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Abstract: Earth Observation services guarantee continuous land cover mapping and are becoming of
great interest worldwide. The Google Earth Engine Dynamic World represents a planetary example.
This work aims to develop a land cover mapping service in geomorphological complex areas in the
Aosta Valley in NW Italy, according to the newest European EAGLE legend starting in the year 2020.
Sentinel-2 data were processed in the Google Earth Engine, particularly the summer yearly median
composite for each band and their standard deviation with multispectral indexes, which were used
to perform a k-nearest neighbor classification. To better map some classes, a minimum distance
classification involving NDVI and NDRE yearly filtered and regularized stacks were computed to
map the agronomical classes. Furthermore, SAR Sentinel-1 SLC data were processed in the SNAP to
map urban and water surfaces to improve optical classification. Additionally, deep learning and GIS
updated datasets involving urban components were adopted beginning with an aerial orthophoto.
GNSS ground truth data were used to define the training and the validation sets. In order to test the
effectiveness of the implemented service and its methodology, the overall accuracy was compared
to other approaches. A mixed hierarchical approach represented the best solution to effectively
map geomorphological complex areas to overcome the remote sensing limitations. In conclusion,
this service may help in the implementation of European and local policies concerning land cover
surveys both at high spatial and temporal resolutions, empowering the technological transfer in
alpine realities.

Keywords: land cover; Sentinel-1 SAR; Sentinel-2; deep learning; Google Earth Engine; SAGA GIS;
ESRI ArcGIS Pro; ESA SNAP; mountains; EAGLE; geomorphological complex areas

1. Introduction

Earth Observation (EO) data services are becoming very popular because of the
significant increase in satellite missions and geospatial cloud-based platforms such as the
Google Earth Engine and Microsoft Planetary [1,2]. New investments in the space economy
have boosted the technological transfer in different fields opening new opportunities
in terms of applied science [3–5]. It is worth noting that both the public and private
sectors in alpine and rural areas are still far behind. Therefore, it is more crucial to fill
this gap by realizing and exporting useful EO tools to strengthen the monitoring and
study of the biophysical components of different territories and use public funds more
efficiently and effectively [6–8]. This would permit mountainous areas to keep up, stay
competitive and bring innovation even in apparently distant contexts. In particular, the
Copernicus program, as well as many other scientific EO programs around the world,
provide vast amounts of geographical datasets that may aid in achieving European and
international technological transfer goals of to face considerable issues such as climate
change, sustainable development and social inclusion worldwide [9–11].
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Recently, Google announced its realization of the Dynamic World project. Dynamic
World is a near real-time 10 m spatial resolution global land use land cover (LULC) dataset
produced using deep learning and is freely available and openly licensed. It is the result of
a partnership between Google and the World Resources Institute to produce a dynamic
dataset of the physical material on the surface of the Earth. Dynamic World is intended to be
used as a data product for users to add custom rules and assign final class values, producing
derivative land cover maps. The main key innovation of Dynamic World is represented
by near-real time image enabling the mapping of LULC every 5 days depending on the
location and adopting Sentinel-2 top-of-atmosphere per-pixel probabilities across nine land
cover classes with a 10 m GSD.

This EO service based on the Google Earth Engine is very powerful but regarding
the accuracy in mountainous areas such as the Alps, it presents considerable criticalities.
First, there is a strong confusion between the concept of land coverage and use (the first
can be mapped by satellite, the second can only generally be used for certain uses such
as mowing). Second, the system uses a probabilistic approach, not a deterministic one.
Therefore, at a planning level, some problems can be encountered (e.g., a misleading
biophysical component defined as an incorrect class for a forest or built up areas defined as
water after snowmelt in alpine areas). Third, the Dynamic World training set distribution is
almost completely absent in mountainous and alpine areas. Typically, these areas are the
most complex to map for remote sensing. Furthermore, the classes are designed to map
global changes at high resolution using fewer classes which do not answer to the local needs
for land covers that adopt the new European EAGLE guidelines and that have local robust
accuracies that are only obtainable with a continuous ground truth data validation set.

The EIONET Action Group on land monitoring in Europe (known as EAGLE group)
is an open assembly of technical experts from different European Economic Area (EEA)
Member States, mostly in their roles as national reference center (NRC) on LC. Currently,
the development of the EAGLE concept and methodology is being funded by the EEA
within the framework of the Copernicus program. In Italy, LC monitoring is performed
by the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). For their
activities and policies, many user communities such as decision-makers, non-governmental
organizations, European communities, scientists and researchers require various sorts of
LC information [12]. LC data, for example, are used to assess the progress toward the
UN Sustainable Development Goals (SDGs) targets [13], such as target 15.3 which relates
to achieving land degradation neutrality (LDN) by 2030 [14]. Despite the importance of
LC data in environmental monitoring and planning, the number of accessible national
products is limited and their qualities are not always appropriate. The EAGLE idea was
built on a clear difference between land cover and land use, and it is described in a matrix
consisting of three descriptors: land cover components (LCC), land use attributes (LUA)
and additional characteristics (LCH). The descriptors can be merged to develop unique
categorization systems for various needs or to detect correspondences with existing classes
while maintaining the independence of the three descriptors [15]. There are numerous
algorithms for examining land cover, starting with the classification of satellite images.
The most appropriate approach is determined by factors such as the type of data, class
distribution, research interests and classifier interpretability, as well as the balance between
the objectives and the available resources. In general, the automatic classification systems
are more time consuming as the data dimension and volume grow and data interpretation
might become problematic at times [16]. Supervised classifications may be used to analyze
large amounts of data as they are based on selecting a sufficient number of training samples
with known values [17], which are then used to predict unknown values in the testing
data [18]. As a result, it’s critical to choose examples that fully depict the diversity of the
studied territory’s characteristics.

Nowadays, the CORINE Land Cover (CLC) ensures a high level of thematic detail and
a lengthy historical series, but it is limited in terms of geographical detail and updating
frequency (https://land.copernicus.eu/pan-european/corine-land-cover, viewed on 6
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November 2022). In recent years, the high-resolution layers (HRLs) made it possible to
describe the principal land cover classes in high spatial detail while maintaining a multi-
year update frequency. However, the low accuracies in the classification of alpine areas still
persist [19]. At the same time, Copernicus national-scale products are still available with
high thematic and spatial depth, including Urban Atlas, Riparian Zones, Coastal Zones
and Natura 2000, but these are only for specific locations. The most recent official product
is the CORINE LAND COVER v.2018 (CLC). However, this product does not permit a
detailed mapping of the territory especially in alpine areas [20]. Nevertheless, in recent
years, some institutions, academic centers and private enterprises have tried to overcome
the spatial resolution issue by creating prototypal products at the national level by adopting
Copernicus EO Data [21,22]. New evidence is represented by the 10 m land cover produced
by ESRI on a global scale with 10 classes even if there are strong limitations and errors
in the alpine area due to the absence of a local confusion matrix [23]. Another example
linked to the Italian context is the prototypal LC of the whole Italian territory performed
by the ISPRA for the year 2018. This LC proposes a methodology with the joint use of the
optical, multispectral and radar data of Sentinel 1 and Sentinel 2 [12]. However, following
the choice of the adopted input data and the need to map an entire territory, it has strong
limits in mountainous areas. Compared to the validation set, these areas are low and are
not adequate for mapping mountainous territories in detail as suggested by [19].

As previously mentioned, a robust local EO service only based on satellite remote
sensing data can only map land cover (hereinafter called LC) with a higher accuracy.

In particular, only the definition of LC is fundamental, because in many existing
classifications and legends it is confused with land use. LC is defined as the observed
(bio)physical cover on the Earth’s surface. According to this definition, land covers include
forests, agricultural areas, human settlements, glaciers, water and wetlands per the Direc-
tive 2007/02 of the European Commission [24,25]. When considering LC in a very pure
and strict sense, it should be confined to describe vegetation and man-made features. Con-
sequently, the areas where the surface consists of bare rock or bare soil are describing land
itself rather than LC. Additionally, it is disputable whether water surfaces are considered
land cover. However, in practice, the scientific community usually describes those aspects
under the term LC as well as some agricultural types of cover such as orchards, vineyards
and pastures.

The application of Sentinel-2, Sentinel-1 and PlanetScope in land cover mapping have
rapidly spread since 2020 [26]. Earth Observation data applications from multi-platform
sensors, in particular from Sentinel-2, Sentinel-1 and PlanetScope, are mainly focused on
plain areas [27]. There is still a lack of local application mountainous area. Most of classi-
fication approaches are based on single one-shot classifications or combined approaches
with two supervised classifications from optical and SAR data [28]. Others are focused on
multimodal remote sensing data fusion from open-access and commercial EO data in cloud
platform, such as the Google Earth Engine, and in deep learning classification (mainly
focused on classifying a single geometrical land cover component such as urban areas) [29].
Nevertheless, a mixed hierarchical approach adopting different sensors and several clas-
sifications to improve the land cover quality on mountainous areas still continues to be
minutely explored and exploited.

Under this scenario, the development of a local LC EO continuous service according
to the new EAGLE guidelines is becoming of great interest to the public administration
at the alpine level and beyond. In fact, at the national level in Italy, the Istituto Superiore
Per la Protezione e Ricerca Ambientale (ISPRA) produced and updated the national land
consumption map, as well as several national land use and LC maps [21,22], but they do
not necessary fit with alpine needs. Conversely, other regional products are frequently
produced with CLC and are not up to date [30,31] or, in the case of high resolution global
updated products such as Dynamic World, they do not answer to the local needs in terms
of the accuracies, methodologies followed and legends. Therefore, in order to fill the gap of
a lack of a LC at high resolution and answering to the EAGLE requests, the Aosta Valley
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autonomous region charged the Regional Cartographic Office to develop a new map with
a 10 m GSD. This body commissioned the regional public company INVA spa, in particular
the GIS unit, to carry out this work. The intent was to create a static product and service
capable of dynamically mapping the Aosta Valley territory according to the required needs.

Therefore, the principal aim of this work is to present the new Aosta Valley LC and
create a scalable and economically sustainable local EO service capable of mapping LC
according to the EAGLE guidelines. The EO service developed adopted SAR Sentinel-1;
Sentinel-2; PlanetScope and updated GIS local datasets to overcome the common troubles
that remote sensing (RS) has in mountainous areas due to the topography, weather condition
and shadows, as well as uniform LC class distributions.

2. Study Area

The EO Geospatial service was developed in the Aosta Valley autonomous region
in NW Italy. It is the smallest Italian region in terms of surface extent, located in the
mid-west of the Alps. It is surrounded by the four highest mountain massifs in Italy:
Mont Blanc, which is also the highest peak in Europe, the Cervino-Matterhorn (4478 m),
Monte Rosa (4634 m) and Gran Paradiso (4061 m). The conformation of the entire regional
territory is the result of the work of many glaciations [32,33]. Therefore, considering the
mountainous topography of the whole Aosta Valley territory, a specific EO geospatial land
cover procedure was developed based on the EAGLE guidelines (see Figure 1).
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3. Materials

The development of the present EO geospatial local service is scalable to other geomorphologi-
cal complex areas, such as other mountain territories, and is based on the following datasets:

- Copernicus Sentinel-2A surface reflectance data to map the land cover components
- Copernicus Sentinel-1A and B SLC and GRD data to map urban and water components,

respectively
- PlanetScope four band data to define a part of the training and validation set
- GIS updated datasets such as GNSS ground truth data to define both the training set

and the validation set.
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3.1. Multispectral Optical Datasets

The Sentinel-2 (hereinafter called S2) mission is part of the European Copernicus pro-
gramme. The satellite acquires multispectral optical data with a spatial resolution between
10–20 m as a function of the considered band. The temporal resolution is 5 days due to two
twin satellites, S2A and S2B. The multispectral optical data were obtained and processed in
the Google Earth Engine (GEE) referring to the COPERNICUS/S2_SR collection. Sentinel-2
is a high-resolution, broad-spectrum, multispectral optical mission that supports the Coper-
nicus Land Monitoring Service, including monitoring vegetation, soil and water cover and
observing inland waterways and coastal areas. Sentinel-2 L2 data were downloaded from
the Copernicus SciHub (the official distribution portal of the Earth Observation data in
question). The images were pre-processed in Sen2cor (the official tool released by the Euro-
pean Space Agency—ESA). The EO data S2 that was pre-processed in Sen2cor contained
12 spectral bands of UINT16 (see Table 1). The images were ortho-projected in WGS84 and
were in ground reflectance rescaled in dimensionless values from 0 to 10,000 starting from
the existing DN to calculate the ground reflectance by removing the atmospheric contribu-
tion. There are also three QA bands for each scene, one of which (QA60) is a bitmask band
with cloud mask information. In GEE, clouds can be removed as an alternative to using
pixels in QA quality using COPERNICUS/S2_CLOUD_PROBABILITY. In this case, the QA
bands were used.

Table 1. A simple overview of the Sentinel-2 surface reflectance product collection composition in
the Google Earth Engine.

Bands Description Spatial Resolution (m)

B1 Aerosols 60
B2 Blue 10
B3 Green 10
B4 Red 10
B5 Red Edge 1 20
B6 Red Edge 2 20
B7 Red Edge 3 20
B8 NIR 10

B8A Red Edge 4 20
B9 Water vapor 60

B11 SWIR 1 20
B12 SWIR 2 20
SCL Mask 10

MSK_CLD_PRB Cloud probability mask 20
QA10-60 Cloud mask 10–60

A yearly median composite imagery ranging from 1 May 2020 to 30 September 2020
without clouds and shadows was realized. The S2 data were used to create yearly harmo-
nized and filtered NDVI and NDRE stacks with a 10 days step to map woody crops.

PlanetScope, as part of the private space program Planet acquired by Google with its
ultra-high spatial resolution microsatellites, is increasingly becoming a reference reality in
remote sensing activities due to the possibility of accessing the data free of charge for edu-
cation and research purposes (https://www.planet.com/markets/education-and-research,
last access on 6 November 2022). Starting with the daily data acquired by PlanetScope,
a stack was created, including all the acquisitions in the reference period of study. With
a self-developed GEE algorithm, a composite imagery was generated covering the same
period as S2. This image was adopted as an extra product in the validation phase and in
the definition of the training sets during a photo-interpretation phase. It is worth noting
that the PlanetScope micro-satellites acquire multispectral optical data on a daily basis in
four bands with a ground sample distance (GSD) of around 3 m with various levels of
processing. In this case, geo-referenced and atmospheric calibrated products in surface
reflectance were adopted. Considering that these data are not open-access and have a fee

https://www.planet.com/markets/education-and-research
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for use except in scientific purposes, they can be considered optional in the development of
a fully free EO geospatial local service. However, they represent a useful tool during the
suggested workflow.

3.2. Sentinel-1 SAR Dataset

The Sentinel-1 mission is part of the European Copernicus programme. The satellite
acquires radar data with a spatial resolution between 5–40 m depending on the acquisition
mode. The temporal resolution is 5 days due to two twin satellites, S1A and S1B.

The radar data were retrieved from the NASA Alaska Satellite Facility (ASF, https:
//asf.alaska.edu/, last accessed 7 November 2022) and processed in the SNAP v.8.0.0 [34]
and the Google Earth Engine (GEE) [1,35].

The Sentinel-1 (hereinafter called S1) mission provides data from a dual-polarized C-
band SAR (Synthetic Aperture Radar) instrument. The Google Earth Engine provided only
the Sentinel-1 ground range detected (GRD) collection. Each scene was preprocessed with
the Sentinel-1 Toolbox in the SNAP using the following steps: (1) thermal and other noise
removal, (2) Speckle–Lee filter application, (3) radiometric calibration, (4) ground correction
using DTM 10m VDA (normally SRTM 30m worldwide) and (5), the final corrected values
for the ground were converted into decibels via log scaling (10 × log10 (x)).

The level-1 data were processed into either single look complex (SLC) and/or ground
range detected (GRD) products. The SLC products preserved the phase information and
were processed at the natural pixel spacing whereas the GRD products contained the
detected amplitude and were multi-looked to reduce the impact of speckle. In particular.
the level-1 SLC (IW) interferometric wide products (IW) were adopted [36].

The IW swath mode was the main acquisition mode over land and satisfied the
majority of the service requirements (Richards 2009 [37]). As mentioned before, the SLC IW
data were adopted by creating two separate datasets with the same orbit, frame and path
of the scene in the study area. The two time series stacks, including all scenes ranging from
1 January 2020 to 31 December 2020 in ascending and descending mode, were considered.
Those characteristics are reported in Table 2. As reported by [38], the main distortion
in SAR data was the elevation displacement. In a radar image, the displacement was
toward the sensor and became quite large when the sensor was nearly overhead. The
displacement increased with a decreasing incidence angle. The characteristics resulting
from the geometric relationship between the sensor and the terrain that were unique to
radar imagery were foreshortening, layover and shadowing. The topographic features
such as mountains and artificial targets such as tall buildings were displaced from their
desired orthographic position. The effect was removed from an image through independent
knowledge of the terrain profile.

Table 2. SAR stacks parameters criteria.

Absolute Orbit Number Polarization Frame Path Flight Direction

24,789 VV+VH 146 88 ASCENDING
24,417 VV+VH 441 66 DESCENDING

The ascending and descending values were both processed in the SNAP v.8.0.0 and
then imported into the GEE to create a mosaicked-median composite to reduce the geomet-
ric distortions in the slopes where, normally, a given acquisition mode occurs.

3.3. GIS Products and Ground Data

In this EO service, other datasets were also considered.
First, the digital terrain model (DTM) from the Aosta Valley autonomous region with

a 2 m GSD was resampled in SAGA GIS with a nearest neighbor algorithm in order to
perfectly overlay the Sentinel imagery. It is worth noting that the DTM was acquired with
flight lidar sensors in 2008.

https://asf.alaska.edu/
https://asf.alaska.edu/
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Second, the training set was defined as different ESRI shapefile polygons per each
class in order to train the classifier. This dataset was defined from one side by object-based
segmentation (OBIA) using red, green, blue, near-infrared, red edge and shortwave bands
and considering the spectral signatures and the photo-interpretation analysis by adopting
the ground truth data polygon (GTDP).

Third, the validation set was defined through the ESRI shapefile polygons to validate
the classification. This dataset was obtained both through photo-interpretation and in-
the-field GTDP. The validation was carried out in two phases: the first by calculating the
confusion matrix by adopting the dataset obtained from S1 and S2 processing bands and
finally by assessing the classification accuracy after merging each part.

It is worth noting that a Garmin 64S and Lemon GPS smartphone application devel-
oped by the Italian GeneGIS company were also used to define the GTDP.

As mentioned before, the collection of such data allowed us to populate both the
training set and the validation set. In particular, a random GTDP selection was performed
in SAGA GIS vers. 8.2.0. with an allocation of 70% of the GTDP to the training set and 30%
of the GTDP to the validation set.

Finally, the Italian AGEA (Agency for Disbursements in Agriculture) yearly air flights
imagery coupled with the Aosta Valley 2018 Orthophoto were used to perform deep
learning on built-up areas and refine the final product with a minimum mapping unit of
100 m2 in order to keep the product coeval with the Sentinel datasets.

Generally, the tools adopted were the GEE [1], the SNAP vers. 8.0.0 to obtain and
calibrate the data during the pre-processing phase, Orfeo Toolbox vers 8.0.0 [39,40], SAGA
GIS vers.8.0.0 [41] to perform the classification during the processing phase and QGIS with
GRASS and R v.3.0.1 [42–44] during the post-processing phase to prepare the final product.

4. Methods
4.1. Sentinel-2

The S2 data were obtained from the GEE. In particular, the collection COPERNI-
CUS/S2_SR was used. A self-developed algorithm performed in the GEE was adopted to
create the median composites. The S2 composite stack included bands, spectral indices
and standard deviations. These input parameters are reported in Table 3. The S2 stack,
including the DTM aspect and slope, was adopted as the input data during the classifica-
tion while the S1 output layers served to better refine the urban and water classes. Each
composite image was generated starting with the EO data available every 10 days for the
period from 1 May 2020 to 30 September 2020 (t), i.e., the summer weather season, in order
to correctly map the glacial surface of the territory falling within the ablation period and
observe the vegetation during the phenological active season. It is worth noting that the
generated composite images consisted of the median value for each pixel in the reference
period t. For S2, we considered all the images that satisfied the condition in which each
pixel had cloud cover equal to zero (the clouds and shadows were suitably masked and
the pixel, if cloudy, was considered in the definition of the median value of the reflectance
of each band). The S2 input data were reported in Table 3 as the input dataset for the
k-nearest neighbor supervised classification considering all the classes. The input dataset
was normalized.

Table 3. S2 input datasets.

ID Bands/Index Description

1 “B2” Blue
2 “B3” Green
3 “B4” Red
4 “B5” Vegetation Red Edge 1
5 “B6” Vegetation Red Edge 2
6 “B7” Vegetation Red Edge 3
7 “B8” NIR
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Table 3. Cont.

ID Bands/Index Description

8 “B8A” Vegetation Red Edge 4
9 “B11” SWIR 1
10 “B12” SWIR 2
11 “B2_STD” Standard deviation Blue
12 “B3_STD” Standard deviation Green
13 “B4_STD” Standard deviation Red
14 “B5_STD” Standard deviation Red Edge 1
15 “B6_STD” Standard deviation Red Edge 2
16 “B7_STD” Standard deviation Red Edge 3
17 “B8_STD” Standard deviation NIR
18 “B8A_STD” Standard deviation Red Edge 4
19 “B11_STD” Standard deviation SWIR 1
20 “B12_STD” Standard deviation SWIR 2
21 “NDVI” Normalized Difference Vegetation Index

22 “NDVI_STD” Standard deviation Normalized Difference
Vegetation Index

23 “BSI” Bare Soil Index
24 “BSI_STD” Standard deviation Bare Soil Index
25 “NDWI” Normalized Difference Water Index

26 “NDWI_STD” Standard deviation Normalized Difference Water
Index

27 “NDSI” Normalized Difference Snow Index

28 “NDSI_STD” Standard deviation Normalized Difference Snow
Index

29 “TCB” Tasseled Cap Brightness
30 “TCB_STD” Standard deviation Tasseled Cap Brightness
31 “TCG” Tasseled Cap Greenness
32 “TCG_STD” Standard deviation Tasseled Cap Greenness
33 “TCW” Tasseled Cap Wetness
34 “TCW_STD” Standard deviation Tasseled Cap Wetness
43 DTM Digital Terrain Model 10 m
44
45

Slope
Aspect

Terrain Slope
Terrain aspect

The spectral indexes reported in Table 3 were calculated as follows using the S2
coefficient reported in (https://www.indexdatabase.de, last access 7 November 2022):

NDVI Normalized Difference Vegetation Index [45–49]

NDVI =
NIR − RED
NIR + RED

BSI Bare Soil Index [50]

BSI =
(SWIR 1 + RED)− (NIR + BLUE)
(SWIR 1 + RED) + (NIR + BLUE)

NDWI Normalized Difference Water Index [51,52]

NDWI =
NIR − SWIR 1
NIR + SWIR 1

NDSI Normalized Difference Snow Index [53–56]

NDSI =
NIR − SWIR 1
NIR + SWIR 1

TCB (Tasseled Cap Brightness) [57–60]

https://www.indexdatabase.de
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(BLUE ∗ 0.3037) + (GREEN ∗ 0.2793 + (RED ∗ 0.4743) + (NIR ∗ 0.5585) + (SWIR1 ∗ 0.5082) + (SWIR2 ∗ 0.1863)

TCG (Tasseled Cap Greenness) [57–60]

(BLUE ∗ −0.2848)+ (GREEN ∗ −0.243)+ (RED ∗ −0.5436)+ (NIR ∗ 0.7243)+ (SWIR1 ∗ −0.0840)+ (SWIR2 ∗ −0.1800)

TCW (Tasseled Cap Wetness) [57–60]

((BLUE ∗ 0.1509) + (GREEN ∗ 0.1973) + (RED ∗ 0.3279) + (NIR ∗ 0.3406) + (SWIR1 ∗ −0.7112) + (SWIR2 ∗ −0.4572))

4.2. Sentinel-1

S1 SAR images were used only to map urban and water components in addition to
the optics. The other classes were mapped only with optical remote sensing due to the
fact that SAR distortions in mountainous areas do not permit higher accuracy land cover
mapping. Therefore, the data offered by optical remote sensing are the only data in alpine
environments that are truly capable of offering consistent and reliable mapping, despite
being bound to atmospheric conditions. However, due to the composite in land cover, it is
possible for it to be overcome.

In order to create a mask for urban areas, as first step, pairs of S1 SLC images were
downloaded from the NASA ASF. In particular, to achieve interferometry with an exact
repeated coverage, only images derived from the same satellite sensor in the exact ac-
quisition mode were used (ascending or descending see Table 2). Due to the low rate
of urbanization in recent years in the Aosta Valley (in terms of an increase in built-up
structures), the changes in the urban footprint observed within the last couple of years
can be neglected if considering the spatial resolution of the Sentinel-1 SAR sensors (deep
learning was performed to refine this). Therefore, we can consider the urban footprint as
a constant value for all the Sentinel-1 images acquired within a single-year time frame.
The use and interpretation of SAR imagery require a series of complex pre-processing
procedures, which we ran on ESA’s SNAP v.8.0.0 software. Such procedures refer to the
standard preprocessing commonly applied to Sentinel-1 products to derive interferometric
coherence [61,62]. The interferometry was conducted only on those images pairs which
had a perpendicular baseline possibly more of 130 m within the year (in the e.g., 2020) and
a temporal baseline lower than 10 days. We reported the available adopted pairs from the
ASF in Table 4.

Table 4. SAR S1 images pairs with the distance baseline and days.

S1 Pairs Ascending Orbit
(Product n◦, Baseline, Temproal Distance in Days between the Two Acqusitions)

S1A_IW_SLC__1SDV_20200430T172
327_20200430T172354_032360_03BE

E8_2356

S1B_IW_SLC__1SDV_20200
506T172238_20200506T1723

05_021464_028C15_773E
136 m 5

S1B_IW_SLC__1SDV_20200530T172
240_20200530T172307_021814_02968

0_5539

S1A_IW_SLC__1SDV_2020
0605T172329_20200605T172
356_032885_03CF21_34AB

152 m 7

S1A_IW_SLC__1SDV_20200804T172
333_20200804T172400_033760_03E9B

C_E6AD

S1B_IW_SLC__1SDV_20200
810T172255_20200810T1723

22_022864_02B66E_1179
152 m 6

S1A_IW_SLC__1SDV_20200828T172
334_20200828T172401_034110_03F5F

E_8B79

S1B_IW_SLC__1SDV_20200
903T172253_20200903T1723

20_023214_02C15A_3F08
162 m 6
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Table 4. Cont.

S1 Pairs Ascending Orbit
(Product n◦, Baseline, Temproal Distance in Days between the Two Acqusitions)

S1B_IW_SLC__1SDV_20200903T172
253_20200903T172320_023214_02C15

A_3F08

S1A_IW_SLC__1SDV_2020
0909T172335_20200909T172
402_034285_03FC20_A288

159 m 6

S1B_IW_SLC__1SDV_20201009T172
254_20201009T172321_023739_02D1

C8_57D8

S1A_IW_SLC__1SDV_2020
1015T172336_20201015T172
402_034810_040E9B_A403

134 m 6

S1B_IW_SLC__1SDV_20201114T172
240_20201114T172307_024264_02E22

F_E4D7

S1A_IW_SLC__1SDV_2020
1120T172335_20201120T172
402_035335_0420C3_E828

144 m 7

S1 Pairs Ascending orbit

S1A_IW_SLC__1SDV_20200112T053
523_20200112T053550_030763_03871

C_D73E

S1B_IW_SLC__1SDV_20200
118T053455_20200118T0535
22_019867_02592E_ADC0

165 m 5

S1B_IW_SLC__1SDV_20200211T053
455_20200211T053522_020217_02647

9_497E

S1A_IW_SLC__1SDV_20200
217T053522_20200217T0535

48_031288_03996E_2722
155 m 7

S1A_IW_SLC__1SDV_20200324T053
522_20200324T053549_031813_03AB

B5_4955

S1B_IW_SLC__1SDV_20200
330T053455_20200330T0535
22_020917_027ABA_DC4C

129 m 5

S1B_IW_SLC__1SDV_20200505T053
456_20200505T053523_021442_028B5

C_A52F

S1A_IW_SLC__1SDV_20200
511T053523_20200511T0535

50_032513_03C3F4_2251
138 m 7

S1B_IW_SLC__1SDV_20200118T053
455_20200118T053522_019867_02592

E_ADC0

S1A_IW_SLC__1SDV_2020
0124T053522_20200124T053
549_030938_038D40_8123

147 m 7

In particular, we adopted the approach described by the ESA guidelines available
in [63–65] by introducing a variation in the type of classification. In this case, the maximum
likelihood was not chosen. Instead, random forest and batch processing were created to
involve all the selected pairs. It is worth noting that co-registration and terrain-shadow
correction were performed in the ESA SNAP v.8.0.0.0 toolbox. See more detail in Figure 2.

We used both that polarizations (VH and VV) on all the SAR input data, hence the output
coherence image consisted of two separate raster files related to the different polarizations.

In terms of the processing procedure, we selected only the bursts that covered our
study area (the Aosta Valley autonomous region) from the original product. In addition,
we computed the coherence estimation using a range window size of 10 pixels. Finally,
we employed the Range–Doppler terrain correction method, which used the 10 m Aosta
Valley DTM implemented in the SNAP repository, selecting ED50-UTM 32 N (EPSG: 23032)
as the projected reference system, and selecting an average output resolution of 10 m.
The output coherence image consisted of two different bands, reporting interferometric
coherence values (from 0 to 1) for the two polarizations (VH and VV). It is worth noting
that the coherence between the two SAR images expressed the similarity of the radar
reflection between them. Any changes in the complex reflectivity function of the scene
were manifested as a decorrelation in the phase of the appropriate pixels between the
two images.

Within this type of raster, it was possible to extract the urban footprint by apply-
ing supervised (and unsupervised) classification algorithms. In this case, a supervised
classification was performed starting with the training set. Since we were interested in
distinguishing only two different classes, i.e., urban and non-urban areas, we aggregated
all non-urban land cover types into the same class (such as glaciers, lawn pastures, needle
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forests. etc.). A random forest classifier was performed in the SNAP. We specified the
maximum number of decision trees in the RF classifier at 500 as the optimal value to achieve
good noise removal and a homogeneous response [63–65]. Following the instructions in the
ESA online material [66], we applied the interferometric coherence processing methodology
outlined in the previous section to a set of S1 data obtained from January to December 2020.

The classification images produced from S1 imagery consisted of a discrete raster, with
all the pixels classified into either “urban” or “non-urban” values (with values of 1 and 0,
respectively) and water or “non-water”.
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4.2.1. Water Mask

The calibration process was done following the [67] approach. Additionally, the
normalized difference polarization index (NDPI) and the cross ratio (CR) were calculated
to examine water and humid areas.

Four S1 stacks were created defining the GRD Sigma0 dB product, considering the
ascending and descending modes for the VV and VH bands used in the NDPI and CR
computations (see Table 1 in the materials section). In places where SAR geometrical
distortion often impacts a portion of the imagery taken in the ascending or descending
mode, these stacks of bands were finally trimmed using an aspect layer recovered by the
10 m DTM VDA. The angle of view and the aspect layer were taken into consideration
beginning with the ancillary and metadata files during the clipping to exclude areas affected
by significant distortions in both the ascending and descending mode as described by [38].

In order to fill the gaps left in each stack by the removal of the sections that were
severely impacted by the distortions, the stacks were finally mosaicked. In the case of both
the distortions, we evaluated those portions with a higher incidence angle in accordance
with [38,62]. SAGA GIS was used for this task. The finished stack was then uploaded into
the GEE to produce an annual SAR synthetic composite in order to compute the NDPI and
CR. As indicated earlier, the SAR composite was employed to map the water component
more accurately.

To assess the water area components, the following SAR bands and indexes (Table 5)
were adopted after a pre-processing phase and the creation of a composite to reduce the
SAR distortions.

Table 5. SAR Sentinel-1 GRD bands in water mapping.

S1 GRD

ID Bands/Index Description

1 “VV Single co-polarization, vertical transmit/vertical receive

2 “VH” Dual-band cross-polarization, vertical
transmit/horizontal receive

3 “VV_STD” Standard deviation single co-polarization, vertical
transmit/vertical receive

4 “VH_STD” Standard deviation dual-band cross-polarization,
vertical transmit/horizontal receive

5 “NDPI” Normalized Difference Polarization Index

6 “NDPI_STD” Standard deviation Normalized Difference Polarization
Index

7 “CR” Cross ratio
8 “CR_STD” Standard deviation cross ratio

NDPI and CR has been calculated as follows:
NDPI Normalized Difference Polarization Index [68]

NDPI =
VH − VV
VH + VV

CR Cross ratio [68]

CR =
VH
VV

As demonstrated by [69] in a complex morphological context, the SAT approach
was more effective than the Otsu thresholding method. Therefore, these bands were
included to map surface water areas through a robust stepwise automatic thresholding
(SAT) approach [69]. The SAT approach consisted of the following steps. (1) SAR data
was pre-processed to create a backscattering coefficient that was georeferenced with high
resolution LiDAR-derived DEM (in this case the Aosta Valley DEM with 2 m step resampled
at 10 m). (2) SAT for relief displacement and de-speckle filtering was used to reduce noise
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in the data. (3) The conversion to dB was performed in the SNAP vers.8.0.0. In fact, the
strength of the radar signal reflected from a unit area on the corresponding point in the
scene determined the pixel value of the SAR image. The backscatter coefficient β0 was
calibrated and employed to convert the values from the digital number to the reflectivity
of the surface objects. The target’s radar cross-section per surface unit with regard to the
local incidence angle was parameter β0. After that, all SAR data were transformed from
raw data to power units (decibels-dB). The de-speckle filter was used to eliminate the salt
and pepper noise while keeping the edges and the textural structures prior to the data
analysis due to the speckle effect created by the coherent radiation used by radar systems.
A Speckle–Lee filter with a 5-pixel by 5-pixel window was adopted, resulting in a unique
valley-hill pattern in the histogram that represented a better distinction between water
and non-water surfaces. Additionally, a normalization between the incident angles were
performed. In order to identify a proper threshold, a set of third-order polynomials was
employed to fit the histogram in a manner of moving steps. The reason for this was that the
third-order polynomial had a shape that best described the histogram of the backscattering
coefficient after de-speckling and was easier to identify the turning points compared to the
higher order polynomials.

Each pixel in the SAR image was identified as either land or water after the threshold
was established, depending on whether its value was smaller or greater than the threshold.
Through an iterative method that maximized between-class variations while simultaneously
minimizing within-class variance, the threshold value was established. Finally, using the
primary input pre-processed S1 GRD dataset and splitting the training set into water and
non-water areas, a supervised classification (random forest) was carried out in the SNAP
v.8.0.0 to improve the mapping of water areas.

4.2.2. Land Cover Legend Definition

The reference legend of the new Aosta Valley land cover and relative EO geospatial
continuous service was agreed with the ISPRA and in particular the Land Remote Sensing
Unit. The legend proposed perfectly reflected the new European guidelines defined by
the EAGLE group. The EAGLE legend foresees more detailed levels at high resolution
than those proposed in Dynamic World with a deterministic and probabilistic approach,
allowing for detailed mapping of the various biomes at least at a European level. In
particular, the new EAGLE legend moves away from the old Corine Land Cover which
is tied to a mixture of cover and use similar to Dynamic World. In particular, given the
characteristics of the mountainous areas, an expansion and more detailed definition for
certain classes deemed of interest by local stakeholders was proposed. In Appendix A,
the EAGLE–ISPRA legend was reported along with the agreements from the ISPRA for
geomorphological complex areas such as the Aosta Valley region.

4.3. Training Set and Validation Set Definition

In order to better understand the spatial extent distribution of each class and determine
the ideal number of training areas for each class in the training set, a K-means unsupervised
classification with 15 classes was conducted after constructing the initial input dataset.
Regarding the last criteria, there needed to be enough training pixels for each spectral class
to enable accurate estimations of the components of the covariance matrix and the class
conditional mean vector. The covariance matrix for an N-dimensional multispectral space
was symmetric and has a size of N*N. Therefore, it required an estimation from the training
data for 1/2N (N + 1) unique elements. It took at least N (N + 1) independent samples to
keep the matrix from being singular. The good news was that each N-dimensional pixel
vector contained N samples (one for each waveband). As a result, only (N + 1) independent
training pixels were necessary. Since it was challenging to guarantee the independence of
the pixels, more than the minimum amount was chosen. [37,70] advocate for using as many
as 100 N training pixels per class, with 10 N being the lowest practical number. Therefore,
a minimum of 250 polygons (containing a minimum of 5 pixels) were computed for this
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categorization, taking only the spectral bands and relative indices without the standard
deviation (see Figure 3).
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The object-based segmentation (OBS) approach was performed using the mean shift
algorithm available on the Orfeo Toolbox software v.8.0.0 [71,72]. The OBS algorithms
aimed at minimizing the spectral heterogeneity of the polygons by comparing the relative
spectral properties of the neighboring pixels. The resulting segmentation vector layer (SVL)
was generated according to a previously defined minimum mapping unit of 300 m2. In
particular, the segmentation was performed with reference to the S2 bands performing a
bilinear resampling on those without a native 10 GSD. Then, the images were segmented
based on an internally homogeneous spectral response. The segments were then vector-
ized to generate the corresponding vector layer. During the segmentation, the required
parameters were set to the values shown in Table 6. The SEG was then used to explore
the internal features other than the spectral signatures, such as the recurrent radiometric
patterns (texture) and the shape. Some of these polygons were then randomly extracted
and others were created by analyzing the signatures of the entire stack to define the training
areas, including GTDP.

Table 6. Segmentation settings in SAGA GIS.

Segmentation Parameter Settings

Spatial radius 3 pixels
Range radius 100 DN

Mode convergence threshold 0.1
Maximum numerous of iterations 200

Minimum region size 3 pixels

As previously mentioned, the regions of interests (ROI) per each class were defined
mostly on the field and partially by applying both a segmentation and a spectral signature-
photo interpretation phase. Figure 3 depicts the distribution of the ROIs in the study area.
Each ROI per class had a number of polygons up to 250. An overall of 4300 ROIs were
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defined and 70% of them were adopted as the training set 30% as the validation set. In
the developed EO local service, the ROI detection and the relative changes through time
were performed by coupling a self-developed semi-automatic technique. The fact that the
technique required a manual check in case of an anomaly was linked to the reason that a
simple probabilistic approach such as those developed in Dynamic World by Google did
not permit the mapping of the real changes that happen with a high degree of accuracy,
especially in alpine areas.

In the first phase a pixel-based analysis into each of the ROIs were performed in the
GEE by analyzing the variance of each of the S2 bands. If the median value per each
band received a variance value at the time t + 1 up to 1.5 of its previous variances at the
time t (considering the same seasons, in the example the summer meteorological season)
a second phase followed. In this phase, a photo-interpretation with different EO images
such as PlanetScope was performed as well as the ground detection and a change in the
ROI in the necessary training polygon class. This empirical formula was developed to
analyze the specific case of the Aosta Valley autonomous region. It is worth noting that
the S1 data showed an intrinsic time-phase decorrelation in the case of the SLC product
and geomorphological effects due to the territory in SLC and GRD products. Therefore,
the radar backscatter is not recommended to be considered in this procedure regarding the
entire ROIs LC components.

1

∑
n=λS2

σ2
λ(t0)(λS2) ≥

1

∑
n=λS2

1.5 σ2
λ(t0+1)(λS2)

where:
σλ(t0)

2(λS2) is the sum of the variances of each of the S2 bands at the time t0.
σλ(t0+1)

2(λS2) is sum of the variances of each of the S2 bands at the time t0 + 1.

4.4. Supervised Classification Algorithms

Starting with the S2 input dataset and the training set, the supervised classifications
were performed in SAGA GIS vers. 8.0.0 and the confusion matrix was computed. Given the
characteristics of the S2 input dataset and the analyzed alpine territory, the best performing
algorithms adopted were the k-nearest neighbors classification-KMC and the minimum
distance with pre-segmentation (SNIC) by applying a distance threshold of 50. The k-
nearest neighbors (k-NN) is an algorithm used in pattern recognition for the classification
of objects based on the characteristics of the objects in close proximity to the ones considered.
It is a non-parametric classification method. In both cases, the input is the closest k training
example in the feature space. The output depends on whether the k-NN is used for
classification or regression. In the k-NN classification, the output is a membership in a class.
An object is classified by a plurality vote of its neighbors, with the object assigned to the
most common class among its k closest neighbors (k is a positive, typically small, integer).
If k = 1, the object is simply assigned to the class of that single closest neighbor. In the k-NN
regression, the output is the property value for the object. This value is the average of the
closest neighboring k values. On the other hand, the minimum distance classifier is used to
classify unknown image data to classes which minimize the distance between the image
data and the class in the multi-feature space. The distance is defined as an index of the
similarity so that the minimum distance is identical to the maximum similarity. Therefore,
the minimum distance technique uses the mean vectors of each endmember and calculates
the Euclidean distance from each unknown pixel to the mean vector for each class. All
pixels are classified to the nearest class unless a standard deviation or distance threshold is
specified, in which case some pixels may be unclassified if they do not meet the selected
criteria. The classification was performed following a hierarchical approach described in
the analysis section.
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4.5. Deep Learning Using the Convolutional Neural Network (CNN)

Deep learning is a type of machine learning that relies on multiple layers of nonlinear
processing for feature identification and pattern recognition, described in a model. Deep
learning models can be used on different tools or by performing Python codes related to
libraries such as PyTorch, Keras, TensorFlow, Onnx, Fats.ai etc. In this case, open-source
libraries and Python scripts were integrated with ESRI ArcGIS Pro v.2.8 for object detection,
object classification and image classification. In order to extract the building and roads, deep
learning techniques using convolutional neural networks (CNNs) were adopted starting
with the ortho-rectified images acquired by air flights over the Aosta Valley region. In
particular, the two images regarding the AGEA (Agency for Disbursements in Agriculture)
2020 and the Aosta Valley 2018 orthophoto were used.

An inferencing process was performed to extract the roads and buildings. This phase
was crucial because the information learned during the deep learning training process was
put to work in detecting similar features in the datasets. ESRI ArcGIS Pro uses an external
third-party framework and model definition file to run the inference geoprocessing tools.
Therefore, the library and dependencies were appropriately installed. In this case, the
two models provided by ESRI and edited accordingly considering the alpine areas were
adopted. It is worth noting that the model definition files and (.dlpk) packages can be
used multiple times as inputs for the geoprocessing tools, allowing for the assessment of
multiple images over different locations and time periods using the same trained model.

The main settings adopted to perform CNN deep learning on ArcGIS Pro are reported
in Table 7.

Table 7. Deep learning CNN settings in ArcGIS Pro v.2.8.

PARAMETERS INPUT SETTINGS

Input Raster Orthophoto.ecw
Output Detected Object Buildings and Roads

Model Definition: Edited models from ESRI .dplk
Padding: 32

Batch_size: 16
Threshold 0.9

Filtering threshold 99.999
Return_bboxes False

Non-Maximum SuppressionOther parameters CheckedDefault

ENVIRONMENTS INPUT SETTINGS

Processing Extent Raster extent
Processor Type

GPU id
Cell size

Parallel processing

GPU
Default

Raster native GSD
8

It is worth noting that filtering and threshold is normally not present in the parameter
settings. In fact, to avoid deep filtering out features, in this case buildings and roads, with a
surface less than 100 m square, a script was realized to include this command and perform
this analysis during the building extraction phase.

5. Results and Discussion

The classification was performed following a hierarchical approach. First, a supervised
k-nearest neighbor classification-KMC OpenCV considering all classes was performed. The
KMC classification was carried out by normalizing the dataset due to the diversity of the
input variables to make them homogeneous. The parameters adopted in the k-nearest
neighbor classification-KMC (OpenCV) were a number of neighbors equal to 8, a training
method classification and a type of Brute Force algorithm [41].
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It is worth noting that the water and urban areas classified with SAR and urban deep
learning were joined together with the urban and water classes that were mapped with
the optical data to improve these classes especially in isolated mountain villages. This
improved these classes by performing a semi-automatic GIS procedure. During this joining
phase, a minimum mapping unit (mmu) of 100 m was considered. Therefore, only the pixels
that have this mmu were mapped as urban while the other pixels that did not intersect
with urban (both SAR/deep learning and optic multispectral) with less than 100 m were
considered as classified by the optical data.

Since woody crops were particularly complex to discriminate (hereinafter called
WC), performing only a KMC classification due to the single multispectral composite
input dataset did not permit us to consider the whole phenological active season. A
hierarchical classification approach was then implemented to try to overcome this issue.
In particular, the developed EO service foresaw the first classification (considering the S2
main input dataset) with all the classes according to the new EAGLE land cover legend and
a subsequent one with only WC class. In the end, the two classifications were subjected to
a mosaicking process by first applying an overlap for WC. Then, the doubtful areas were
corrected manually by photo-interpretation of composite PlanetScope imagery.

Regarding the WC class, a supervised minimum distance classification (MDC) was
performed, including the following input datasets: a yearly cloud-shadow masked NDVI
stack filtered (Savitzky-Golay) [73–75] and regularized at 10 days times-steps [76] on the
GEE, and an annual stack of the NDRE index (normalized difference red-edge index for
agriculture) following the same procedure of the NDVI stack [77]:

NDRE =
NIR − RE
NIR + RE

NDVI composite Entropy [32,78]

HNDVI = −
N−1

∑
i=0

N−1

∑
j=0

NDVIi,j log
(
NDVIi,j

)
where NDVIi,j is the NDVI value at the i-th row and the j-th column in the local square window,
measuring N pixels. For this study, a kernel window size of 10 × 10 pixels was adopted.

Using Rao’s Q Diversity index on the S2 NDVI composite [79], Rao’s Q is calculated
using half the squared Euclidean distance. Therefore, the resulting index is [80]:

Q = ∑ ∑ dij∗pi∗pj

where pi and pj are the proportion of the area for each category per the rows and columns
in the pairwise distance dij.

The pattern analysis of the S2 NDVI composite used the following parameters:
(a) dominance, (b) diversity, (c) relative richness and (d) fragmentation [81]. Then, the KMC
data were mosaicked using as first overlap onto the MDC to refine only the WC class. The
same was done considering urban and water masks mapped using the S1 data. As a last
step, a simple filter was performed using a radius greater than 20 m. Furthermore, in the
final classification, deep learning features considered in the urban and anthropic areas were
included and the confusion matrix computed.

The scalable Earth Observation service to map land cover in geomorphological com-
plex areas beyond the Dynamic World developed for the Aosta Valley region are reported
in Figure 4.
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The parameters reported in the confusion matrix [82] were: overall accuracy, errors
of commission and omission, user and producer accuracy, sum users and sum producers
and unclassified pixels (in this case each pixel were classified). The sum user indicates the
number of pixels for each class in each row while the sum producer represents the number
of pixels for each class in each column. The overall accuracy is calculated by summing
the number of the correctly classified values and dividing it by the total number of values.
Finally, the kappa coefficient measures the agreement between the classification and the
truth values.

It is worth noting that a comparison with traditional methods was followed to prove
the real effectiveness of the suggested approach and the developed EO services. Therefore,
the k-coefficients were computed per each approach.

A traditional approach that adopted only the optic multispectral data was followed by
performing a unique one-shot classification using KMC. A combined approach adopted
a single KMC supervised classification with the optical data, considering all the classes
and the two classifications involving only urban and water with random forest and SAT,
respectively, including SAR data. Finally, the mixed hierarchical approach with the two
optical supervised classifications (KMC + MD), the two SAR classifications (for urban and
water respectively) and deep learning was described in this work.

The hierarchical approach improved the quality of the obtained classifications, as
shown in Table 8.

Table 8. Accuracies.

Approach Overall Accuracy K-Coefficient

Traditional approach 88% 0.88
Combined approach 89% 0.89

Mixed Hierarchical approach 97% 0.97
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The developed EO service represented a valuable to map land cover at high temporal
and spatial resolutions. The combined application of S1 (only for a couple of classes) and
S2 EO data coupling deep learning techniques boosted the classification of land cover
components in geomorphological complex areas such as the Alps. It is worth noting that
the S1 data were adopted only to better map urban and water areas due to misleading
classifications that may occur due to the physical limitations of SAR in mountainous areas.
Moreover, the S1 processing especially related to interferometry required high performance
computing machines and would not permit a rapid land cover mapping. The developed EO
service was considered to be scalable to other morphological complex realities, in particular
the mountainous areas. The realized EO local service with free EO data and open-source
tools, except from ESRI ArcGIS (that can be replaced by QGIS and Python script for deep
learning), represented a possible workflow to perform ongoing territorial planning and
management. The present EO service led to an important technology transfer in the Aosta
Valley territory answering various requests at different levels (European, national and local).
This EO service will streamline the implementation of local policies concerning land cover
monitoring and assessment. In this regard, the Aosta Valley, similar to many Italian regions,
needs to assign development funds to each municipality every year, which are largely
based on the distribution and extension of the land cover components within its borders.
The maps developed with the present EO service can be freely downloaded in an ESRI
shapefile format or be requested in raster (.tif) from the official Aosta Valley geoportale,
reachable at this link (last access 11 November 2022): https://geoportale.regione.vda.it/
download/carta-copertura-suolo/. The land cover developed starting with the reference
year 2020 is reported in Figure 5 with its confusion matrix in Figure 6.
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6. Conclusions

EO services regarding land cover mapping are crucial to monitor and assess land
cover changes and propose useful sustainable management and planning policies. Free
Copernicus data, offered by S1 and S2 missions as well as PlanetScope may play a great
role in land cover mapping. Nevertheless, the exploitation of these kinds of EO data is well
known in literature. However, there is still a lack in the development of robust services
to map mountainous areas (such as the Alps) with a high level of accuracy according
to the newest EAGLE guidelines. In this regard, this work has successfully explored a
possible scalable and repeatable service for mountainous areas that predominantly uses
optical data, but also use radar data for some components, aiming to compensate native
SAR acquisition mode distortions by adopting a mixed hierarchical approach to map land
cover. This geospatial service based on EO data may help with the implementation of
European, global and local policies concerning land cover mapping both at high spatial and
temporal resolutions to assess land cover changes due to anthropic pressure and climate
change and pursue a sustainable development perspective, empowering the technological
transfer in mountainous realities with a higher degree of detail beyond the GEE-based
Dynamic World.
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Appendix A

A legend description is described as follows.

RAVA Legend EAGLE—ISPRA Legend Description

Urban and anthropic areas (111) Artificial abiotic surfaces

Surfaces strongly influenced by anthropic activity and
characterized by human settlements. These are areas in

which structures are built without distinction for the
intended use or are under construction, as well as roads,

airports, railways, parking lots and any artifact capable of
determining a permanent or semi-permanent loss of the soil

resource, including caves and mines.

Shrubland and transitional
woods
(324)

Shrubland

Natural or natural-shaped surfaces. Areas characterized by
arboreal species and generally sparse woods near grazing

areas or areas with reduced herbaceous vegetation and
rocks (such as rubble). These areas indicate the dynamics of
the ecological forest succession following the abandonment
of grazing areas and consequent expansion of forest areas or

following disturbances to natural or anthropogenic
disturbances to the forest.

Woody crops
(221)

Not defined
(considered separately

vineyards and orchards)

Surfaces characterized by the presence of various cultivation
systems, in particular orchards and vineyards. Surfaces
influenced by human activity and agronomic practices.

Water surfaces
(512)

Water

Natural or natural-shaped surfaces. Areas characterized by
the presence of bodies of water such as natural lakes of

fluvial and/or glacial origin, artificial reservoirs and bodies
of water in wetlands.

Water courses
(511)

Water
Natural or natural-shaped surfaces. Areas characterized by
the presence of watercourses such as rivers, streams along

runoff lines and slope impluviums.

Needle-leaved forests
(312)

Needle-leaved

Natural or natural-shaped surfaces. Wooded areas
characterized by a prevalent and widespread presence of
coniferous trees on a given surface (larch, spruce, fir, pine,

Douglas fir, etc.)

Broad-leaved forests
(311)

Broad-leaved forests

Natural or natural-shaped surfaces. Wooded areas
characterized by a prevalent presence of broad-leaved trees
on a given surface (oak, chestnut, ash, maple, linden, alder,

birch, poplars, etc.)

Mixed forests and moors
(313)

Not defined

Natural or natural-shaped surfaces. Wooded areas
characterized by the presence of both broad-leaved and

conifers with no evident prevalence and sometimes shrubs
or the presence of heather (Erica spp. and

Calluna vulgaris L.).
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RAVA Legend EAGLE—ISPRA Legend Description

Permanent snow and ice
(335)

Permanent snow and ice

Natural surfaces. Areas characterized by the presence of
glaciers and glaciated surfaces such as seracs, icefalls and
frozen or snow-covered surfaces such as snowfields in the
considered observation period. It should be noted how the

measurements carried out fall within the full ablation
season and can, therefore, constitute a useful data on the

perimeter in this sense. The rock glaciers entirely covered by
debris and rocks are not included in this class, preferring to
follow a criterion of spectral uniformity based on the typical

characteristics of remote sensing with s1-s2 data in the
context of the Copernicus Programme that are capable of
investigating the surfaces, not the subsoil, as indicated in

international scientific literature regarding both optical and
sar remote sensing data of these missions. Therefore, we

refer to the rock class.

Natural grasslands and alpine
pastures

(321)
Defined as generic pastures

Natural or natural-shaped surfaces. Areas characterized by
natural evolution or by pastoral management conditioning
practices. These areas are characterized by the presence of

medium-high altitude herbaceous species.

Lawn pastures
(231)

Defined as generic pastures

Natural-shaped surfaces. Areas characterized by
herbaceous cover conditioned by pastoral and agronomic
practices in this case mowing, haymaking and eventual

irrigation. The areas can be characterized by both grazing
and mowing.

Bare rocks
(332)

Consolidated surfaces
Natural surfaces. Areas characterized by the presence of

outcropping rocks and coherent non-vegetated soils.

Discontinuous herbaceous
vegetation of medium-low

altitude
(909)

Not defined
(only an unconsolidated class is

present in a non-vegetated
macro-class)

Natural or natural-shaped surfaces. Areas characterized by
unconsolidated soils with continuous vegetation cover over
time as they have reduced annual vegetation, xeric sparse
vegetation or poorly managed grassing with little or no

agronomic conditioning practices. This coverage also
includes rock jumps provided with vegetation spots with

occasional but not very powerful soils and extremely
limited or absent vegetation.

Sparse herbaceous vegetation at
high altitudes

(333)

Herbaceous vegetation
permanenet

Natural surfaces. Areas characterized by the presence of
scarce but permanent vegetation that is difficult to graze

given both the characteristics of the vegetation and, in some
cases, the slope. These are high-altitude surfaces near rocks

or natural grasslands and woods.

Alpine wetlands
(410)

Defined as generic wetlands

Natural surfaces. Areas characterized by the presence of
wetlands at different altitudes such as swamps, peat bogs
and vegetation typical of these areas. Only the stretches of

water in correspondence with these areas return to the
water bodies.
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