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1 Introduction

An interesting open problem is to unveil the string geometry behind topological ampli-
tudes [1]. In the simplest case, the genus-g partition function Fg of the topological string [2],
obtained by an appropriate twist of the N = 2 superconformal σ-model [3, 4] describing the
type II compactification on a 6d Calabi-Yau (CY) manifold, computes the coefficients of
the higher-derivative F -term W 2g in the string effective action [5], and their dependence on
vector multiplet moduli. The (chiral) Weyl superfield W = FG(−) + θR(−)θ + . . . [6, 7], with
θ denoting the N = 2 fermionic coordinates, contains the anti-self-dual graviphoton field
strength as lowest component, along with the anti-self-dual Riemann tensor. As a result,
the Fg’s can be extracted from a physical amplitude involving two (anti-self-dual) Riemann
tensors and 2g − 2 (anti-self-dual) graviphoton field strengths. It was later observed [8, 9]
that, in an appropriate field theory limit around the conifold point and upon identifying
the Weyl superfield W with ~, the higher-derivative couplings F ≡

∑
g FgW 2g reproduce

the instanton-corrected partition function of N = 2 supersymmetric Yang-Mills theory,
regularised by the Ω-background when a single equivariant parameter ~ = ε− is turned
on [8–11].

Using heterotic/type IIA string duality, all Fg’s can be studied in the weak coupling limit
on the heterotic side at the one loop level, after the string dilaton is properly mapped to a
particular N = 2 vector multiplet associated to the base modulus of CY manifolds which are
K3 fibrations [12]. This has the advantage of clarifying the connection with the dynamics of
N = 2 supersymmetric Yang-Mills in an appropriate field theory limit, where the heterotic
couplings Fhet reproduce the perturbative part of the Nekrasov partition function.

In recent work [1], it was shown that the generating function of the topological string
amplitudes of [12] generate a geometric background, corresponding to a six-dimensional (6d)
Melvin spacetime [13], amenable to an exact (super)conformal field theory description [14–
16]. More precisely, it was shown that, in the heterotic weak coupling limit, the F-term
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series Fhet identically reproduces the heterotic one-loop vacuum energy on the 6d Melvin
background. This equivalence provides strong evidence that the Melvin spacetime is indeed
the correct string realisation of the Ω-background, in agreement with [17–20]. Indeed, the
6d (Euclidean) Melvin space is flat and can be realised as a freely-acting orbifold where
equal and opposite rotations on two planes are accompanied by a winding around a cycle
inside a two-torus T 2. The rotation angles are clearly identified with the deformation
parameters of the Ω-background. Even though this background spontaneously breaks half
of the supersymmetries, the partition function does not vanish, since the whole theory can
be viewed as two-dimensional (in the non-compact limit of T 2), with (4, 0) supersymmetry,
which does not necessarily imply an equality of bosonic and fermionic degrees of freedom.

The matching between topological amplitudes and the Nekrasov free energy has been
conjectured to hold also when the second equivariant parameter ε+ of the Ω background is
turned on [8, 9]. It is then desirable to “refine” the topological amplitudes of [5, 12], to
account for this extra deformation. Indeed, from the gauge theory perspective, the full
Ω-background involves two independent angles ε1,2 rotating the two planes of Euclidean
spacetime, properly accompanied by an SU(2)R rotation by the angle ε+ = ε1 + ε2 in
order to preserve supersymmetry. A concrete realisation of this refinement, involving new
topological amplitudes, turns out to be a highly non-trivial task. On the one hand, a
non-vanishing ε+ calls for additional vertex operator insertions associated to self-dual gauge
field strengths, which typically spoil the topological nature of the amplitudes, since string
oscillators no longer decouple and (quasi-)holomorphicity is lost. On the other hand, in the
type II description and aside from the N = 2 graviphoton, all vector multiplets are rotated
into each other by duality transformations and, a priori, there appears to be no natural
choice for the extra vector.

In the last couple of decades, several attempts have been made to pinpoint the precise
vertex operators realising the refinement. For instance, in [21] the additional insertions were
chosen to be the self-dual field strengths of the vector multiplet containing the heterotic
dilaton. Although this choice does yield topological amplitudes, it fails to correctly reproduce
the perturbative part of the Nekrasov partition function in the field theory limit. In a later
work [22], insertions of field strengths of the vector partners of the Kähler and complex
structure moduli of the internal T 2, as well as of the U(1) current of the superconformal
algebra were considered. However, the resulting amplitudes do not correspond to a Gaussian
σ-model, but involve higher-order corrections, preventing an exact evaluation at the full
string level. Subsequently, in [23] the vector field strengths in the dilaton multiplet were
replaced by those in the multiplet of the Kähler modulus of T 2, or equivalently by the
D5-brane gauge coupling on the type I side. In this case, although the amplitudes reproduce
the correct field theory limit, even at the non-perturbative level [24], their topological nature
is lost and the would-be holomorphic anomaly equation mixes them with new terms that
obstruct their interpretation as the free energy of the refined topological string. Moreover,
the decoupling of hypermultiplets is not manifest at the full string theory level.

In this work, we identify the refinement of the topological amplitudes, in the heterotic
weak coupling limit, corresponding to the full Ω-background. This is accomplished by
implementing the program initiated in [1], whereby the exponentiation of topological
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amplitudes is conjectured to correspond to solvable backgrounds in string theory. As a
starting point, we geometrically engineer the second equivariant parameter ε+ associated to
the R-symmetry twist, as a further Melvin rotation of the K3 coordinates, now accompanying
the independent rotations ε1,2 along the two planes of Euclidean spacetime. This background
is now eight-dimensional, and preserves 1/8 of the original 10d supersymmetries, provided
that the sum of angles vanishes, i.e. ε+ = ε1 + ε2. In the decompactification limit of T 2, the
resulting theory can be viewed as two-dimensional with N = (2, 0) supersymmetry, whose
representations are again no longer required to be Bose-Fermi degenerate. We explicitly
evaluate the partition function of the heterotic string on this 8d Melvin space and, in the
field theory limit, we obtain a precise matching with the perturbative part of the N = 2
gauge theory free energy of Nekrasov when both parameters are turned on. This match
provides strong evidence that our generalised Melvin space yields the correct string uplift
of the Ω-background.

Rotations in Melvin spaces can be alternatively viewed as magnetic flux backgrounds
which, in our setup, lie both in spacetime and along the internal K3 surface. This observation,
together with the geometric interpretation of the exponentiated topological amplitudes [1],
allows us to identify the new vertex operators of the self-dual fields realising the refinement.
We show that besides the anti-self-dual graviphoton field strengths, the additional vertex
operators entering the amplitudes are associated with the self-dual field strengths of the
heterotic dilaton vector multiplet, as in [21], together with an appropriate number of
self-dual magnetic fluxes along the K3 manifold, emanating from the R-symmetry twist.
Notice that, although the cohomology H1(K3) vanishes and, therefore, the components of
the 10d gauge fields along the K3 directions are absent, their fluxes are still allowed. For
instance, in the orbifold limit of K3 ∼ T 4/ZN , they are invariant under the orbifold action,
even though the associated gauge potential components are not. Although the compactness
of K3 imposes a quantisation on the flux and thus on the deformation parameter ε+,
the final result may be analytically continued to any value. The refined amplitudes can
then be exponentiated into a Gaussian σ-model, where both spacetime and internal string
coordinates are holomorphically rotated by the independent ε parameters. As expected,
the functional integral precisely reproduces the heterotic string partition function on our
Melvin background and, therefore, fully matches the perturbative free energy of Nekrasov,
in the field theory limit.

The outline of the paper is as follows. In section 2, we describe the K3 compactification
of the heterotic string on the Ω-background represented by the supersymmetric Melvin
space involving rotations on R4×K3 coupled to shifts along the T 2, in the orbifold K3 limit.
We explicitly compute the one-loop partition function and verify the complete decoupling of
hypermultiplet moduli. Expanded around a point of SU(2) gauge symmetry enhancement,
it reproduces the perturbative part of the Nekrasov partition function, in the field theory
limit. We further show how the same analysis may be extended to the case of N = 2? gauge
theories. In section 3, utilising the Melvin geometry, we deduce the deformed σ-model
leading to the generating function of the refined topological amplitudes and identify the
new vertex operators involved in our proposal. We compute the functional integral at genus
one and show that the result matches precisely the partition function on the generalised
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Melvin background of section 2. In section 4, we identify the higher-derivative F-terms
computed by the refined topological amplitudes and relate their coefficients Fg,n,m to those
entering the ε±-expansion of the Nekrasov free energy. Finally, section 5 contains our
concluding remarks.

2 N = 2 heterotic string on the Ω-background

In heterotic string theory, 4d vacua with N = 2 supersymmetry naturally emerge from the
compactification on K3× T 2 spaces. In the orbifold limit K3 = T 4/ZN , N = 2, 3, 4, 6, these
vacua admit a fully-fledged worldsheet description. Without loss of generality, we focus on
the case N = 2, whereby the complex coordinates (z3, z4) along the singular K3 undergo a
rotation by an angle θ = π. Modular invariance requires a non-trivial action on the gauge
bundle. For simplicity, we identify the gauge connection with the spin connection via the
standard embedding. Of course, other choices of the orbifold group ZN and different choices
of gauge bundle are possible, but will not affect our conclusions. The partition function for
the E8 × E8 heterotic string reads

Z = 1
2
∑

h,g=0,1

1
2

∑
a,b=0,1

(−1)a+b+ab θ
[a
b

]2
θ
[
a+h
b+g

]
θ
[
a−h
b−g

]
η6 η̄2 Γ4,4

[
h
g

]
Γ2,2 (T,U) Γ̄8

[
h
g

]
Γ̄8
[

0
0

]
.

(2.1)
Here η is the Dedekind function, θ

[α
β

]
is the Jacobi theta constant with characteristics1

(a, b), while h labels the Z2 (un)twisted sectors, and the sum over g implements the
orbifold projection. The sum over a, b takes into account the various spin structures with a
conventional choice of the GSO phases. Γ4,4 encodes the contribution of the Z3 and Z4

bosonic coordinates along the T 4/Z2. We employ a notation according to which the lower
case zi denote the complex Cartesian coordinates of K3, whereas upper case Zi are the
worldsheet scalars associated to the target space embedding, and similarly for the remaining
spacetime and T 2 directions. The (0,0) sector involves the (4,4) Narain lattice divided by
the appropriate Dedekind functions, while

Γ4,4
[

0
1

]
= 16 η2

θ
[

1
0

]2 η̄2

θ̄
[

1
0

]2 , (2.2)

is sufficient to specify also the remaining twisted sectors, by means of modular invariance.
Γ2,2 involves the Narain lattice for the spectator T 2 with complex structure U and Kähler
modulus T . Finally, the first Γ̄8 with (h, g) characteristics describes the broken E8 →
SU(2)× E7 factor, while the second Γ̄8 refers to the unbroken E8. Actually, this vacuum
can be deformed by introducing Wilson lines Y along the (2, 2) lattice, which would result
in further breaking of the gauge group. For our purposes, we turn on Wilson lines in the
unbroken E8, so that

Γ2,2 (T, U) Γ̄8
[

0
0

]
→ Γ2,10(T, U, Y ) . (2.3)

1In this paper we adopt the conventions of [25] for theta functions with characteristics. Notice that these
differ from those used by some of the authors in other works, for instance [1].
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Having specified the N = 2 vacuum on a flat Euclidean space-time, we are now
ready to implement the Ω deformation. Following [1], we describe the latter as a Melvin
background [14–16], whereby the Euclidean space-time, with complex coordinates (z1, z2),
is fibered over the T 2 via the introduction of the non-trivial monodromy

zi → e2iπεi(m̃1+U1m̃2) zi as x→ x+ 2π
√
T2
U2

(m̃1 + Um̃2) , (2.4)

where i = 1, 2, x is the complex coordinate on the T 2 and m̃1, m̃2 ∈ Z identify a generic
one-cycle m̃1 + Um̃2 in T 2.

Actually, this deformation with arbitrary ε1 and ε2 breaks supersymmetry unless it is
supplemented by an additional ε+ = ε1 + ε2 rotation along the SU(2)R R-symmetry. From
a higher-dimensional perspective, the R-symmetry group emerges from properties of the
internal CY space and, in the case at hand, it is given by an SU(2) subgroup of the SO(4)
diffeomorphisms of the T 4. Note, however, that compact CYs do not admit continuous
isometries, which reflects the fact that in (quantum) supergravity R-symmetry is either
gauged or broken to a discrete subgroup. As a result, the Melvin deformation associated to
the SU(2)R rotation can only be realised for rational values of ε+. Although we take this
into account in our analysis, the final expressions can be analytically continued to arbitrary
values. Our choice of R-symmetry embedding in SO(4) implies the additional monodromies
on the (z3, z4) coordinates

z3,4 → e−iπε+(m̃1+U1m̃2) z3,4 . (2.5)

All in all, this Melvin deformation is equivalent to a freely acting orbifold, and supersymmetry
is preserved provided the sum of the rotation angles vanishes. In our case, this translates
to the constraint ε1 + ε2 − ε+ = 0.

The combination of the Ω deformation with the Z2 orbifold action is then equivalent to
the following (freely-acting) rotations of the string fields associated to the C2 × T 4 fibre

Z1(σ1 + α, σ2 + β) = e2πiε1[(m̃1+U1m̃2)α+(n1+U1n2)β] Z1(σ1, σ2) ,

Z2(σ1 + α, σ2 + β) = e2πiε2[(m̃1+U1m̃2)α+(n1+U1n2)β] Z2(σ1, σ2) ,

Z3(σ1 + α, σ2 + β) = e−πiε+[(m̃1+U1m̃2)α+(n1+U1n2)β]+πi(gα+hβ) Z3(σ1, σ2) ,

Z4(σ1 + α, σ2 + β) = e−πiε+[(m̃1+U1m̃2)α+(n1+U1n2)β]−πi(gα+hβ) Z4(σ1, σ2) ,

(2.6)

coupled to the shift in the T 2 base

X(σ1 + α, σ2 + β) = X(σ1, σ2) + 2π
√
T2
U2

[(m̃1 + Um̃2)α+ (n1 + Un2)β] , (2.7)

where n1, n2 ∈ Z, and α, β = 0, 1 define the boundary conditions along the two one-cycles
of the worldsheet torus of complex structure τ = τ1 + iτ2.

Together with worldsheet supersymmetry, the above boundary conditions imply similar
monodromies for the worldsheet fermions, and are sufficient to determine the partition

– 5 –



J
H
E
P
0
5
(
2
0
2
2
)
1
4
3

function, which now reads2

Z = 1
2
∑

h,g=0,1

∑
m̃,n,Q

′
∣∣∣∣∣ η2

ϑ1(χ1)ϑ1(χ2)

∣∣∣∣∣
2

e
− π

2τ2
(χ1−χ̄1)2− π

2τ2
(χ2−χ̄2)2

× 1
2
∑

a,b=0,1
(−1)a+b+ab θ

[a
b

]
(χ1) θ

[a
b

]
(χ2) θ

[a+h
b+g

] (χ+
2
)
θ
[a−h
b−g

] (χ+
2
)

η4

× e
π

2τ2
(χ2

1+χ2
2+ 1

2χ
2
+−2|χ1|2−2|χ2|2−|χ+|2)

× ζ
[h
g

] (ε+
2

) ∣∣∣∣∣∣ η2

θ
[1+h

1+g
] (χ+

2
)
θ
[1−h

1−g
] (χ+

2
)
∣∣∣∣∣∣
2

e
− π

4τ2
(χ+−χ̄+)2

× [Γ2,10(T, U, Y )]m̃,n,Q Γ̄8
[h
g

]
.

(2.8)

In this expression, χi = εi (m̃1 + U1m̃2 + τ(n1 + U1n2)), where i = 1, 2,+, and the vector
Q spans the E8 charge lattice. The contribution from (m̃, n) = (0, 0) effectively sets χi → 0
and corresponds to the standard K3 compactification. In this case, supersymmetry implies
that the partition function vanishes identically for any h and g, as can be readily seen
from Jacobi’s aequatio identica satis abstrusa. This is reflected in (2.8) by the appearance
of the primed sum, which excludes the term (m̃, n) = (0, 0). As a result, there is no
dependence on the Γ4,4 moduli (which would appear only in the purely untwisted h = g = 0
sector for m̃ = n = 0) and, thus, the hypermultiplet contribution decouples. The first
line is the contribution of the worldsheet bosons in the Euclidean C2 space, the second
line is the contribution of the worldsheet fermions, the third line is the contribution of
the worldsheet bosons along T 4/Z2, and finally the fourth line is the contribution of the
gauge degrees of freedom together with the worldsheet bosons parametrising T 2. Note that,
[Γ2,10(T, U, Y )]m̃,n,Q is in the Lagrangian representation, where m̃ denotes the wrapping
numbers along the first cycle of T 2 which, upon Poisson resummation, would become the
Kaluza-Klein momenta. However, the dependence of the theta functions on m̃ makes this
Poisson resummation rather cumbersome. In the untwisted h = 0, n = 0 sector,

ζ
[0
g

]
(ε+2 ) = 16 sin2

[
π

2 (ε+(m̃1 + U1m̃2) + g)
]

sin2
[
π

2 (ε+(m̃1 + U1m̃2)− g)
]

(2.9)

counts the Z3, Z4 zero modes, while modular invariance uniquely determines the remain-
ing sectors.

The sum over spin structures can be performed using the generalised Jacobi identity

1
2
∑

a,b=0,1
(−1)a+b+ab

4∏
k=1

θ
[
a+hk
b+gk

]
(zk) = −

4∏
k=1

θ
[

1+h̃k
1+g̃k

]
(z̃k) , (2.10)

where 
h̃1
h̃2
h̃3
h̃4

 = 1
2


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1



h1
h2
h3
h4

 , (2.11)

2In the following we use the convention ϑ1(z) = θ
[ 1

1

]
(z).
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with similar expressions for g̃k and z̃k. As a result, the worldsheet fermions exactly cancel
the oscillators from the left-moving worldsheet bosons, so that only BPS states contribute
to the partition function, which now reads

Z = −1
2
∑

h,g=0,1

∑
m̃,n,Q

′ ζ
[
h
g

] ( ε+
2
)
e
− π

2τ2
(χ̄2

1+χ̄2
2+ 1

2 χ̄
2
+)

η̄4 ϑ̄1 (χ1) ϑ̄1 (χ2) θ̄
[

1+h
1+g

] (χ+
2
)
θ̄
[

1−h
1−g

] (χ+
2
)

× [Λ2,10 (T, U, Y )]m̃,n,Q Γ̄8
[
h
g

]
. (2.12)

In the above, we have introduced the Narain lattice Λ2,10 = η2 η̄10 Γ2,10, which indeed
includes contributions only from the zero modes of the (2, 10) currents.

To make contact with the perturbative part of Nekrasov’s partition function, we need to
extract the field theory limit of (2.12) for an appropriate choice of gauge group, for instance,
SU(2). This is achieved by sending α′ → 0, so that massive string modes and n-winding
states are suppressed, while keeping the distance from the SU(2) enhancement point fixed
and the dominant contribution arises from the h = 0 untwisted sector. In this limit, gravity
decouples and R-symmetry is no longer quantised. Therefore, even though in eq. (2.12)
ε+ was constrained to take rational values due to the requirement of a crystallographic
action, it can now be extended to any value. Upon summation over g = 0, 1, the partition
function becomes

Z = 1
2
∑
m̃,Q

cos (πε+(m̃1 + U1m̃2))
sin (πε1(m̃1 + U1m̃2)) sin (πε2(m̃1 + U1m̃2))

[Λ2,10(T, U, Y )]m̃,0,Q
q̄

. (2.13)

In the Nekrasov setup, T 2 factorises as the product of two circles with radii R1, R2 and we,
henceforth, set U1 = 0. With this choice

[Λ2,10(T, U, Y )]m̃,0,Q →
R1R2
τ2

q̄
1
2Q·Q e

− π
τ2

(R2
1 m̃

2
1+R2

2m̃
2
2)
e2πim̃2R2Y ·Q , (2.14)

and, upon Poisson-resummation over m̃2, one may recast Z in the form

Z = R1
2√τ2

∑
m̃1,m2,Q

cos(πε+m̃1)
sin(πε1m̃1) sin(πε2m̃1) e

−πR2
1m̃

2
1/τ2−πτ2(Y ·Q−m2/R2)2

q̄
1
2Q·Q−1 . (2.15)

The SU(2) symmetry enhancement point can be achieved, for instance, by taking Q =
±(1,−1, 06). Therefore, in the 5d limit R2 → 0, the free energy reads

F ∼ R1

∞∑
m̃1=1

−2 cos(πε+m̃1)
sin(πε1m̃1) sin(πε2m̃1)

∫ ∞
0

dt

t3/2
e−πR

2
1m̃

2
1/t−πt(Y1−Y2)2

=
∞∑
n=1

1
n

−2 cos(πnε+)
sin(πnε1) sin(πnε2) e

−2πnR1|Y1−Y2| ,

(2.16)

which exactly reproduces the Nekrasov-Okounkov result in the case of two independent
equivariant parameters ε1,2 [9].
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2.1 N = 2? heterotic string on the Ω-background

The previous construction can be readily extended to the case of N = 2? gauge theories. In
fact, N = 2? corresponds to a spontaneous breaking of N = 4, and can be geometrically en-
gineered [26–28] via the Scherk-Schwarz mechanism [29–32]. As a result, the T 4/Z2 orbifold
is now freely acting and, effectively, the only modification to the partition function (2.1) is
the replacement

Γ2,2(T, U)→ Γ2,2
[h
g

]
(T, U) , (2.17)

where, in the Hamiltonian representation, the modified Narain lattice involves the phase
(−1)m2g along with the shift n2 → n2 + h/2. The sum over spin structures may be again
performed in a similar fashion while, in the same field theory limit, the sum over g = 0, 1
now yields ∑

g=0,1
(−1)m2g sin

[
π

2 (m̃1ε+ + g)
]

sin
[
π

2 (m̃1ε+ − g)
]

= sin2
(
π

2 m̃1ε+

)
− (−1)m2 cos2

(
π

2 m̃1ε+

)
. (2.18)

As a result, eq. (2.15) takes the form

Z = R1
2√τ2

∑
m̃1,m2,Q

e−πτ2(Y ·Q−µ−2m2/R2)2 − cos(πε+m̃1) e−πτ2(Y ·Q−2m2/R2)2

sin (πε1m̃1) sin (πε2m̃1)

× e−πR2
1m̃

2
1/τ2 q̄

1
2Q·Q−1 , (2.19)

where µ = 1/R2 is the mass of the adjoint hypermultiplet. In the 5d fixed-µ limit, we match
the perturbative contribution to the free energy

F ∼
∞∑
n=1

1
n

2 e−2πnR1|Y1−Y2−µ| − 2 cos(πnε+) e−2πnR1|Y1−Y2|

sin(πnε1) sin(πnε2) (2.20)

of N = 2? SU(2) gauge theory.

3 The refined topological amplitudes

In the previous section it was shown that the propagation of the heterotic string on Melvin
spaces correctly reproduces the perturbative free energy of an N = 2 gauge theory on the
Ω-background. In the case ε+ = 0, Nekrasov and Okounkov conjectured [8, 9] that the
full (non-perturbative) free energy be captured by the genus-g partition function Fg of
the type II topological string on a suitable CY space. Actually, the full Fg computes the
exact scattering amplitude involving two gravitons and 2g − 2 graviphotons in the physical
(non-topological) type II superstring on the genus-g Riemann surface. These amplitudes
may be alternatively computed in the dual heterotic theory. Since the heterotic dilaton lies
in a vector multiplet, the amplitude receives perturbative contributions only at genus one,
but further non-perturbative corrections are now present. Therefore, in the field theory
limit and around a suitable gauge symmetry enhancement point, the heterotic genus-one
amplitude captures the perturbative contribution to the Nekrasov free energy.
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As proposed in [8, 9], it is natural to assume that a similar connection also persists
in the general ε+ 6= 0 case. According to the program initiated in [21, 23], we expect
that the new scattering amplitude should be extended by the introduction of additional
vertex operators. To correctly identify this extension, we follow [1] and utilise the geometric
realisation of the Ω-background as a Melvin space.

The prototype of a Melvin space [13, 14] deforming a single plane is characterised by
the metric

ds2 = GMNdx
MdxN = dρ2 + ρ2 (dφ+ εdy)2 + dy2 + . . . , (3.1)

where ρ and the angle φ ∈ [0, 2π) are the polar coordinates on R2, y parametrises the unit
circle S1, and the ellipses stand for additional spectator coordinates. The Kaluza-Klein
Ansatz

gµν = Gµν −
GµyGνy
Gyy

, Aµ = Gµy
Gyy

, e2σ = Gyy , (3.2)

identifies the lower dimensional geometry

ds2 = dρ2 + ρ2 F (ρ) dφ2 + . . . , A = ερ2 F (ρ) dφ , e2σ = F (ρ) , (3.3)

describing a magnetic flux-tube in a properly curved background, where F−1(ρ) = 1 + ε2ρ2.
Notice that this same space can be equivalently described by a flat metric without magnetic
flux-tubes, provided one introduces the new coordinate ϕ = φ + εy which, however, no
longer describes an angle. Indeed, as y winds n times around S1, the complex coordinate
z = ρ eiϕ is rotated by an angle 2πnε. Therefore, the magnetic flux-tube is mapped to a
rotation. This property of the Melvin space has an equivalent in the topological amplitudes
of [12]. There the scattered fields are anti-self-dual graviphotons, and the deformed σ-model
for the corresponding generating function reads

Sdef(ε) =
∫
d2σ χ

(
Z1∂̄Z2 + Z̄2∂̄Z̄1

)
, (3.4)

which clearly involves the angular momentum generators, rotating the two planes of
Euclidean spacetime, (Z1

R, Z
2
I ) and (Z2

R, Z
1
I ), by opposite angles ±2πχ, where Zi = ZiR+i ZiI .

Following the steps of [12], the complexified angle χ = ε(m̃1 + Um̃2 + τ(n1 + Un2)) is now
dressed with the winding numbers around the complex worldsheet coordinate X in T 2.
This equivalence lies at the heart of the interpretation of the topological amplitudes as the
string background given in [1].

Using these relations, along with the geometry of the Melvin space discussed in
section 2, we identify the following structure for the deformed σ-model in the presence of
two independent equivariant parameters

Sdef(ε−, ε+) =
∫
d2σ

[
χ−
(
Z1∂̄Z2 + Z̄2∂̄Z̄1

)
+χ+

(
Z̄1∂̄Z2 + Z̄2∂̄Z1 + Z̄3∂̄Z4 + Z̄4∂̄Z3

)]
.

(3.5)
As usual, the complex worldsheet coordinates Z1 and Z2 parametrise the Euclidean space-
time, while Z3 and Z4 parametrise the internal T 4/Z2, and χ± are proportional to the
angles ε±. By going to real coordinates as above, one can easily see that the two planes
(Z1

R, Z
2
I ) and (Z2

R, Z
1
I ) are now rotated by two independent angles 2πε1 and 2πε2, while the
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planes (Z3
R, Z

4
I ) and (Z4

R, Z
3
I ) are rotated by πε+ — the latter corresponding to the SU(2)R

rotation. In the special case ε+ = 0, one recovers the generating function of [12], which was
shown in [1] to reproduce the free energy of the heterotic string on the Melvin background.

The structure of (3.5) leads to a generic scattering amplitude of the type

Ag,n,m = 〈V2
grav V

2g−2
gph V

2n
gauge V2m

flux〉 , (3.6)

which, aside from the two gravitons and the 2g − 2 anti-self-dual graviphotons of [12],
now involves 2n self-dual gauge fields in the dilaton vector multiplet, together with 2m
insertions of self-dual magnetic fluxes along the T 4/Z2. Although the Z2 projection removes
all gauge fields with index along the orbifold space, internal fluxes survive the projection
and can participate in the scattering. These fluxes actually realise the R-symmetry rotation
required by supersymmetry. In eq. (3.6), V =

∫
d2z V (z, z̄; p) where the V (z, z̄; p)’s are the

vertex operators in the 0 ghost picture carrying momentum p. In what follows, we suppress
the explicit dependence on the position unless necessary. Adopting the specific kinematic
configuration of [12, 21], and stripped off of their physical polarisation tensors, the vertex
operators of eq. (3.6) read

Vgrav(p) = (∂Z2 − ip ψ1ψ2) ∂̄Z2 eipZ
1
,

Vgph(p) = (∂X − ip ψ1Ψ) ∂̄Z2 eipZ
1
,

Vgauge(p) = (∂X − ip ψ1Ψ) ∂̄Z̄2 eipZ
1
,

Vflux(P ) = (∂X − iP ψ3Ψ) ∂̄Z̄4 eiPZ
3

→ (∂X − iP ψ3Ψ) iPZ3 ∂̄Z̄4 ,

Vgrav(p̄) = (∂Z̄2 − ip̄ ψ̄1ψ̄2) ∂̄Z̄2 eip̄Z̄
1
,

Vgph(p̄) = (∂X − ip̄ ψ̄1Ψ) ∂̄Z̄2 eip̄Z̄
1
,

Vgauge(p̄) = (∂X − ip̄ ψ̄1Ψ) ∂̄Z2 eip̄Z̄
1
,

Vflux(P̄ ) = (∂X − iP̄ ψ̄3Ψ) ∂̄Z4 eiP̄ Z̄
3

→ (∂X − iP̄ ψ̄3Ψ) iP̄ Z̄3 ∂̄Z4 .

(3.7)

In these expressions, the complex ψi and Ψ are the worldsheet fermionic superpartners of Zi

and X, respectively. The complex momenta p run over the Euclidean spacetime directions,
while P refers to the Z̄3 direction of K3. Notice that, although Vflux does not propagate
physical degrees of freedom, the terms PZ3∂̄Z̄4 and P̄ Z̄3∂̄Z4 in its expansion represent a
quantised flux, invariant under the orbifold action.

The only non-vanishing contributions to the amplitude involving the two gravitons
arise from the fermionic contractions, which soak up four fermionic zero modes. Among the
remaining vertex operators, there are no contractions involving ∂X or Ψ. As a result, the
contributions of their quantum parts to the functional integral cancel that of the (b, c) and
(β, γ) (super)ghost systems, so that ∂X contributes only zero modes.

The term in the string effective action we are interested in, involves two anti-self-dual
Riemann tensors and a number of (anti) self-dual field strengths, and can be computed
from Ag,n,m by extracting the appropriate powers of momenta

Ag,n,m ⊃

(pp̄)2
g−1∏
i=1

(pp̄)i
n∏
k=1

(pp̄)k
m∏
`=1

(PP̄ )`

 Cg,n,m , (3.8)
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with our choice of kinematics. Cg,n,m now involves only bosonic correlators, and reads

Cg,n,m =
〈 g∏
i=1

∫
d2xi Z

1∂̄Z2(xi)
∫
d2yi Z̄

1∂̄Z̄2(yi)

×
n∏
k=1

∫
d2uk Z̄

1∂̄Z2(uk)
∫
d2vk Z̄

2∂̄Z1(vk)

×
m∏
`=1

∫
d2r` Z̄

3∂̄Z4(r`)
∫
d2s` Z̄

4∂̄Z3(s`)
〉
.

(3.9)

These correlators may be conveniently computed by constructing the generating function

F(λ1, λ2, λ3) =
∞∑

g,n,m=0

λ2g
1 λ2n

2 λ2m
3

(g!n!m!)2 Cg,n,m , (3.10)

thus, generalising the approach in [12]. The structure of the correlators implies that the
r.h.s. can be exponentiated into a new σ-model

F(λ1, λ2, λ3) =
〈
e−
∫
d2σ[λ1(Z1∂̄Z2+Z̄2∂̄Z̄1)+λ2(Z̄1∂̄Z2+Z̄2∂̄Z1)+λ3(Z̄3∂̄Z4+Z̄4∂̄Z3)] 〉 , (3.11)

which reduces to the deformed action (3.5), involving the complexified Melvin angles, upon
the identification λ1 → χ− and λ2,3 → χ+.

Note that, in writing (3.11), the functional integral is evaluated with respect to the
original free action for the bosonic fields, S0 = 1

π

∫
d2σ

∑4
i=1(∂Zi∂̄Z̄i + ∂Z̄i∂̄Zi). The

functional integral (3.11) is still Gaussian and is, thus, amenable to an exact evaluation.
However, some care is needed when dealing with zero modes of the compact K3 coordinates.
To evaluate (3.11), we decompose the fields into their classical part and their quantum
fluctuations, Zi = Ziclassical +Ziquantum. The quantum part is independent of the compactness
or not of the Z-coordinate, and can be computed via zeta-function regularisation techniques,
as in [12]. For the classical part, compact and non-compact coordinates yield instead
different contributions. Focusing on the compact Z3, Z4 coordinates, the deformed equations
of motion

∂∂̄Z3 − πλ3 ∂̄Z
4 = 0 , ∂∂̄Z4 − πλ3 ∂̄Z

3 = 0 , (3.12)

can be conveniently diagonalised

∂∂̄Z± ∓ πλ3 ∂̄Z
± = e±πλ3z∂∂̄

(
e∓πλ3zZ±

)
= 0 , (3.13)

in the Z± = Z3 ± Z4 basis, with z being the complex coordinate on the worldsheet torus.
This implies that the combination Ẑ± = e∓πλ3z Z± obeys the undeformed d’Alembert
equation, although with the modified boundary condition

Ẑ±(σ1 + 1, σ2) = e∓iπλ3 Ẑ±(σ1, σ2) , (3.14)

and similarly for the periodicity of σ2. It is then clear that, by Lefschetz fixed-point theorem,
the zero mode associated to these compact coordinates contributes 16 sin4(πλ3/2) to the
functional integral.
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Taking this into account, along with the fact that the λi rotation angles are actually
dressed by the zero modes of X, the full result reads

F(λ1, λ2, λ3) ∼
∫
F

d2τ

τ2

∑
h,g=0,1

∑
m̃,n,Q

′ ζ
[h
g

]
(λ3

2 ) e−
π

2τ2
(ξ̄2

1+ξ̄2
2+ 1

2 ξ̄
2
3)

η̄4 ϑ̄1(ξ1) ϑ̄1(ξ2) θ̄
[1+h

1+g
] ( ξ3

2

)
θ̄
[1−h

1−g
] ( ξ3

2

)
× [Λ2,10(T, U, Y )]m̃,n,Q Γ̄8

[h
g

]
, (3.15)

where ξi = λi(m̃1+Um̃2+τ(n1+Un2)). Hence, the generating function of our amplitude pre-
cisely matches the partition function of the heterotic string on the Melvin background (2.12),
upon the identification λ1 → ε−, λ2,3 → ε+, and ξi → χi.

The same analysis may of course be repeated in the case of an N = 2? theory, the only
modification being the free action of the K3-realising orbifold, as in section 2.1.

4 Refined couplings

In was shown in [12] that the higher-derivative F-terms∫
d4θFg(X) (W ij

µνW
µν
ĳ )g = Fg(φ)R(−)µνρσR

µνρσ
(−) (FG(−)λτF

G λτ
(−) )g−1 + . . . (4.1)

are related to topological amplitudes involving two anti-self-dual Riemann tensors R(−) and
2g − 2 anti-self-dual graviphoton field strengths FG(−). Here,

W ij
µν = FG,ij(−)µν + θ[iB

j]
(−)µν + (θiσρλθj)R(−)µνρλ + . . . (4.2)

is the Weyl superfield, whose lowest component is the anti-self-dual graviphoton, and

XI = φI + θiλIi + 1
2F

I
(−)µνεij(θ

iσµνθj) + . . . (4.3)

is an N = 2 chiral superfield, associated to the I-th vector multiplet. The couplings Fg are
precisely the coefficients of the ε-expansion of the generating function for the topological
amplitudes of [12] and, in the field theory limit, coincide with the coefficients in the expansion

F̃(ε) =
∑
g

F̃g ε2g , (4.4)

of the Nekrasov free energy F̃(ε) for the case of a single equivariant parameter ε. Clearly, ε
is associated to the anti-self-dual field strength of the graviphoton.

Following [12], one could ask which terms in the effective action are computed by the
amplitudes (3.6) considered in the present work, and how they connect to the Nekrasov
free energy F̃(ε−, ε+) in the case where both equivariant parameters ε± are turned on. The
structure of the amplitude (3.6) spells out the presence of the higher-derivative terms

Fg,n,m(φ)R2
(−) (FG(−))

2g−2 (FS(+))
2n(M(+))2m , (4.5)

where FS(+) is the self-dual field strength associated to the dilaton vector multiplet and M(+)
is a self-dual flux through the K3, while φ collectively denotes the moduli scalars of the
vector multiplets.
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The couplings Fg,n,m are computed by expanding the generating function (3.15),

F(λ1, λ2, λ3) =
∑
g,n,m

Fg,n,m λ2g
1 λ

2n
2 λ2m

3 , (4.6)

where we associate λ1 with the anti-self-dual field strength of the graviphoton, λ2 with the
self-dual field strength FS and λ3 with the internal self-dual flux M . In the field theory
limit, we obtain

F(λ1, λ2, λ3) ∼
∞∑
k=1

1
k

−2 cos(πkλ3)
sin
[
π
2k(λ2 + λ1)

]
sin
[
π
2k(λ2 − λ1)

] e−ka , (4.7)

where a = 2πR1|Y1 − Y2| is the U(1) modulus parametrising the distance from the SU(2)
enhanced symmetry point.

The connection of eq. (3.10) with the refined Nekrasov free energy

F̃(ε−, ε+) = F(ε−, ε+, ε+) , (4.8)

follows from the identification of the field strengths and fluxes with the two equivariant
parameters, λ1 = ε− and λ2 = λ3 = ε+. Matching the coefficients of the homologous powers
of ε±, we obtain the desired relation

F̃g,N =
N∑
k=0
Fg,k,N−k . (4.9)

Clearly, setting N = 0 in (4.9) yields the unrefined topological amplitude of [12], in
accordance with our interpretation of F(λ1, λ2, λ3) as an extension of F(ε).

Note that the presence of the fluxes M is instrumental in recovering the Nekrasov
result with both equivariant parameters turned on. Indeed, in the absence of the fluxes, the
corresponding amplitudes Cg,n,0, first computed in [21], fail to reproduce the signature of
vector multiplets, i.e. they miss the cosinus factor in the numerator of eq. (2.16).

The higher-derivative terms (4.5) can be seen to arise from an integral over half
the superspace ∫

d4θ
N∑
k=0
Fg,k,N−k(XI)W 2g Υk

SM
2N−2k
(+) , (4.10)

which generalises the effective action of [21, 23] by the presence of the self-dual flux. Here,
ΥS encodes the contribution of the self-dual field strengths FS(+) in the dilaton vector
multiplet. In the simplest case,3 this superfield is built as the chiral projection [21]

ΥS = 1
2 Π

(
(X̂S)†

X0

)2

=
(
FS(+)

)2 + . . . , (4.11)

3In principle, one could replace the dilaton superfield in (4.11) by a function h(X̂I , (X̂I)†), introducing
even a (non-holomorphic) dependence on additional moduli, that should be taken into account in the
definition of the coefficients of the series (4.10). Extracting the exact effective supergravity description then
requires a more detailed analysis of the string amplitudes involved.
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where X̂S = XS/X0 is the dilaton superfield, and X0 is the compensator superfield of
N = 2 conformal supergravity [6]. Here, the projection operator Π = (εijD̄iσ̄µνD̄

j)2 is
built out of spinor supercovariant derivatives of the N = 2 superconformal algebra, with
the action

ΠX = 0 , ΠX† = 96�X , (4.12)

on a generic chiral vector superfield X. Since M(+) is not dynamical but a background flux,
the couplings Ag,k of the higher-derivative terms

Ag,k(φ)R2
(−) (FG(−))

2g−2 (FS(+))
2k , (4.13)

in the effective action involving two anti-self-dual Riemann tensors, 2g − 2 anti-self-dual
graviphoton field strengths and 2k self-dual dilaton vector field strengths in the flux
background, are given by

Ag,k =
∑
N≥k
Fg,k,N−kM2N−2k

(+) . (4.14)

5 Conclusions

In this work we have identified the refinement of the topological amplitudes [5], in the
heterotic weak coupling limit, associated to the full Ω-background. By generalising the results
of [1] to include also the second equivariant parameter ε+, we obtained an exact realisation of
the Ω-background in string theory as a 10d Melvin space, where two independent rotations
in the Euclidean 4d spacetime are now accompanied by an appropriate supersymmetry-
preserving rotation inside K3, together with a shift along a one-cycle of T 2. The upshot of
our analysis is the fact that the generalised Melvin space corresponds to an exactly solvable
world-sheet σ-model. Working in the T 4/Z2 orbifold limit of K3, we computed the one-loop
heterotic vacuum amplitude and showed that, expanded around a point of enhanced SU(2)
gauge symmetry, the field theory limit of our result correctly reproduces the perturbative
part of the Nekrasov free energy with both deformation parameters turned on.

By requiring that the refined amplitudes exponentiate to the very same deformed
σ-model as the one realising our 10d Melvin geometry, we were able to explicitly identify
their vertex operators. We found that, besides the two anti-self-dual Riemann tensors and a
number of anti-self-dual graviphoton field strengths, the additional insertions correspond to
self-dual field strengths of the dilaton multiplet, as well as to self-dual magnetic fluxes along
K3. We explicitly evaluated the generating function of the refined amplitudes and confirmed
that it indeed matches the vacuum amplitude in our Melvin background, upon identifying
the anti-self-dual field strengths with ε− and the additional self-dual field strengths with
ε+. Importantly, our refined amplitudes receive contributions only from BPS states and
their generating function correctly reduces to the “unrefined” case upon setting ε+ = 0. A
further non-trivial check of our approach is the fact that hypermultiplet moduli manifestly
decouple both at the level of the generating function, as well as of the partition function
on our 10d Melvin background. As a result, our refined amplitudes, stemming from the
geometrical engineering of the full Ω-background in string theory, provide a well-defined
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extension of the topological amplitudes of [5], that we expect could serve as a starting point
for a worldsheet definition of the refined topological string.

Certain interesting open questions remain. Although the fields associated to the vertex
operators involved in the refined amplitudes were identified, the superfield description of
the corresponding higher-derivative terms in the effective action is not straightforward.
This is because the chiral projection discussed in section 4 introduces potential ambiguities,
associated to the possibility of including a general function of the dilaton superfield (and
even of all vector moduli). This may be related to the problem of extracting the form of
the holomorphic anomaly equation at the level of the partition function and the generated
amplitudes, which constitutes by itself a second open question. Another important problem
is the extension of our analysis to the non-perturbative level, which could in principle be
studied on the type II side, since the latter provides the exact answer in the one-parameter
case of vanishing ε+. Since the Melvin space corresponds to a freely-acting orbifold, it
should in principle be realised also on the dual type IIA superstring compactified on an
appropriate CY manifold.
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