◦C until analysis.

2.4. Antioxidant Capacity
2.4.1. Determination of Total Phenolic Content

Total phenolic content in the extract was estimated by spectrophotometric analyses us-
ing the Folin–Ciocalteau reagent based on procedures described by Singleton and Rossi [35],
with some modifications. Briefly, 0.250 mL of sample was mixed with 0.250 mL of distilled
water and 2.5 mL of 10-fold diluted Folin–Ciocalteau’s phenol reagent. Then, 2 mL of
sodium carbonate 7.5% was added to the mixture and vortexed for 3 s. The reaction was
kept in the dark at room temperature for 1 h, after which the absorbance was measured at
760 nm (UV-Vis biomate 3, THERMO SCIENTIFIC, Fisher Scientific, S.L., Madrid, Spain).
Quantification was performed using a calibration curve prepared with gallic acid (GA),
and the results were expressed as mg of gallic acid equivalents (GAEs)/g of almond skin.

2.4.2. Reducing Power

The reducing power was determined according to the method of Broncano et al. [36],
with some modifications. The extract (250 µL) and 250 µL of distilled water were mixed
with 2.5 mL of 0.2 M phosphate buffer (pH 6.6) and 2.5 mL of 1% potassium ferricyanide
(K3Fe(CN)6). That mixture was incubated at 50 ◦C for 20 min. Then, 2.5 mL of 10%
trichloroacetic acid (w/v) was added, and samples were centrifuged at 1500× g rpm for
10 min (EPPENDORF, Centrifuge 5810-R, Madrid, Spain). Then, 2.5 mL of supernatant
was separated and 2.5 mL of distilled water and 0.5 mL of 0.1% (w/v) ferric chloride
(FeCl3) were added and mixed, and the absorbance was measured spectrophotometrically
at 700 nm. The increase in absorbance indicates an increase in reducing power, which will
be expressed in mg of Trolox equivalent antioxidant capacity (TEAC)/g of almond skin. A
standard curve prepared with a Trolox solution 0.05% (w/v) was used for calculations.

2.4.3. DPPH Radical-Scavenging Activity

The scavenging activity of the DPPH radical (2,2-diphenyl-1-picryl-hydracil) of the
aqueous extracts was determined by the method described by Broncano et al. [36], with
some modifications. A quantity of 10 µL sample and 490 µL of distilled water was added;
500 µL of absolute ethanol and 125 µL of 0.01% DPPH were added. Samples were vortexed
and then kept for one hour at room temperature without light exposure. The absorbance
was measured with a wavelength of 517 nm. The scavenging activity of samples was
calculated using a standard curve prepared with a Trolox solution of 0.01%. Results were
expressed as mg of Trolox equivalent antioxidant capacity (TEAC)/g of almond skin.
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2.4.4. ABTS+ Radical-Scavenging Activity

The ABTS radical elimination capacity was determined according to Swieca et al. [37],
with some modifications. To obtain the ABTS+ stock solution, 7 mM ABTS solution was
reacted with a 2.45 mM potassium persulfate solution, and the mixture was allowed to stand
in the dark for 16 h at room temperature. The ABTS+ working solution was prepared by
diluting the ABTS+ stock solution with distilled water to obtain an absorbance of 0.7 ± 0.05
at a wavelength of 734 nm. Then, 0.04 mL of the extract was added to 3 mL of ABTS+. The
absorbance was measured at 734 nm after 30 min of incubation in the dark. Scavenging
activity was calculated using a calibration curve prepared with a Trolox solution of 0.05%
(w/v). Results were expressed as mg of Trolox equivalent antioxidant capacity (TEAC)/g
of almond skin.

2.5. Phenol Identification and Quantification by HPLC-DAD Analysis

The extracts, previously filtered (0.45 µm), were analyzed by reversed-phase HPLC
using an HP 1100 chromatograph (Agilent, Waldbronn, Germany) coupled with a diode
array detector (Agilent, Waldbronn, Germany) and an Inertsil ODS-3 column (5.0 µm
particle size, 4.6 mm inner diameter × 250 mm) preceded by an Inertsil ODS-3 pre-column
(5.0 µm, 4.0 mm × 10 mm). A mobile phase consisting of 2.5% formic acid in water (phase
A) and 2.5% formic acid in acetonitrile (phase B) with a flow rate of 1 mL/min was used
under the following gradient: 0 min, 5% B; 13 min, 11% B; 16 min, 13% B; 20 min, 14%
B; 22 min, 15% B; 25 min, 20% B; 28 min, 25% B; 30 min, 30% B; 40 min, 5% B. Runtime
was 40 min. The injection volume was 25 µL, and analytes were detected at a wavelength
of 280 nm.

The identification of phenolic compounds was performed by comparing the retention
times with those of standards, and the quantification was carried out with calibration curves.

2.6. Effect of Aqueous extracts of Almond Skin on Shelf Life of Fresh Pork Patties
2.6.1. Pork Patties Preparation and Packaging

Ground meat was provided by a local butchery, and pork patties were made and
weighed to obtain samples of 80 ± 1 g each. To study the effect of almond skin extracts on
pork patty shelf life, three experimental batches were prepared: (1) control batch without
extract (20 mL of distilled water/kg meat) (CONTROL NEG) (n = 5); (2) positive control
batch, with sodium ascorbate added as antioxidant (20mL sodium ascorbate (20 mL:1 g)/kg
meat) (CONTROL POS) (n = 5); (3) extract batch, with extract obtained from Antoñeta
almond skin (20 mL of extract/kg meat) (ALMOND) (n = 5). Synthetic antioxidant and
extract were added to the meat in quantities of 1 g/1 kg meat. Pork patties were packaged
in polypropylene trays (130 × 160 × 50 mm3, Sarabia Plastics, Alicante) and sealed with
a polyester methyl cellulose PLPMC film (Wipack, Hamburg, Germany) with oxygen
permeability of 114 cm3/cm2/24 h. Packaging equipment was used (Smart 500, ULMA,
Sevilla, Spain) to introduce a mixture of O2 and CO2 gases of 64.7% and 28.6%, respectively.
The trays were stored at 4 ◦C. Samples were analyzed immediately and after 3, 7 and 9 days
of storage.

2.6.2. pH Analysis

The pH determination was carried out using a puncture pH-meter specific for meat
products (HANNA, model HI 99163, Instrumentación Científica y Técnica, S.L, La Rioja,
Spain). The pH was measured in fresh meat on days 0, 3, 7 and 9 of packaging and storage
in refrigeration.
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2.6.3. Weight Loss Analysis

Pork patties were weighed on a technical balance before and after days 3, 7 and 9
of refrigerated storage in order to calculate the weight loss of the meat. Weight loss was
calculated using the following formula:

Weight loss (%) = ((W0 − Wanalysis day)/W0) × 100 (1)

W0 is the weight of meat on day 0, and Wanalysis day is the weight of meat after 3, 7 or
9 days.

2.6.4. Analysis of the Composition of Gases in the Headspace

The gas composition of the headspace of trays during storage was analyzed by means
of a gas analyzer (Checkpoint, PBI Dansensor, Ametek Instrumentos, SLU, Barcelona,
Spain). Each sample was punctured on days 0, 3, 7 and 9, and the percentages were recorded.

2.6.5. Instrumental Color Evaluation

The color measurement was carried out on the surface of the fresh meat burgers after
the tray opening on days 0, 3, 7 and 9. Two measurements were made in different areas
of the meat surface. The coordinates of brightness (L*), the intensity of the red color (a*,
red + -green) and intensity of the yellow color (b*, yellow + -blue) were determined using
a colorimeter (Minolta Mod. Chroma Meter CR-400, Aquateknica, SA, Valencia, Spain).

2.6.6. Measurement of Lipid Oxidation by TBARS

The analysis was conducted according to the procedure described by Jørgensen and
Sørensen [38], with some modifications. Samples were ground, and 5 g was weighted and
transferred to a centrifuge tube where 15 mL of 7.5% trichloroacetic acid (TCA) solution,
containing 0.1% propylgallate (PG) and 0.1% ethylenediaminetetraacetic acid disodium salt
(EDTA), was added and mixed with an Ultra-Turrax mixer (IKA-Werke GmbH & Co. KG,
Staufen, Germany) for 30 s at 5000 rpm. Afterward, the whole solution was centrifuged
for 15 min at 12,000× g rpm, to separate the liquid from the solid phase. 3 milliliters was
withdrawn to a test tube and 3 mL of 0.02 M TBA reagent was added and vortexed for 3 s.
The test tube with the sample was heated at 92–96 ◦C in a warm water bath for 40 min.
Subsequently, samples were cooled down in cold water (made with a water bath with ice)
until reaching the temperature of 4 ◦C. Then, as some samples were blurred, they were
centrifuged for 10 min at 4500× g rpm in glass tubes at 6 ◦C. If bubbles appear in the test
tubes, they may be removed by ultrasonic treatment. The absorbance was measured at
wavelengths of 532 nm, the maximum absorbance of the TBA-MDA complex, and 600 nm
against the correction for nonspecific turbidity. The content of TBARS was calculated using
a standard curve prepared with a 1,1,3,3-tetraethoxypropane (TEP). Results were expressed
as mg malondialdehyde (MDA)/kg sample.

2.6.7. Psychrotrophic Microbial Analysis

Twenty-five grams of each sample was taken aseptically and homogenized with 90 mL
of peptone water in a laboratory blender (Stomacher 400 Circulator, Instrumentación
Científica y Técnica, S.L, La Rioja, Spain). Serial decimal dilutions were performed in sterile
peptone water, and 1 mL samples of appropriate dilutions were poured or spread onto a
standard Plate Count Agar (PCA) and then incubated at 7 ◦C for 10 days. Results were
expressed as log10 CFU (colony forming units)/g.

Finally, Salmonella spp. and L. monocytogenes were determined according to ISO
6579 [39] and ISO 11290-1 [40], respectively, using Xylose Lysine Deoxycholate (XLD) and
Modified Oxford (MOX) agar, at 35 ◦C for 48 h.
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2.7. Statistical Analysis

Analysis of variance was used to test any difference in antioxidant activities and
phenolic profile among skin extracts of almond varieties and to study the effect of Antoñeta
almond extract on pork patty shelf life. Tukey’s test at 95% confidence level was used
to determine different means between treatments. Correlations were calculated using
Pearson’s correlation coefficient (r). All these analyses were performed using the SPSS
v.21.0 (IBM-SPSS, Chicago, IL, USA) software.

3. Results and Discussion
3.1. Antioxidant Capacity
3.1.1. Total Phenolic Content

As reported in Table 1, values of phenol contents detected in samples were generally
lower than those reported in the literature, where organic solvents were used. The Antoñeta
variety presented the highest value (2.25 mg GAE/g), followed by Belona (2.04 mg GAE/g)
and Soleta (1.77 mg GAE/g). In Guara, a content of 1.32 mg GAE/g was found. However,
similar values were obtained by Smeriglio et al. [17] in almond skin using methanol and
ethyl acetate as solvents. On the contrary, Progmet et al. [18] reported values between
7.62 and 25.17 mg GAE/g dw (dry weight) in almond skin using methanol/water (70:30,
v/v); Valdés et al. [16] found values around 100 mg QE (quercetin)/g skin using ethanol in
Guara almonds. On the other hand, Monagas et al. [21], who carried out the extraction with
acetone, reported a content of phenols of 22.8 mg GAE/g of skin, and Barreira et al. [41]
obtained values between 163.71 and 9.22 mg GAE/g using methanol as a solvent. In view of
these results, a higher effectiveness of organic solvents as compared to water is evident for
extracting phenols, and the use of environmentally friendly, nontoxic and cheap solvents
is needed nowadays [18]. In this sense, the use of water as a solvent in combination with
other techniques such as the use of natural deep eutectic solvents (NADESs), maceration,
ultrasound-assisted extraction and homogenate-assisted extraction was very successful
for the recovery of phenolic compounds, and these methods exhibited a higher efficiency
for the extraction of these compounds in comparison to conventional solvents such as
methanol and ethanol [42].

Table 1. Total phenolic content (TPC), expressed as mg GAE/g sample, and antioxidant activity as
determined by reducing power (RP), DPPH radical-scavenging activity (DPPH) and ABTS radical-
scavenging activity (ABTS) methods, expressed as mg TEAC/g sample. Values are reported as
mean ± standard deviation (SD) of independent replicates (n = 5).

Almond Variety TPC RP DPPH ABTS

Antoñeta 2.25 ± 0.22 a 7.80 ± 1.10 a 1.81 ± 0.30 a 6.24 ± 0.87 a

Guara 1.32 ± 0.08 b 4.15 ± 0.38 b 0.82 ± 0.07 b 3.85 ± 0.08 b

Soleta 1.77 ± 0.15 ab 4.99 ± 0.51 ab 1.12 ± 0.19 ab 4.71 ± 0.47 ab

Belona 2.04 ± 0.26 ab 5.04 ± 0.68 ab 1.26 ± 0.15 ab 4.83 ± 0.38 ab

Pvarieties * * * *
a, b Values with different letters are significantly different (p < 0.05), Tukey test. Significant levels: * p < 0.05
(significant difference).

Regarding almond varieties, significant differences (p ≤ 0.05) were found (Table 1),
with Antoñeta almond skin showing the highest values of phenols and Soleta the lowest.
This cultivar shows one of the earliest ripenings in comparison to the others. In this sense,
Bolling et al. [43] have reported the effect of cultivar and the agro-climatic conditions on
the concentration of polyphenols in almond skins, both factors having a significant impact.
The same conclusions were achieved by Barreira et al. [41] in a study with ten regional and
commercial Portuguese almond cultivars.
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3.1.2. Reducing Power, DPPH and ABTS Radical-Scavenging Activities

Results of reducing power (RP) ranged between 4.15 and 7.80 mg TEAC/g sam-
ple. DPPH analysis reached values between 0.82 and 1.81 mg TEAC/g sample, and
the ABTS method registered values from 3.85 to 6.24 mg TEAC/g sample (Table 1). In
all cases, Antoñeta extracts showed the highest values of these parameters (p ≤ 0.05),
also confirming the effect of cultivar and agro-climatic conditions on the antioxidant ac-
tivity of almonds [41,43,44]. Other authors also found antioxidant activity in almond
skin [16–18,21]. Nevertheless, comparison among results from different studies is not al-
ways possible since tests and standards used to express the antioxidant activity are unalike.
Progmet et al. [18,19] described lower values of RP, DPPH and ABTS activities in almond
skin extracts compared to values in the present study. In the same sense, values of ABTS
activity were also lower in the study of Smeriglio et al. [17] than in the current experiment.
In view of the results of those authors, it seems that a higher content of phenols in almond
skins does not necessarily imply a higher antioxidant activity. In this sense, Petrón et al. [45]
suggested that the Folin–Ciocalteu assay to measure phenol content not only reflects phenol
amount, since the F–C reagent could also react with other compounds such as proteins,
carbohydrates, amino acids, unsaturated fatty acids, vitamins, amines, aldehydes and
ketones, thus possibly giving an overestimation of phenols [46,47]. On the contrary, other
authors showed higher values of RP together with higher phenol content in almond skin
cultivars [16].

In the present work, positive and statistically significant correlations between total
phenol content and antioxidant activity measured by RP, DPPH and ABTS methods were
found (r = 0.843 p < 0.01, r = 0.891 p < 0.01 and r = 0.885 p < 0.01, respectively). Other studies
have also reported a strong correlation between total phenolic compounds and antioxidant
capacity in almond skin [17,41]. Therefore, it could be suggested that total phenol content
could be a good indicator of the antioxidant activity of almond skin extracts.

3.2. Phenol Profile of Extracts—Identification and Quantification by HPLC-DAD Analysis

The antioxidant activity of the extracts should be related not only to the total phenol
content but also to the individual polyphenols present in these extracts, as was suggested
by Smeriglio et al. [17]. HPLC analysis was carried out to identify these compounds.
Compounds observed in the present study in almond skin were also identified by other au-
thors [16–18]. The most abundant phenolic compounds were isorhamentin-3-O-rutinoside,
catechin and protocatechuic acid (Table 2). It can be observed that isorhamnentin-3-O-
rutinoside is the phenolic compound present in the highest quantities in all extracts (ranging
from 75.82 to 134.08 µg/g sample). Similar results were reported in almond skins of differ-
ent cultivars in other studies [16,48,49]. These authors suggested that the presence of a high
number of –OH functional groups in the molecule of the isorhamnentin-3-O-rutinoside
led to an increased hydrophilic character and consequently a high solubility in water.
Therefore, it is expected that the use of water as a solvent in the current study promotes
a high extraction level of this compound. Isorhamnentin-3-O-rutinoside is derived from
the quercetin molecule by methylation [50]. Quercetin has a broad range of biological
activities, including antioxidant, analgesic, anti-inflammatory, cardio- and neuroprotective
and antiallergic activities [51].

Catechin content ranged from 36.32 to 47.85 µg/g sample. Pronadov et al. and
Bartolomé et al. [52,53] also found the highest quantities of this compound in almond skin
extracts using acetone/water (50/50, v/v) and methanol/HCl (1000/1, v/v) as solvents,
respectively. Catechin also presents a hydrophilic character due to the five –OH groups in
its molecule [16], which would explain its high recovery using water or other polar solvents.
However, other authors did not find this compound in almond skin or found it just at trace
levels despite the use of methanol or ethanol as extracting solvents [17–19].
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Table 2. Identification and content of phenolic compounds (µg/g of sample) in the aqueous extract
of Antoñeta, Belona, Guara and Soleta almonds by HPLC-DAD. Values are reported as mean ± SD
(n = 5).

Antoñeta Belona Guara Soleta p

Protocatechuic acid 45.01 ± 19.94 23.17 ± 7.45 20.87 ± 7.64 22.29 ± 11.51 n.s.
Hydroxybenzoic acid 11.59 ± 8.56 13.20 ± 3.98 20.89 ± 5.96 11.06 ± 9.30 n.s.

Catechin 47.85 ± 11.28 36.32 ± 0.85 46.96 ± 13.38 37.47 ± 12.33 n.s.
4-Cumaric acid n.d. n.d. 2.49 ± 0.75 n.d. *

Eriodictyol-7-O-glucoside 9.04 ± 1.06 b 5.69 ± 1.93 c 12.26 ± 0.95 a 6.93 ± 1.29 bc *
Quercetin-3-O-rutinoside 14.72 ± 5.58 a 8.72 ± 1.66 ab 10.46 ± 4.08 ab 5.35 ± 0.56 b *

Kaempferol-3-O-rutinoside 13.54 ± 1.92 ab 9.85 ± 2.99 bc 6.35 ± 0.39 c 16.72 ± 4.18 a *
Isorhamnentin-3-O-rutinoside 75.82 ± 2.39 b 77.07 ± 2.83 b 134.08 ± 58.07 a 79.55 ± 1.99 b *

Kaempferol-3-O-glucoside 19.99 ± 1.05 ab 13.58 ± 1.41 b 23.02 ± 5.40 a 17.25 ± 5.14 ab *
a, b, c Values with different letters are significantly different (p < 0.05), Tukey test. Significant levels: n.s. (not
significant); * p < 0.05 (significant difference). n.d. (no detected).

Values of protocatechuic acid, a dihydroxybenzoic acid, were also high, ranging
between 20.87 and 45.01 µg/g sample. Progmet et al. [18] also reported high content of this
compound in blanching water used when almond skin was removed, and this fact shows
the affinity of this benzoic acid for dissolution in water. However, when organic solvents
were used for the extraction, lower quantities of dihydroxybenzoic acid were found [17,53].

On the other hand, compounds such as naringenin or 4-coumaric acid were not
identified in the present study (4-coumaric only appeared in Guara variety). These com-
pounds were found in high quantities in almond skin extracts obtained using organic sol-
vents [17,19,49]. In this sense, Valdés et al. [16] described a hydrophobic character and low
solubility in water of the naringenin compound due to the low amount of –OH groups in the
molecule; this explanation justifies the absence of this compound in this study. However, the
considerable presence of compounds such as kaempferol-3-O-glucoside, kaempferol-3-O-
rutinoside, 4-hydroxybenzoic acid, quercetin-3-O-rutinoside and eriodictyol-7-O-glucoside,
which were also identified by other authors with similar quantities in extracts obtained
using organic solvents [16,17,19,52,53], in almond skin extracts in this study reveals the effec-
tiveness of water as a solvent for the general extraction of phenols in almond by-products.

Regarding the effect of the almond variety on phenol profile, Guara almond ex-
tracts showed the highest isorhamnentin-3-O-rutinoside, kaempferol-3-O-glucoside and
eriodictyol-7-O-glucoside contents compared to the rest of varieties. On the other hand,
the Antoñeta variety displayed the greatest amount of protocatechuic acid, catechin and
quercetin-3-O-rutinoside. Valdés et al. [16] suggested that genetic variation was likely
responsible for the different phenol profiles among cultivars. In view of these results, it is
difficult to relate the phenol profiles of different extracts to the antioxidant activity of the
samples. Thus, a more intense antioxidant activity in Antoñeta samples (Table 1) could not
be entirely ascribed to a specific phenol compound or several phenol compounds. Further
studies should be carried out to elucidate that topic.

3.3. Effect of Aqueous Extracts of Almond Skin on Shelf Life of Fresh Pork Patties

Based on the antioxidant results of this study (Table 1), the aqueous extract from
Antoñeta almond skin was selected to be tested as an additive in pork patties in order to
study the effect on the shelf life of this meat product. A positive control based on sodium
ascorbate was also used for comparison.

3.3.1. Headspace Composition, pH and Weight Losses

Table 3 shows the headspace composition of packs containing pork patties as well
as pH and weight loss during storage. The initial O2 content was 67.93 ± 0.34%, and
the O2 content significantly decreased (p ≤ 0.05) for all treatments during 9 days under
storage conditions. The final O2 values ranged from 58.75% to 63.50%. The depletion
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of oxygen content in the headspace of modified atmosphere containers of meat products
has been previously described by other researchers [54,55], who related the decrease in
O2 to the participation of this gas in oxidation reactions or microbial growth. The CO2
concentration, initially set at 25.60%, showed an increasing trend during storage, reaching
final values ranging between 29.10% and 30.55% (p < 0.05). Regarding the treatment effect,
in general, neither O2 nor CO2 content appeared to show significant differences among
samples (p > 0.05). In this sense, Andrés et al. [25] also found no differences in O2 and
CO2 contents of lamb patties with different by-product extracts during storage using a
modified atmosphere.

Table 3. Evolution of oxygen (%) and carbon dioxide (%) content in headspace, pH and weight loss
(%) of packs of pork patties of different treatments stored in MAP for 9 days. Values are reported as
mean ± SD (n = 5).

Day Treatment pH Weight Loss O2 CO2

0
ALMOND 5.82 ± 0.01 b 67.93 ± 0.34 1 25.60 ± 0.23 3

CONTROL NEG 6.02 ± 0.05 a 67.93 ± 0.34 1 25.60 ± 0.23 4

CONTROL POS 5.82 ± 0.02 b 67.93 ± 0.34 1 25.60 ± 0.23 2

Ptreatment * n.s. n.s.

3
ALMOND 5.89 ± 0.01 b 0.32 ± 0.04 b 3 67.37 ± 0.67 1 26.57 ± 0.26 b 2

CONTROL NEG 6.00 ± 0.02 a 0.47 ± 0.01 ab 3 67.23 ± 0.47 1,2 27.00 ± 0.12 ab 3

CONTROL POS 5.94 ± 0.01 b 0.48 ± 0.06 a 3 67.99 ± 0.33 1 27.57 ± 0.22 a 1,2

Ptreatment * * n.s. *

7
ALMOND 5.81 ± 0.00 b 0.48 ± 0.03 b 2 67.53 ± 0.37 1 28.77 ± 0.09 1

CONTROL NEG 5.95 ± 0.02 a 0.81 ± 0.10 a 2 66.17 ± 0.09 2 29.23 ± 0.32 2

CONTROL POS 5.93 ± 0.03 b 0.60 ± 0.07 a 2 64.00 ± 2.02 1 28.20 ± 0.85 1

Ptreatment * * n.s. n.s.

9
ALMOND 5.82 ± 0.01 b 0.62 ± 0.02 b 1 63.50 ± 1.30 a 2 29.10 ± 0.40 1

CONTROL NEG 6.01 ± 0.02 a 1.19 ± 0.02 a 1 63.15 ± 0.45 a 3 30.55 ± 0.15 1

CONTROL POS 5.95 ± 0.06 b 0.71 ± 0.02 b 1 58.75 ± 0.15 b 2 29.25 ± 0.65 1

Ptreatment * * * n.s.
a, b Values with different letters on the same day of storage are significantly different (p < 0.05), Tukey test. 1, 2,
3, 4 Values with different numbers for the same treatment are significantly different (p < 0.05) compared to the
different shelf life days, Tukey test. Significant levels: n.s. not significant; * p < 0.05 (significant difference).

pH values (Table 3) were consistent with those provided by other authors for raw pork
patties packed in MAP [29,56]. No significant differences were observed for this parameter
during storage (p > 0.05). This is remarkable since an increase in pH could be ascribed to
an increase in microbial counts [29], which in fact was reported in the present research
(Section 3.3.4). On the other hand, CONTROL NEG samples showed the highest pH values
throughout storage (p ≤ 0.05). It could be hypothesized that the relatively low pH values
of almond extracts (due to their composition) and sodium ascorbate could have affected
the pH of ALMOND and CONTROL POS samples, reducing the pH in comparison to that
of CONTROL NEG samples.

Values of weight loss (%) ranged from 0.32% to 1.19%, and these values are considered
very low [25]. Weight loss of meat during storage is related to the quality of products since
it affects sensory parameters such as color, tenderness, juiciness and overall appearance;
hence, large losses would cause a loss of quality in meat products [25]. Even though weight
losses were low, they significantly increased during the storage of samples from day 0 to
day 9 (p ≤ 0.05) in all treatments. CONTROL NEG samples showed the highest increase
in weight loss, reaching the highest values after 9 days (1.19%) (p ≤ 0.05). It could be
suggested that the use of almond extracts in pork patties reduces weight losses in samples,
which could be related to an improvement in water-holding capacity in samples with added
antioxidant extracts. In this sense, Yueyue et al. [57] described a decrease in water-holding
capacity associated with higher oxidation, specifically in proteins, in bighead carp fillets.
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However, other authors could not find this effect on weight loss in meat patties using
different antioxidant vegetable extracts [25,29,58].

3.3.2. Instrumental Measurement of Color

Values for color parameters and the effect of storage and extract addition on pork
patties are shown in Table 4.

Table 4. Evolution of instrumental color parameters (L*, a* and b*) and TBARS (expressed as mg
MDA/kg sample) in pork patties with different treatments stored in MAP for 9 days. Values are
reported as mean ± SD (n = 5).

Day Treatment L* a* b* TBARS

0
ALMOND 39.55 ± 2.34 3 19.80 ± 0.89 1 24.15 ± 0.67 1 0.12 ± 0.02 3

CONTROL NEG 39.52 ± 0.86 2 19.79 ± 0.48 1 22.82 ± 0.06 0.10 ± 0.02 3

CONTROL POS 40.52 ± 0.79 3 18.88 ± 0.78 1 21.21 ± 0.40 0.06 ± 0.01 2

Ptreatment n.s. n.s. n.s. n.s.

3
ALMOND 40.94 ± 1.75 3 18.25 ± 1.44 1 23.12 ± 0.92 1,2 0.18 ± 0.01 b 3

CONTROL NEG 44.94 ± 0.90 1 17.05 ± 0.69 1,2 21.66 ± 1.17 0.22 ± 0.01 a 2

CONTROL POS 43.45 ± 0.71 2 17.05 ± 0.61 2 20.72 ± 0.52 0.09 ± 0.01 c 2

Ptreatment n.s. n.s. n.s. *

7
ALMOND 45.82 ± 1.19 2 13.72 ± 0.85 2 22.99 ± 0.77 1,2 0.31 ± 0.06 ab 1,2

CONTROL NEG 46.04 ± 3.13 1 12.13 ± 2.06 2 20.80 ± 1.27 0.32 ± 0.12 a 1,2

CONTROL POS 44.41 ± 0.65 1 14.38 ± 0.40 3 21.71 ± 0.16 0.19 ± 0.11 b 1

Ptreatment n.s. n.s. n.s. *

9
ALMOND 49.00 ± 0.08 a 1 9.45 ± 0.43 3 20.33 ± 0.14 2 0.51 ± 0.08 ab 1

CONTROL NEG 44.34 ± 0.66 b 1 11.89 ± 1.39 3 20.26 ± 1.75 0.52 ± 0.07 a 1,2

CONTROL POS 43.90 ± 0.75 b 1 12.57 ± 0.57 4 21.31 ± 0.88 0.15 ± 0.02 b 1

Ptreatment * n.s. n.s. *
a, b, c Values with different letters on the same day of storage are significantly different (p < 0.05), Tukey test. 1, 2,
3, 4 Values with different numbers for the same treatment are significantly different (p < 0.05) compared to the
different shelf life days, Tukey test. Significant levels: n.s. not significant; * p < 0.05 (significant difference).

Changes in parameters L* and a* were significant throughout storage (p < 0.05),
with L* values showing an opposite trend to a* values. L* followed an increasing trend
in all treatments, from initial values in the range 39.52–40.52 to final values in the range
43.90–49.00 (p ≤ 0.05). The increase in lightness during storage has been related to oxidation
reactions and the availability of water on the surface of the patties, producing a greater
dispersion of light, which has been reported by several authors [59]. On the contrary,
other studies showed constant L* values during the storage of pork patties with added
antioxidant extracts [29,30]. Regarding the effect of the different treatments on L*, this was
only statistically significant after 9 days of storage, with patties with almond skin extracts
showing the highest values (p < 0.05).

Concerning a* values, these decreased throughout storage in all the treatments
(p ≤ 0.05), from initial values in the range 18.88–19.80 to final values in the range 9.45–12.57.
The decline in redness of meat is mainly due to the oxidation of myoglobin forming
metmyoglobin, which is brown, and it has been described by a considerable number of
researchers [25,30,59]. No significant effect of treatment was observed for a* values during
storage (p > 0.05).

On the other hand, values of b* only decreased throughout storage in ALMOND
samples (p < 0.05). Tamkuté et al. [30] also described that the loss of meat redness and
transition to brownish red color resulted in a decrease in b* values.
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As shown in Table 4, the addition of almond extract did not significantly influence
the color of samples in this study (p > 0.05), hence making the use of this extract very
promising as an alternative additive, since no variation for L*, a* or b* was produced. There
is no scientific research to compare these results with, though other authors described a
significant effect of other vegetable extracts on the color of fresh patties, modifying their
appearance [29,30,59].

3.3.3. Measurement of Lipid Oxidation by Thiobarbituric Acid Reactive Substances (TBARs)

TBAR values, expressed as mg MDA/kg meat, significantly increased from initial
values of 0.06–0.12 to final values of 0.15–0.52 (p ≤ 0.05) (Table 4), representing the progres-
sion of lipid oxidation. Previous studies have also described a significant increase in MDA
values during chilled storage of pork patties [25,29,33]. CONTROL POS samples showed
the lowest oxidation in comparison to ALMOND and CONTROL NEG samples (p ≤ 0.05)
throughout this study; therefore, sodium ascorbate exhibited a higher antioxidant effect
than almond extracts. Other authors found an opposite trend in pork patties with synthetic
antioxidants (sodium ascorbate or BHT), in comparison to extract-added samples [29,59].
These studies showed that extracts of oak wood or guarana seed possessed a higher an-
tioxidant effect compared to synthetic ones. Moreover, Andrés et al. [25] also found lower
values of TBARs in lamb patties when grape or olive pomace extracts were added, and
extracts were more effective in samples than sodium ascorbate. As a potential antioxidant
effect was demonstrated in almond extracts, it could be thought that the addition of a
greater concentration in samples could enhance the lipid oxidation inhibition. In this way,
Šojić et al. [32] demonstrated that different doses of wild thyme extracts implied differences
in the lipid oxidation of pork patties. However, the last hypothesis could fail since the
presence of MDA in almond extracts was confirmed (0.000043 mg MDA/mL) before the
extracts were used in pork patties; this fact probably reduced the oxidative stability of
meat samples.

3.3.4. Psychrotrophic Microbial Analysis

Results showed the absence of pathogens (L. monocytogenes and Salmonella spp. in 25 g
of meat) at the beginning of storage, so they were not again analyzed during the following
days of storage.

Changes in psychrotrophic aerobic bacteria during the storage of pork patties are
depicted in Figure 1. Initial counts were 2.78, 2.65 and 2.20 log10 cfu/g in ALMOND,
CONTROL POS and CONTROL NEG, respectively, all of them lower than microbiological
limits established by the International Commission for Microbial Specifications in Food
(ICMSF) in fresh meat [60]. A significant increase in counts (p ≤ 0.05) was observed for all
treatments throughout storage (p < 0.05). At the end of the storage, counts ranged from
3.35 to 3.38 log10 cfu/g.

Regarding the effect of treatments on microbial counts, this was not statistically signif-
icant during storage (p > 0.05), with the only exception of samples on day 0. A possible
explanation for this difference among samples may be attributed to the almond extraction
process that might have contributed to the psychrotrophic microorganism count. Similarly,
Pateiro et al. [59] found no effects of guarana seed extracts on total microorganisms when
they studied pork patties, and Zamuz et al. [61] found no effects of hull, bur and leaf
chestnut extracts on antimicrobial activity in beef patties. In another study, Sadeghine-
jad et al. [31] suggested that a higher concentration of pistachio green hull extract would be
required for an inhibitory effect on microorganisms in beef patties during chilled storage,
which could also be the case in the present research.
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Figure 1. Evolution of psychrotrophic aerobic bacteria counts (log10 cfu/g sample) in pork patties
with different treatments stored in MAP for 9 days. Values are reported as mean ± SD (n = 5). a, b
values with different letters on the same day of storage are significantly different (p < 0.05), Tukey test.

4. Conclusions

In view of the results, the effectiveness of water as a solvent to extract phenolic com-
pounds from almond skin can be stated, and contents of phenolic compounds close to 2 mg
GAE/g sample were obtained. The feasibility of using an economical and environmentally
friendly procedure to extract compounds from an underexploited material to be used as
natural food preservation additives, dietary and nutraceutical supplements and active
ingredients for cosmetics is very relevant, representing a competitive advantage over non-
aqueous extracts. The procedure could be implemented on an industrial scale and would
represent an alternative for the valorization of these almond residues, which is of great
interest for reducing their environmental impact, while enhancing the competitiveness and
sustainability of the process. Further research would be needed to scale up this experiment
to the almond industry.

Clearly, the effectiveness of water in the extraction of phenolic compounds could
be improved by combining it with other techniques, as was described in other studies.
Therefore, it is urgent to explore possible techniques to be combined with this green solvent
for a highly efficient extraction of phenolic compounds.

The phenolic compound content and phenolic profile, as well as the antioxidant
activity of aqueous extracts, were significantly affected by the almond variety, showing
a significant impact of the cultivars on these parameters. Extracts of Antoñeta almonds
showed the highest phenolic compound content and antioxidant activity values. This
finding could be considered in the choice of cultivars to be grown in Extremadura.

The phenolic compound content of the extracts has been positively correlated to
their antioxidant activity (RP, DPPH and ABTS) (r = 0.843 p < 0.01, r = 0.891 p < 0.01 and
r = 0.885 p < 0.01, respectively), even though it was difficult to relate this activity to the
phenol profile. It would be interesting to correlate the phenolic compound content to the
antimicrobial activity. Further research should be undertaken to elucidate these aspects of
almond extracts.
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The effectiveness of almond skin extracts as an additive in pork patties has been shown
to be limited. Only pH, weight loss and L* values were affected by the use of almond
extracts. In this sense, new experiments should be designed to optimize the use of these
extracts in meat products or other food systems, to implement the use of this almond extract
as a natural additive in the food industry.
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28. Turan, E.; Şimşek, A. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color
stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions. Meat
Sci. 2021, 178, 108522. [CrossRef]

29. Soriano, A.; Alañón, M.; Alarcón, M.; García-Ruíz, A.; Díaz-Maroto, M.; Pérez-Coello, M. Oak wood extracts as natural
antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533.
[CrossRef]
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37. Świeca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Czyż, J. The influence of protein–flavonoid interactions on protein
digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem. 2013, 141, 451–458. [CrossRef]

38. Jørgensen, S.S.; Sørensen, G. A combined sampling and delay unit for flow injection analysis. The automated determination of
2-thiobarbituric acid reactive substances in foods. Anal. Chim. Acta 1996, 322, 69–76. [CrossRef]

39. ISO 6579:1993; Microbiology—General guidance on methods for the detection of Salmonella. ISO: Geneva, Switzerland, 1993.
40. UNE-EN ISO 11290-1:1997/A1:2005; Microbiology of food and animal feeding stuffs. Horizontal method for the detection and

enumeration of Listeria monocytogenes. UNE: Génova, Italy, 2005.

http://doi.org/10.1016/j.indcrop.2015.11.089
http://doi.org/10.1007/s12161-019-01540-5
http://doi.org/10.1016/j.indcrop.2019.02.024
http://doi.org/10.1021/jf071780z
http://doi.org/10.1021/jf901391a
http://doi.org/10.3390/antiox8040095
http://www.ncbi.nlm.nih.gov/pubmed/30974789
http://doi.org/10.1016/j.jpba.2020.113518
http://www.ncbi.nlm.nih.gov/pubmed/32798920
http://doi.org/10.1016/j.fbp.2018.03.001
http://doi.org/10.1016/j.meatsci.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28259073
http://doi.org/10.1016/j.bcdf.2019.100190
http://doi.org/10.1016/j.jff.2020.103988
http://doi.org/10.1016/j.meatsci.2021.108522
http://doi.org/10.1016/j.foodres.2018.05.055
http://doi.org/10.1016/j.foodres.2019.02.025
http://doi.org/10.1016/j.lwt.2018.12.060
http://doi.org/10.1016/j.lwt.2020.109661
http://doi.org/10.1016/j.lwt.2021.111415
http://doi.org/10.3390/foods9101398
http://doi.org/10.1016/j.foodres.2011.05.011
http://doi.org/10.1016/j.foodchem.2013.03.048
http://doi.org/10.1016/0003-2670(95)00604-4


Antioxidants 2022, 11, 2175 15 of 15

41. Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activity and bioactive compounds of ten Portuguese
regional and commercial almond cultivars. Food Chem. Toxicol. 2008, 46, 2230–2235. [CrossRef]

42. Zannou, O.; Pashazadeh, H.; Ibrahim, S.A.; Koca, I.; Galanakis, C.M. Green and highly extraction of phenolic compounds
and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using
maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 2022, 15, 103752. [CrossRef]

43. Bolling, B.W.; Dolnikowski, G.; Blumberg, J.B.; Chen, C.-Y.O. Polyphenol content and antioxidant activity of California almonds
depend on cultivar and harvest year. Food Chem. 2010, 122, 819–825. [CrossRef]

44. Bottone, A.; Masullo, M.; Montoro, P.; Pizza, C.; Piacente, S. HR-LC-ESI-Orbitrap-MS based metabolite profiling of Prunus dulcis
Mill. (Italian cultivars Toritto and Avola) husks and evaluation of antioxidant activity. Phytochem. Anal. 2019, 30, 415–423.
[CrossRef] [PubMed]

45. Petrón, M.; Andrés, A.; Esteban, G.; Timón, M. Study of antioxidant activity and phenolic compounds of extracts obtained from
different craft beer by-products. J. Cereal. Sci. 2021, 98, 103162. [CrossRef]

46. Ikawa, M.; Schaper, T.D.; Dollard, C.A.; Sasner, J.J. Utilization of Folin−Ciocalteu Phenol Reagent for the Detection of Certain
Nitrogen Compounds. J. Agric. Food Chem. 2003, 51, 1811–1815. [CrossRef]

47. Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various
compound classes toward the Folin− Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [CrossRef] [PubMed]

48. Hughey, C.A.; Janusziewicz, R.; Minardi, C.S.; Phung, J.; Huffman, B.A.; Reyes, L.; Wilcox, B.E.; Prakash, A. Distribution of
almond polyphenols in blanch water and skins as a function of blanching time and temperature. Food Chem. 2012, 131, 1165–1173.
[CrossRef]

49. Bolling, B.W.; Blumberg, J.B.; Chen, C.-Y.O. The influence of roasting, pasteurisation, and storage on the polyphenol content and
antioxidant capacity of California almond skins. Food Chem. 2010, 123, 1040–1047. [CrossRef]

50. Boutsika, A.; Sarrou, E.; Cook, C.M.; Mellidou, I.; Avramidou, E.; Angeli, A.; Martens, S.; Ralli, P.; Letsiou, S.; Selini, A.; et al.
Evaluation of parsley (Petroselinum crispum) germplasm diversity from the Greek Gene Bank using morphological, molecular and
metabolic markers. Ind. Crop. Prod. 2021, 170, 113767. [CrossRef]

51. Ferraza, C.R.; Franciosi, A.; Emidio, N.B.; Rasquel-Oliveira, F.S.; Manchope, M.F.; Carvalho, T.T.; Artero, N.A.; Fattori, V.; Vicentini,
F.T.M.C.; Casagrande, R.; et al. Quercetin as an Antiinflammatory Analgesic. In A Centum of Valuable Plant Bioactives, 1st ed.;
Mushtaq, M., Anwar, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 319–347. [CrossRef]

52. Prodanov, M.; Garrido, I.; Vacas, V.; Lebrón-Aguilar, R.; Dueñas, M.; Gómez-Cordovés, C.; Bartolomé, B. Ultrafiltration as
alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal.
Chim. Acta 2008, 609, 241–251. [CrossRef]

53. Bartolomé, B.; Monagas, M.; Garrido, I.; Gómez-Cordovés, C.; Martín-Álvarez, P.J.; Lebrón-Aguilar, R.; Urpí-Sardà, M.; Llorach,
R.; Andrés-Lacueva, C. Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted
analysis of phenolic metabolites in humans. Arch. Biochem. Biophys. 2010, 501, 124–133. [CrossRef]

54. Ercolini, D.; Russo, F.; Torrieri, E.; Masi, P.; Villani, F. Changes in the spoilage-related microbiota of beef during refrigerated
storage under different packaging conditions. Appl. Environ. Microbiol. 2006, 72, 4663–4671. [CrossRef] [PubMed]

55. Koutsoumanis, K.P.; Stamatiou, A.P.; Drosinos, E.H.; Nychas, G.J.E. Control of spoilage microorganisms in minced pork by a
self-developed modified atmosphere induced by the respiratory activity of meat microflora. Food Microbiol. 2008, 25, 915–921.
[CrossRef] [PubMed]

56. Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged
pork patties. Meat Sci. 2014, 96, 526–534. [CrossRef] [PubMed]

57. Liu, Y.; Zhang, L.; Gao, S.; Bao, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Effect of protein oxidation in meat and exudates on the water
holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chem. 2021, 370, 131079. [CrossRef]

58. Cullere, M.; Tasoniero, G.; Secci, G.; Parisi, G.; Smit, P.; Hoffman, L.C.; Zotte, A.D. Effect of the incorporation of a fermented
rooibos (Aspalathus linearis) extract in the manufacturing of rabbit meat patties on their physical, chemical, and sensory quality
during refrigerated storage. LWT—Food Sci. Technol. 2019, 108, 31–38. [CrossRef]

59. Pateiro, M.; Vargas, F.C.; Chincha, A.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; Sobral,
P.J.D.A.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic
profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63.
[CrossRef]

60. ICMSF (International Commission for Microbial Specifications in Food). Microorganismos indicadores. In Microorganismos de Los
Alimentos, 2nd ed.; Acribia, S.A., Ed.; Ecología Microbiana de los Productos: Zaragoza, Spain, 2000.

61. Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut
extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid
oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [CrossRef]

http://doi.org/10.1016/j.fct.2008.02.024
http://doi.org/10.1016/j.arabjc.2022.103752
http://doi.org/10.1016/j.foodchem.2010.03.068
http://doi.org/10.1002/pca.2824
http://www.ncbi.nlm.nih.gov/pubmed/30762260
http://doi.org/10.1016/j.jcs.2021.103162
http://doi.org/10.1021/jf021099r
http://doi.org/10.1021/jf1005935
http://www.ncbi.nlm.nih.gov/pubmed/20583841
http://doi.org/10.1016/j.foodchem.2011.09.093
http://doi.org/10.1016/j.foodchem.2010.05.058
http://doi.org/10.1016/j.indcrop.2021.113767
http://doi.org/10.1016/B978-0-12-822923-1.00023-6
http://doi.org/10.1016/j.aca.2007.12.040
http://doi.org/10.1016/j.abb.2010.03.020
http://doi.org/10.1128/AEM.00468-06
http://www.ncbi.nlm.nih.gov/pubmed/16820458
http://doi.org/10.1016/j.fm.2008.05.006
http://www.ncbi.nlm.nih.gov/pubmed/18721682
http://doi.org/10.1016/j.meatsci.2013.08.007
http://www.ncbi.nlm.nih.gov/pubmed/24008060
http://doi.org/10.1016/j.foodchem.2021.131079
http://doi.org/10.1016/j.lwt.2019.03.051
http://doi.org/10.1016/j.foodres.2018.07.047
http://doi.org/10.1016/j.foodres.2018.06.053

	Introduction 
	Materials and Methods 
	Chemical Standards and Reagents 
	Sampling 
	Aqueous Extraction Procedure 
	Antioxidant Capacity 
	Determination of Total Phenolic Content 
	Reducing Power 
	DPPH Radical-Scavenging Activity 
	ABTS+ Radical-Scavenging Activity 

	Phenol Identification and Quantification by HPLC-DAD Analysis 
	Effect of Aqueous extracts of Almond Skin on Shelf Life of Fresh Pork Patties 
	Pork Patties Preparation and Packaging 
	pH Analysis 
	Weight Loss Analysis 
	Analysis of the Composition of Gases in the Headspace 
	Instrumental Color Evaluation 
	Measurement of Lipid Oxidation by TBARS 
	Psychrotrophic Microbial Analysis 

	Statistical Analysis 

	Results and Discussion 
	Antioxidant Capacity 
	Total Phenolic Content 
	Reducing Power, DPPH and ABTS Radical-Scavenging Activities 

	Phenol Profile of Extracts—Identification and Quantification by HPLC-DAD Analysis 
	Effect of Aqueous Extracts of Almond Skin on Shelf Life of Fresh Pork Patties 
	Headspace Composition, pH and Weight Losses 
	Instrumental Measurement of Color 
	Measurement of Lipid Oxidation by Thiobarbituric Acid Reactive Substances (TBARs) 
	Psychrotrophic Microbial Analysis 


	Conclusions 
	References

