
RESEARCH ARTICLE

Subcellular Origin of Mitochondrial DNA
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Objective: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions spo-
radically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed
to identify the sub-cellular origin and potential mechanisms underlying this process.
Methods: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellu-
lar immunofluorescent, histochemical, and genetic analysis.
Results: We report respiratory chain–deficient perinuclear foci containing mtDNA deletions, which show local eleva-
tions of both mitochondrial mass and mtDNA copy number. These subcellular foci of respiratory chain deficiency are
associated with a local increase in mitochondrial biogenesis and unfolded protein response signaling pathways. We
also find that the commonly reported segmental pattern of mitochondrial deficiency is consistent with the
three-dimensional organization of the human skeletal muscle mitochondrial network.
Interpretation: We propose that mtDNA deletions first exceed the biochemical threshold causing biochemical defi-
ciency in focal regions adjacent to the myonuclei, and induce mitochondrial biogenesis before spreading across the
muscle fiber. These subcellular resolution data provide new insights into the possible origin of mitochondrial respira-
tory chain deficiency in mitochondrial myopathy.
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Nuclear-encoded mutations affecting the replication
and maintenance of the mitochondrial genome

(mtDNA) are a common cause of mitochondrial
disease,1 typically causing multiple mtDNA deletions.
Due to the polyploid nature of mtDNA in individual

cells, mtDNA deletions must clonally expand to high
levels before they cause respiratory deficiency. The clini-
cal phenotype for these disorders is variable, ranging
from isolated progressive external ophthalmoplegia
(PEO) to PEO with additional symptoms including
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proximal myopathy, ataxia, sensory axonal neuropathy,
and optic atrophy. Genes associated with these pheno-
types encode proteins involved in mtDNA replication
(eg, POLG, TWNK, DNA2, MGME1), deoxyribonu-
cleoside triphosphate supply (eg, TP, RRM2B, TK2,
DGUOK), and proteins regulating mitochondrial
dynamics (OPA1, MFN2).2

Clonal expansion of mtDNA deletions is an
important cause of mitochondrial respiratory chain defi-
ciency. A critical unanswered question is where and
how, within the cell cytoplasm, new mtDNA deletions
expand from a single mutated mtDNA molecule to
become the dominant mtDNA species. Several theoreti-
cal models have been proposed to explain the clonal
expansion of mutant mtDNA.3–8 However, previous
models were based on cell populations in vitro9,10 or
invertebrate models with pre-existing mixtures of
mutant mtDNA.11,12

Skeletal muscle fibers have a highly organized cytoarchi-
tecture, where spatially restricted mitochondrial subpopula-
tions exist.13,14 Subsarcolemmal (SS) mitochondria are
located at the periphery of the muscle fiber adjacent to the
sarcolemma membrane, a subset of which are perinuclear;
whereas intermyofibrillar (IMF) mitochondria are located
between the myofibrils at the Z-band.

This raises the question of how clonal expansion
proceeds through these highly organized and spatially
restricted mitochondrial populations. To investigate this
process, we sought to localize and analyze the earliest visi-
ble biochemical defect in muscle fibers from patients.
Increasing our understanding of this phenomenon will
provide insight into the origins of mtDNA deletions and
respiratory chain deficiency, with potential diagnostic and
prognostic implications.

Materials and Methods
Muscle Biopsies
Muscle biopsies from quadriceps were obtained via needle
biopsy under local anesthesia. Ethical approval was granted by
the Newcastle and North Tyneside local research ethics com-
mittees (reference 2002/205), and prior informed consent was
obtained from each participant. Normal human ageing samples
were obtained from the Hertfordshire cohort.15 Control tissue
(n = 20) was acquired with prior informed consent from people
undergoing anterior cruciate ligament surgery, following
approval by the Newcastle and North Tyneside local research
ethics committees (reference 12/NE/0395). All experiments
were carried out in accordance with the approved guidelines.
Muscle samples were frozen in liquid N2-cooled isopentane,
mounted in OCT, and stored at −80 �C until use, or fixed for
electron microscopy.

All biopsies from mtDNA maintenance disorders (n = 7)
had confirmed genetic diagnoses. Sequential cytochrome c

oxidase (COX)/succinate dehydrogenase (SDH) histochemistry
was used to screen biopsy specimens, and those with a suitable
muscle histology and a significant degree (>2–5%) of COX defi-
ciency (COX-SDH+) were included (Supplementary Table).
Patient selection for each experiment was based on tissue avail-
ability due to the large number of sections required for each
experiment. Genetic and immunofluorescent analyses were com-
pleted on separate sections to enable high resolution quantitative
fluorescent imaging in parallel with high contrast accurate laser
captue microdissection.

COX/SDH Histochemistry
To quantify the prevalence of COX-deficient foci, cryosectioned
muscle (10 μm) from transversely orientated muscle blocks, from
mtDNA maintenance disorder patients (n = 6, Patients 1–4,
6, and 7), was subjected to sequential COX/SDH histochemis-
try16 and independently analyzed by 2 investigators. Strict cri-
teria were applied for foci quantification. Only circumscribed
foci deficient in COX activity but with SDH activity (ie, COX-
SDH+) that were localized in an otherwise COX-positive fiber
were counted as a COX-deficient niche.

COX/SDH and Nuclear Staining
Serial 8 μm sections were subject to COX/SDH histochemistry
before counterstaining with 4,6-diamidino-2-phenylindole
(DAPI; D9542; Sigma, St Louis, MO; 2 μg/ml) for 5 minutes
and mounting in ProLong Gold (P10144; Thermo Fisher Scien-
tific, Waltham, MA). Images were captured in both brightfield
and DAPI channels individually and merged. At least 14 serial
sections were reconstructed to provide 3-dimensional informa-
tion about the length of COX-deficient foci and their proximity
to myonuclei.

mtDNA Deletion and Copy Number Analysis
Serial muscle sections (15 μm) treated for COX/SDH histo-
chemistry were cryosectioned onto PEN membrane slides
(#000635-17; Zeiss, Oberkochen, Germany). Patient selection
for genetic analysis was based on tissue availability. Muscle fibers
with regions of focal cross-sectional COX deficiency were identi-
fied, and the COX-deficient area was laser microdissected and
captured into separate 0.2ml tubes using a PALM system (Zeiss).
Two identically sized subsarcolemmal regions from the remain-
der of the muscle fiber were also captured, in addition to whole
COX-positive and COX-deficient muscle fibers as controls. Mus-
cle fibers were lysed in 15 μl single-cell lysis buffer (0.5M Tris-
HCl, 0.5% Tween 20, 1% proteinase K, pH 8.5) and incubated
at 55 �C for 3 hours followed by 10 minutes at 95 �C. The
lysate was then diluted 1:5 and analyzed in triplicate using a D-
Loop/MT-ND1/MT-ND4 triplex real-time polymerase chain
reaction (PCR) deletion assay.17 A serial dilution of the p7D1
plasmid was used to generate a standard curve from each plate.
For a plate of samples to be included in analyses, an amplifica-
tion efficiency of 100 to 95% was required for the standard
curve. Major arc deletions were quantified by computing the
ratio of MT-ND1/MT-ND4. Negative values arising from this
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assay, which may result from deletion of MT-ND1, are shown
as zero.

Due to the low mtDNA content of the foci and of the
similarly sized COX-positive regions of the muscle fiber, we fur-
ther implemented a stringent quality control threshold requiring
all foci and corresponding regions of the same fiber to be at least
three quantification cycles values below the no-template control
for MT-ND1. The D-Loop region can become triple-stranded
during transcription/replication,18 so analysis of D-Loop/MT-
ND1 ratios in cells that did not have deletions encompassing
MT-ND1 were used to exclude this possibility. As a control, 2 to
4 fully COX-deficient and COX-positive control fibers were also
run in triplicate on every plate.

By these criteria, �68% of cells were eliminated due to
inadequate amplification. Overall, 27 foci and their matched
COX-positive regions from 5 patients with POLG (n = 2),
RRM2B (n = 2), and TWNK (n = 1) mutations (Patients 2–5
and 7; see Supplementary Table) showed robust amplification
and were used for subsequent analyses.

Immunofluorescence
Serial cryosections (8 μm) were subject to quantitative immunofluo-
rescence staining.19 Antibodies used include anti–mitochondrial
cytochrome oxidase I (MTCOI; ab14705; Abcam, Cambridge,
MA), anti–Succinate Dehydrogenase complex subunit A (SDHA;
Abcam ab14715), anti-laminin (Sigma L9393), anti-mouse IgG2a-
488 (S-21131), anti-rabbit 405 (A-31556), biotinylated anti-mouse
IgG1 (S32357), and streptavidin-647 (S21374; all from Life Tech-
nologies, Carlsbad, CA). Following the secondary antibody incuba-
tion, sections were washed and counterstained with DAPI (2 μg/ml)
for 5 minutes and mounted in ProLong Gold. Sections were imaged
on a Zeiss Axio imager M1 microscope equipped with a motorized
stage using multidimensional acquisition tiling in ZEN (Zeiss, blue
edition).

SDHA expression was correlated with porin (VDAC1), a
known indicator of mitochondrial mass,19 with significant con-
cordant SDHA/porin levels indicating that SDHA is a viable
mitochondrial mass marker.

Image Analysis
The average fluorescent intensity corresponding to the abun-
dance of an investigated protein in the muscle fibers was quanti-
fied using Image J (version 1.50i) or IMARIS v.7.7.2
(Bitplane).19,20 The “plot profile” functions in Image J and ZEN
(blue edition) were used to compare changes in MTCOI and
SDHA abundance across muscle fibers, subtracting the back-
ground fluorescence for each channel.

Immunofluorescent Assessment of Signaling
Proteins
Antibodies against PGC1α (Ab3243; Millipore, Billerica, MA),
transcription factor A, mitochondrial (TFAM; Abcam Ab119684),
NEF2L2 (Abcam ab31163), ClpP (Sigma HPA010649), Htra2
(AF1458; R&D Systems, Minneapolis, MN), mtHsp70 (Thermo
Fisher Scientific), Hsp60 (611562; BD Biosciences, Franklin
Lakes, NJ), GPS2,21 p62 (Progen GP62-C), Beclin1 (Millipore

Ab15417), Pink1 (Abcam Ab23707), LC3-II (4108; Cell Signaling
Technology, Danvers, MA), and parkin (sc-32282; Santa Cruz
Biotechnology, Santa Cruz, CA) to assess retrograte signaling fac-
tors and mitophagy markers were used in combination with
MTCOI, SDHA, and DAPI to assess changes in relation with
COX deficiency in single muscle sections. Antibodies that did not
produce a sufficient signal-to-noise ratio, or were highly correlated
with mitochondrial mass, were removed from further analysis.
TFAM, Hsp60, GPS2, and Beclin1 were selected for immunofluo-
rescence on serial sections (n = 4) of patients with multiple
mtDNA deletions (n = 3, Patients 4, 5, and 7; see Supplementary
Table). IMARIS v.7.7.2 (Bitplane) was used to assess average fluo-
rescent intensity of signaling markers relative to MTCOI/SDHA
ratio in whole COX-positive and COX-deficient fibers. Average
intensity of the foci was compared to a COX-positive region of
the fiber.

Fiber Perimeter Profiling to Identify Perinuclear
Domains and Regions of Mitochondrial
Deficiency
Serial skeletal muscle sections were labeled for MTCOI, SDHA,
and DAPI (as described above) from 3 patients with multiple
mtDNA deletions (Patients 3, 5, and 7; see Supplementary
Table). A total of 74 fibers containing foci of mitochondrial defi-
ciency were identified by visual inspection and used for fiber
section perimeter profiling. DAPI, SDHA, and MTCOI fluores-
cence intensity profiles were constructed. Differences in DAPI
intensities between sections were minimized by subtracting the
background intensity (modal, unsaturated DAPI intensity) of
each section. Perinuclear perimeter domains were identified as
areas with a corrected DAPI intensity greater than the 0.85
quantile of corrected intensity observed in all 74 fibers across
serial sections in 3 patients. All points along intensity profiles
were manually annotated as COX-positive or COX-deficient by
visual inspection of perimeter profiles as well as linear line scans
through the center of the muscle fiber to identify perimeter seg-
ments with mitochondrial deficiency.

Predicted and Observed Levels of Focus–
Perinuclear Overlap
For each section, we measured the fraction of the perimeter
annotated as perinuclear (P), the fraction of the perimeter anno-
tated as focal deficiency (F), and the fraction of the perimeter
annotated as focus-perinuclear overlap (O). We also calculated
the fraction of the perimeter that we would expect to be anno-
tated as focus–perinucleus overlap if the locations of the perinuc-
lear region and nuclei were unrelated and random (overlap
predicted [Opred]). According to the specific multiplication rule
for the probability of 2 independent events co-occurring, we
would expect that:

Opred = P× F

To test whether differences between Opred and observed
Oobs were significant, a 1-tailed t test to examine whether Opred

− Oobs was significantly different from zero was performed. Code
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and data underlying profiling and overlap analysis can be found
at https://github.com/lwlss/MitoDysfunctionFoci.

Serial Block Face Scanning Electron Microscopy
As described previously, serial block face scanning electron
microscopy (SBF-SEM) sample preparation and imaging were
performed22 to examine the three-dimensional (3D) organiza-
tion of intermyofibrillar mitochondria. Four muscle fibers from
12 muscle biopsies were imaged and 3D models assessed to
determine mitochondrial distribution and anisotropy.

Statistics
A combination of 2-tailed unpaired (whole muscle fibers) and
paired (matched subcellular regions) t tests was used. Statistical
significance was set at 0.05. Data for focal regions of deficiency
are presented as individual COX-deficient fiber regions with
paired COX-positive regions. All analyses were performed in
Prism v7.0 (GraphPad Software, San Diego, CA).

Results
Foci of Respiratory Chain Deficiency Are a
Pathological Hallmark of mtDNA Deletions
We investigated skeletal muscle biopsies from patients
with multiple mtDNA deletions due to nuclear gene
mutations affecting mtDNA maintenance (n = 7; see

Supplementary Table, Fig 1). The commonly reported
pattern of respiratory chain deficiency in skeletal mus-
cle consists of a mosaic pattern of COX-positive and
COX-deficient muscle fibers, with the affected muscle
fibers observed in the longitudinal orientation harbor-
ing confined segments of respiratory chain deficiency
(see Fig 1A).3,23–26

As expected, we observed COX-deficient muscle fibers
in both the transverse and longitudinal orientations (see Fig
1A, B). In addition, we identified focal regions of respiratory
chain deficiency within individual muscle fibers (see Fig 1C,
D). These foci, which had not been previously reported, were
observed in patients with mitochondrial disease and normal
muscle biopsies of older individuals, but not in age-matched
control biopsies (n = 20). COX-deficient foci were also
observed in muscle biopsies of older individuals (i.e., normal
aging).

To estimate the prevalence of COX-deficient foci
in specific mtDNA maintenance disorders, we surveyed
cryosections reacted for sequential COX/SDH histo-
chemistry from patients with TWNK, RRM2B, and
POLG mutations (n = 6, Patients 1–4, 6, and 7). A total
of 11 COX-deficient foci and 929 fully COX-deficient
muscle fibers were identified (see Fig 1E). Skeletal

FIGURE 1: Subcellular localization of respiratory chain dysfunction in human skeletal muscle. (A) Three skeletal muscle fibers in
longitudinal orientation from a cryosection subjected to cytochrome c oxidase (COX, brown) and succinate dehydrogenase (SDH,
blue) histochemistry to detect COX and SDH activity. The central fiber has segmental COX deficiency, indicative of segmental
distribution of mtDNA defects. (B) Skeletal muscle fiber in cross-sectional (ie, transverse) orientation that is fully deficient for
COX activity and positive for SDH activity. (C) A focal region of COX deficiency in cross-sectional orientation. (D) In longitudinal
orientation, focal region of COX deficiency in a case of multiple mtDNA deletions. Note the restricted nature of COX deficiency
consistent with a perinuclear region (dotted line) and the subsarcolemmal increase in SDH activity in an adjacent fully COX-
deficient fiber (arrowheads). (E) Summary of quantitative analysis of foci frequency in mtDNA maintenance disorders (n = 6).
Count data for total, COX-deficient SDH-positive fibers (COX-deficient fiber) and COX-deficient foci are presented for each case
followed by a percentage of fibers classified as COX-deficient fiber, COX-deficient foci, or other (COX-positive or intermediate
COX deficiency). Scale bars = 25 μm.
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muscle biopsies contained on average 11.9%
(range = 0.8–30.5%) fully COX-deficient muscle fibers,
compared to 0.15% (range = 0–0.33%) with restricted
COX-deficient foci (see Fig 1E). The total prevalence of
COX-deficient foci relative to total muscle fibers and
fully COX-deficient muscle fibers was estimated at
1:571 and 1:58, respectively.

Focal Regions of Deficiency Are Restricted to
the Subsarcolemmal Space
When surveying COX/SDH histochemistry, we consis-
tently found that focal regions of deficiency are localized
in the subsarcolemmal space (see Fig 1B–D). This finding
was corroborated by quantitative immunofluorescence
(Fig 2).19 We generated MTCOI/SDHA intensity profiles
to map the distribution of COX deficiency with subcellu-
lar resolution. The spectrum of MTCOI deficiency ranged
from confined perinuclear foci to segmental and
completely MTCOI-deficient muscle fibers (Fig 2A–D).
Furthermore, comparing SDHA fluorescent intensity in

COX-deficient foci and COX-positive regions of the same
fibers indicated that SDHA protein abundance was consis-
tently higher by an average of 3.3-fold in MTCOI-
deficient foci (see Fig 2E), indicating a local increase of
mitochondrial mass specifically in areas of respiratory
chain deficiency.

We verified that this increase in SDHA protein was
specific to COX-deficient niches and not a result of
increased mitochondrial content near the nucleus (ie, peri-
nuclear vs subsarcolemmal) by analysis of normal muscle
fibers from patients and controls (data not shown). The
use of SDHA as a mitochondrial mass marker was also
validated against VDAC1 (see Fig 2F), showing that both
markers yield equivalent results.

Respiratory-Deficient Foci Contain mtDNA
Deletions
We next confirmed that respiratory chain–deficient foci
contain higher levels of mtDNA deletions than the rest of
the muscle fiber, using laser capture microdissection of

FIGURE 2: Foci distribution of cytochrome c oxidase (COX) deficiency and mitochondrial content by immunofluorescence in human
muscle fibers. (A) Mitochondrial cytochrome c oxidase subunit I (MTCOI; green), succinate dehydrogenase (SDH) complex subunit
A (SDHA) (red), and nuclei (blue) immunofluorescent labeling and quantification of a normal COX-positive skeletal muscle fiber
(Patient 7, POLG; left). Corresponding fluorescence intensity profile along the diameter denoted by the arrow (middle), and COX:
SDH ratio (right). (B) Muscle fiber (Patient 7, POLG) with a niche of focal COX deficiency denoted by the red area denoted in the
fluorescence intensity plots. (C) Muscle fiber (Patient 7, POLG) with segmental COX deficiency spread through approximately 70%
of the cell’s longest diameter. (D) Muscle fiber (Patient 7, POLG) with complete COX deficiency. All examples in A–D are from
Patient 7 (POLG). (E) Quantification of mitochondrial content based on SDHA fluorescence intensity in COX-deficient foci and in
matched COX-positive subsarcolemmal regions within individual muscle fibers. Data are combined from Patients 3 (RRM2B),
5 (POLG), and 7 (POLG). Data are plotted for each cell relative to COX-positive areas (n = 74, 2-tailed paired t test, p < 0.0001).
(F) Correlation between SDHA and VDAC1 (porin) are plotted against each other for a sample of muscle fibers, the regression line
has an r2 = 0.644 and p < 0.0001. Scale bars = 25 μm.
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small subcellular areas followed by triplex real-time PCR
(Fig 3). This analysis was performed in patients with
mutations in mtDNA maintenance genes POLG or
RRM2B (Patients 2–5 and 7). COX-deficient foci and
2 identically sized COX-positive areas of the same muscle
fiber were microdissected (see Fig 3A).

The majority of COX-deficient foci had deletions
encompassing MT-ND4, and some deletions encompass-
ing MT-ND1, whereas COX-positive areas of the same
muscle fiber generally only contained normal mtDNA, or
lower levels of the deletion (see Fig 3B). On average, sig-
nificantly higher mtDNA deletion levels were detected in
foci compared to COX-positive regions. Less than 10% of
fibers had deletions encompassing MT-ND1 (not shown),
consistent with previous findings.27 The same deletion
pattern was observed in whole fibers, consistent with foci
and fully deficient fibers being etiologically related.

mtDNA Copy Number and Mitochondrial Mass Is
Increased in COX-Deficient Foci
If increased mitochondrial biogenesis contributed to the accu-
mulation of deleted mtDNA molecules, we reasoned that
mtDNA copy number should similarly be elevated in the
respiratory chain–deficient foci compared to COX-positive
regions of the same cell. Therefore, we measured absolute
mtDNA copy number density in COX-deficient foci relative
to corresponding COX-positive regions of the same fibers,
using an optimized standard curve method.17 Because MT-
ND4 and occasionally MT-ND1 can both be deleted in
human skeletal muscle,27 we used D-Loop and MT-ND1
amplicons as metrics of copy number.

Consistent with the elevation in mitochondrial pro-
tein content (see Fig 2E), mtDNA copy number was
increased in the majority of COX-deficient foci (see
Fig 3C–D). Isolated COX-deficient foci relative to COX-

FIGURE 3: Cytochrome c oxidase (COX)-deficient foci contain high levels of mtDNA deletions and show compensatory increase in
mtDNA copy number. Subcellular and single cell mtDNA analysis was performed on patients with mutations in POLG (n = 2),
RRM2B (n = 2), and TWNK (n = 1; Patients 2–5 and 7). (A) Single muscle fiber before and after laser microdissection of 1 COX-
deficient and 2 COX-positive (COX+) control subcellular regions. (B) ND4/ND1 ratio as an indicator of mtDNA deletion level in
COX-deficient foci with matched COX-positive subcellular regions from single fibers (left) and mean deletion level ± standard error
of the mean (SEM; right). (C) Total D-Loop mtDNA copy number in COX-deficient foci and matched COX-positive subcellular
regions from single fibers. mtDNA copy numbers are shown relative to COX-positive regions of the same muscle fiber (left) and
average copy number by group (right). Mean copy number ± SEM is shown (right). (D) The same as C but with ND1 as the copy
number metric. (E) mtDNA ND4/ND1 ratio (left), total D-Loop (center), and total ND1 (right) mtDNA copy number in COX-deficient and
COX-positive whole fibers isolated by laser capture microdissection. A value of 0 indicates no ND4 deletion, whereas a value of
100 indicates all mtDNA molecules contain a ND4 deletion (left). Each datapoint corresponds to a single fiber. Bars indicate mean
values. Matched subcellular regions in B–D are connected by a matched-colored line. n = 27 fibers, 5 patients, 2-tailed paired t tests.
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positive regions showed a mean 2.2-fold higher
(range = 1.1–9.6, p < 0.001) D-Loop copy number. This
was confirmed by MT-ND1 copy number, where the
within-fiber difference between COX-deficient and COX-
positive regions was 2.5-fold (range = 1.1–11.7,
p < 0.001). In comparison, cells with complete COX defi-
ciency showed on average a 1.9-fold (range = 1.0–6.5,
p = 0.03) higher D-Loop copy number and 1.9-fold
(range = 1.0–6.2, p = 0.03) higherMT-ND1 copy number
compared to cells with normal COX activity (see Fig 3E).
Thus, COX-deficient foci are associated with local upregu-
lation of mtDNA copy number and mass.

Accumulation of COX-Deficient Mitochondrial
Mass Occurs Near Myonuclei
Mitochondrial biogenesis is dependent on several nuclear
encoded proteins; therefore, we hypothesized that the locali-
zation of COX-deficient mutant niches in the subsarcolem-
mal space may be due to the presence of myonuclei. Thus,
serial sections were subjected to COX/SDH histochemistry
counterstained with DAPI to determine the focal distribu-
tion and topology of COX-deficient foci in relation to the
myonuclei along the length of muscle fibers (Fig 4A).
Immunofluorescent labeling of serial sections for MTCOI/
SDHA/DAPI objectively confirmed the colocalization of
COX-deficient niches with myonuclei (see Fig 4B, C).

To identify COX-deficient foci that did not coloca-
lize with nuclei, we profiled perinuclear regions and
MTCOI fluorescent intensity along the perimeters of fiber
sections containing a region of COX deficiency. Perinuc-
lear regions were identified automatically by thresholding
DAPI signal along the perimeter. Focal regions of COX
deficiency were manually classified by visual inspection of
SDHA and MTCOI profiles along the perimeter (see Fig
4D, E) and by line scan quantification as in Figure 2.
Across 74 fiber sections containing COX-deficient foci,
26.2% of the perimeter was classified as perinuclear and
20.0% was classified as COX-deficient foci. Given the rel-
ative proportions of perinuclear space and focal deficiency,
if the location of nuclei and COX-deficient foci were
unrelated (ie, random), we would expect only 5.23% of
the perimeter to be classified as overlap. In contrast, 9.5%
was classified as COX-deficient foci and perinuclear over-
lap. To determine the significance of this difference, in
each muscle fiber the observed overlap was measured and
the predicted foci–nuclei overlap was calculated.

The differences between predicted and observed
overlap fractions were found to be significantly lower than
zero (p = 4.26e−15; see Fig 4F, G). A total of 75 distinct
foci were identified in 74 cells, all of which at least par-
tially overlapped with a perinuclear region, consistent with

the required presence of a nucleus for clonal expansion of
mutant mitochondria.

Localized Activation of Mitonuclear Signaling
Pathways with mtDNA Deletions
To assess whether signaling may be contributing to the
increased mitochondrial content and mtDNA deletions in
the perinuclear niche, we probed markers of (1) mitochon-
drial biogenesis, (2) mitochondrial unfolded protein
response (UPRmt), and (3) mitophagy (Fig 5). We ana-
lyzed the mitochondrial biogenesis marker TFAM, UPRmt

marker Hsp60, retrograde signaling factor GPS2,28 and
mitophagy marker Beclin1. COX-deficient foci, represent-
ing early stage respiratory chain deficiency, were compared
to equivalent size COX-positive regions of the same fibers.
Fully COX-deficient fibers, representing the late stage
respiratory chain deficiency, were compared to COX-
positive fibers.

Relative to COX-positive regions of individual mus-
cle fibers, Hsp60 and GPS2 were both higher in focal
regions of deficiency for 89.6% and 86.2% of foci, respec-
tively (see Fig 5B). Both the UPRmt and GPS2 retrograde
signaling pathways have been shown to be upstream of
mitochondrial biogenesis.12,28 Accordingly, mitochondrial
TFAM was also increased for 70% of foci relative to
COX-positive regions. In fully COX-deficient fibers,
Hsp60 and GPS2 were also significantly increased relative
to COX-positive fibers (see Fig 5C). TFAM was signifi-
cantly elevated in fully COX-deficient fibers, consistent
with the overall increase in mtDNA copy number in late
stage COX-deficient fibers.

To verify that these results were not driven by the
proximity of foci to nuclei in the SS area, we also analyzed
COX-positive perinuclear regions from COX-positive
fibers of patients and controls, which were compared to
subsarcolemmal but nonperinuclear regions. We found
that Hsp60 and TFAM levels were similar; however,
GPS2 was elevated in perinuclear regions, consistent with
its role as nuclear transcription factor.28 In patient muscle,
compared to perinuclear COX-positive areas, Hsp60
(2.2-fold), GPS2 (1.2-fold), and TFAM (1.5-fold) levels
were all higher in COX-deficient niches, confirming the
specificity of this finding.

A reduction in quality control processes to remove
mutant mitochondria via autophagy could also have contrib-
uted to the accumulation of mutant mitochondria in specific
subcellular compartments. Immunolabeling of the autophagic
regulator Beclin129 showed that levels were unchanged in
COX-deficient foci, although significantly higher in fully
COX-deficient fibers (see Fig 5B, C), with no difference
between the SS and IMF region.
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FIGURE 4: Foci of cytochrome c oxidase (COX)-deficient mitochondria are located in the subsarcolemmal region and colocalize with
myonuclei. (A–C) Serial cryosections from Patient 7 with recessive POLG mutations (POLG), (A) reacted for sequential COX/succinate
dehydrogenase (SDH) histochemistry and 4,6-diamidino-2-phenylindole (DAPI) and (B) labeled by triple immunofluorescence for
mitochondrial cytochrome c oxidase submit 1(MTCOI), SDH complex subunit A (SDHA), and DAPI. Note the focal area of COX
deficiency in the outlined cell restricted to the middle section (red arrow), indicating that the focus is <8 μm in length. (C) Magnified
area from B showing selective absence of MTCOI staining in the perinuclear niche area outlined. (D) An example muscle fiber from
Patient 3 with recessive RRM2B mutations (RRM2B), analyzed using a perimeter line scan (yellow). Nuclei are indicated with numbers
and the focal area of COX deficiency with a red arrow. The line scan goes from 0 to 160 μm. (E) Arbitrary fluorescence intensity for DAPI
and SDHAminus MTCOI along the perimeter line scan from D. Shaded areas represent perinuclear areas (blue) and COX-deficient focal
area (red) used to compute the degree of overlap. Note that the COX-deficient area overlaps with nucleus 3. The same analysis was
applied to all foci. (F) Scatterplot comparing predicted and observed overlap of COX-deficient areas and nuclei along the perimeters of
muscle fibers with COX-deficient foci. Data are from Patients 3 (RRM2B), 5 (POLG), and 7 (POLG), expressed as fractions of total muscle
fiber perimeter length. Note the distribution of data toward the right of the dotted line, which represents chance level
(observed = expected). (G) Frequency histogram of predicted − observed overlap fractions; n = 74, 1-sample t test, p = 4.26e−15.
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FIGURE 5: Activation of mitonuclear signaling pathways in response to subcellular cytochrome c oxidase (COX) deficiency.
(A) Quadruple immunofluorescent imaging of mitonuclear signaling targets Hsp60 (Patient 7, POLG), GPS2 (Patient 5, POLG),
transcription factor A, mitochondrial (TFAM; Patient 7, POLG), and Beclin1 (Patient 5, POLG) in combination with anti–mitochondrial
cytochrome c oxidase subunit I (MTCOI), anti–succinate dehydrogenase complex subunit A (SDHA), or anti-VDAC1 (for Hsp60) and
4,6-diamidino-2-phenylindole. F indicates COX-deficient foci, and dashed lines indicate the fiber boundaries. (B) Subcellular
quantification of fluorescent intensity in COX-deficient foci compared to COX-positive areas of the same cell from Patient 3 (RRM2B),
Patient 5 (POLG), and Patient 7 (POLG). Values from the same cell are connected by a line; n = 29 (Hsp60), n = 29 (GPS2), n = 30
(TFAM), and n = 16 (Beclin1); paired t test. Inset: Pie charts represent the percentage of foci that have an increase in signal relative to
COX-positive areas. ***p < 0.0001, Wilson/Brown binomial test comparing each percentage to the null hypothesis of 50:50. (C) Whole
cell fluorescent intensity in full COX-positive and COX-deficient fibers from Patient 3 (RRM2B), Patient 5 (POLG), and Patient 7 (POLG).
Each datapoint represents a muscle fiber; n = 175 (Hsp60), n = 101 (GPS2), n = 230 (TFAM), n = 112 (Beclin1); Mann–Whitney test.
Data are from Patients 3 (RRM2B), 5 (POLG), and 7 (POLG).
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Respiratory Chain Deficiency First Spreads in
Cross-Section following Mitochondrial Network
Anisotropy
Finally, we sought to address whether mitochondrial net-
work connectivity may dictate the segmental appearance
of respiratory chain deficiency (Fig 6). Examining muscle
fibers longitudinally revealed the existence of strikingly
short COX-deficient muscle fiber segments, where the
diameter of the COX-deficient muscle fibers is substan-
tially wider than the longitudinal axis.

In skeletal muscle cells, intermyofibrillar mitochondria
organized at the Z-bands show a substantial degree of branch-
ing. We examined the 3-dimensional morphology of skeletal
muscle mitochondria in human controls (n = 8) and patients
(n = 6) using SBF-SEM (see Fig 6C, D). Controls and
patients both demonstrate high mitochondrial connectivity
across the transverse orientation of each muscle fiber and low
connectivity between Z-bands along the muscle fiber; repre-
sentative images are shown in Figure 6D. These results

support the mitochondrial network model and likely provide
the structural basis for the segmental COX deficiency regu-
larly observed in mitochondrial myopathy and aging.30

Foci Are Observed in Aging and Other
Neuromuscular Conditions
In addition to mtDNA maintenance disorders, we sought
to determine whether foci of deficiency are observed in
other myopathies in which de novo mtDNA deletions and
COX deficiency are also found. COX-deficient foci were
also identified in cases of single, large-scale mtDNA dele-
tions, inclusion body myositis, and mechanically ventilated
diaphragm, where COX deficiency is associated with
mtDNA deletions (Fig 7).26 Furthermore, muscle from
healthy adults 68 to 77 years of age (n = 79) also contained
COX-deficient foci, which suggested that the observation is
not specific to mitochondrial myopathy but is likely rele-
vant to other age-related myopathic conditions.

FIGURE 6: Subcellular patterns of cytochrome c oxidase (COX) deficiency and preferential transverse mitochondrial network
connectivity in human muscle. (A) Hypothetical models illustrating potential spread of COX-deficient succinate dehydrogenase
(SDH)-positive foci. In the random spread model (top), biochemical deficiency covers an equal distance (x) in both transverse and
longitudinal orientations. In the mitochondrial network model (bottom), COX negativity can cover the width of the muscle fiber,
a distance (y) that is greater than the distance covered in the longitudinal axis of the fiber (z). Dotted green areas denote edges
of biochemical deficiency. (B) Images of thin longitudinal regions of COX-deficient segments in COX/SDH histochemistry,
supporting the mitochondrial network model. (C) Schematic demonstrating differences in mitochondrial network connectivity
when a muscle fiber is examined in transverse or longitudinal orientation. (D) Results from serial block face scanning electron
microscopy showing that in the transverse orientation (green), mitochondria form an interconnected network. In the longitudinal
orientation (blue), mitochondria appear round and isolated, with few connections across sarcomeres. Each continuous
mitochondrion is pseudocolored and Z-lines are marked by dotted lines. Scale bars for histochemistry (B) = 50 μm; scale bars for
electron microscopy (D) = 1 μm.
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Discussion
Mitochondrial respiratory chain deficiency in mtDNA
maintenance disorders is dependent on the progressive
accumulation of mtDNA deletions. Several theories have
been proposed to explain the clonal expansion of mtDNA
deletions.4–7 However, a number of questions remain. In
postmitotic muscle fibers, where do mtDNA deletions
originate? How do deleted mtDNA molecules accumulate
to higher levels than wild-type mtDNA? What dictates the
directional spread of respiratory chain–deficient segments
along muscle fibers?

To explore these questions, we performed in-depth
imaging and molecular studies of skeletal muscle biop-
sies from patients with genetically confirmed mtDNA
maintenance disorders. We targeted the smallest portion
of the muscle fiber presenting with COX deficiency and
found that these areas are always perinuclear. In addi-
tion, we have shown that there is accumulation of
mtDNA deletions in the COX-deficient foci along with
corresponding increase in nuclear-mitochondrial signal-
ing. Therefore, we propose that mtDNA deletions arise
and accumulate within the perinuclear mitochondria,
where nuclear proximity of mtDNA deletions and local
induction of biogenesis are key factors for clonal
expansion.

Nuclear Proximity as a Determining Factor in
Focal COX Deficiency
Three factors could contribute to explain why mtDNA
deletions and respiratory chain deficiency originate in peri-
nuclear mitochondria: (1) increased mutation rate in the
perinuclear area, (2) higher replication rates in the peri-
nuclear area, or (3) proximity to the nucleus for retrograde
mitonuclear signaling. Davis and Clayton31 have previ-
ously demonstrated that mtDNA replication rate is higher
in the perinuclear region compared to the rest of the cell,
consistent with the requirement of nuclear gene products
for mitochondrial biogenesis.

In patients harboring mutations in nuclear DNA
genes encoding mtDNA replication machinery, a higher
local replication rate could account for a higher mutation
rate among perinuclear mitochondria. Thus, it is also pos-
sible that there may be multiple deletion species compet-
ing within a single focus and that the chance of mtDNA
deletions being replicated in the perinuclear region may
also be higher, due to the higher replication rate.

Furthermore, our data demonstrate that focal regions
of COX deficiency have elevated mitochondrial mass and
mtDNA copy number concomitant with higher levels of
mitonuclear signaling factors, indicative of mitochondrial
biogenesis through mitonuclear “retrograde” signaling. In

FIGURE 7: Sub-cellular foci identified in other neuromuscular diseases and aging from cytochrome c oxidase (COX)/succinate
dehydrogenase (SDH) histochemistry. Focal COX-deficient SDH-positive region in cross-section from cases of (A) single, large-
scale mtDNA deletion, (B) inclusion body myositis, (C) mechanically ventilated diaphragm, and (D) normal aging skeletal muscle.
Scale bars = 25 μm.
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Caenorhabditis elegans, mtDNA deletions trigger nuclear
activation of the unfolded protein response (UPRmt) to
promote mitochondrial biogenesis and mitochondrial
dynamics.11,12 With mtDNA deletions existing through-
out the worm from birth, this process may increase
mtDNA heteroplasmy.11,12 The UPRmt has also been
shown to modulate both biogenesis and mitophagy
levels.11,12 Therefore, given the observations in C. elegans,
it is possible that the UPRmt in foci of human muscle
may be linked with activation of mitochondrial biogenesis.

Our data in human skeletal muscle suggest a role for the
UPRmt and possibly implicate other factors such as GPS2,
which transcriptionally activates mitochondrial biogenesis in
response to mitochondrial stress or depolarization.28 Beclin1
labeling suggests no change in mitophagy in small foci repre-
senting the early stage of deficiency. However, although Beclin
1 was the only target for which antibodies of sufficient quality
on frozen muscle samples was available, Beclin1 may not reflect
all mitophagy pathways. Based on the differential upregulation
of signaling factors in focal COX-deficient and fully COX-
deficient fibers, it remains possible that multiple signaling path-
ways are activated at different stages of expansion and in differ-
ent fibers types. Clinically meaningful models will be required
to generate mechanistic data and fully resolve these questions.

Focal Deficiency, Clonal Expansion, and
Mitochondrial Disease Progression
In addition to representing a novel pathological feature of
mtDNA maintenance disorders, focal regions of deficiency
were also observed in muscle from patients with single,
large-scale mtDNA deletions and in normal aging. Segmen-
tal respiratory chain deficiency in longitudinal muscle fibers
is a pathological hallmark of mitochondrial myopathy and
aging.3,24,30 To our knowledge, this is the first study to
report circumscribed cytoplasmic areas of COX deficiency
smaller than the diameter of muscle fibers. Our data also
demonstrate that, in a muscle section, foci are relatively
infrequent compared to fully COX-deficient muscle fibers.
Furthermore, although COX-deficient segments in longitu-
dinal orientation have been known to vary greatly in length,
this is the first report demonstrating segments that are sub-
stantially shorter than the width of the muscle fiber (see
Fig 6B).

Applying SBF-SEM analysis for the first time in
human muscle confirmed the substantially more elaborate
nature of the mitochondrial network along Z-bands (ie, I-
band mitochondria) in the transverse orientation of
human muscle fibers, compared to sparse longitudinal
interconnections between sarcomeric planes (see Fig 6D).
This is in contrast to the almost continuous mitochondrial
network previously reported in mice.32 Because contigu-
ous mitochondria can exchange (mutant) mtDNA

through fusion, the anisotropic nature of the human mito-
chondrial network may account for COX-deficient seg-
ments that appear restricted along the length of affected
muscle fibers.

Conclusions and Proposed Model
Based on our observations, we propose the following model.
mtDNA deletions that arise in the perinuclear region prefer-
entially accumulate under the influence of mitochondrial bio-
genesis, reaching critical mass and causing the first visible
signs of focal mitochondrial respiratory chain deficiency.
Mutant mitochondria then preferentially propagate trans-
versely via direct physical interactions between mitochondria,
driven in part by increased local mitochondrial biogenesis
triggered by retrograde signaling from mutant mitochondria
to the surrounding nucleus. The clonal nature of these dele-
tions and the role that mtDNA replication plays in this pro-
cess remain to be investigated. This hypothesis assumes that
fully COX-deficient cells (which must have a point of origin)
are derived from the spread of small proliferative perinuclear
foci. Human-relevant disease models where this pathogenic
process can be observed over time will be needed to confirm
this mechanism, and to determine if it can be targeted thera-
peutically to prevent the clonal accumulation of mtDNA
defects.
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