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Abstract

High-resolution spectroscopy (R� 25,000) has recently emerged as one of the leading methods for detecting
atomic and molecular species in the atmospheres of exoplanets. However, it has so far been lacking a robust
method for extracting quantitative constraints on the temperature structure and molecular/atomic abundances. In
this work, we present a novel Bayesian atmospheric retrieval framework applicable to high-resolution cross-
correlation spectroscopy (HRCCS) that relies on the cross-correlation between data and models to extract the
planetary spectral signal. We successfully test the framework on simulated data and show that it can correctly
determine Bayesian credibility intervals on atmospheric temperatures and abundances, allowing for a quantitative
exploration of the inherent degeneracies. Furthermore, our new framework permits us to trivially combine and
explore the synergies between HRCCS and low-resolution spectroscopy to maximally leverage the information
contained within each. This framework also allows us to quantitatively assess the impact of molecular line
opacities at high resolution. We apply the framework to VLT CRIRES K-band spectra of HD 209458 b and HD
189733 b and retrieve abundant carbon monoxide but subsolar abundances for water, which are largely invariant
under different model assumptions. This confirms previous analysis of these data sets, but is possibly at odds with
detections of H2O at different wavelengths and spectral resolutions. The framework presented here is the first step
toward a true synergy between space observatories and ground-based high-resolution observations.
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1. Introduction

The field of exoplanet characterization has matured to the
point where we can begin to answer fundamental questions
regarding planetary climate, composition, and formation, and
provide context for understanding our own solar system planets
(Bailey 2014; Burrows 2014; Madhusudhan et al. 2014;
Crossfield 2015). The community has leveraged the power of
ground- and space-based observatories to find and characterize
a diverse range of planets, ranging from hot giants to terrestrial-
sized, potentially habitable worlds. Atmospheric characteriza-
tion has emerged as a key area of intense focus as of late
because the atmosphere is the most readily accessible part of a
planet via remote observations.

The most scientifically valuable measurements of exoplanet
atmospheres are those constraining their composition and
temperature changes with altitude, ideally as a function of
orbital phase. The most stringent constraints so far come from
observations with low-resolution spectroscopy (hereafter LRS;
at a resolving power R=λ/Δλ�200), primarily with the
Hubble Space Telescope (HST; Deming et al. 2013; Mandell
et al. 2013; Knutson et al. 2014; Kreidberg et al. 2014a;
Stevenson et al. 2014; Haynes et al. 2015; Evans et al. 2016)
and Spitzer Space Telescope (Grillmair et al. 2008). The
instruments on board HST permit near-continuous coverage
over a broad wavelength range spanning ∼0.3–1.7 μm (e.g.,
Sing et al. 2016) split across three passbands. In addition,
Spitzer provides complementary broadband photometry from
3.5 to 5.4 μm (and historically out to 8 μm). Although the
coverage is broad, the resolution is very coarse, typically
R∼30–200. HST observations in both emission and

transmission generally permit order-of-magnitude constraints
on the molecular abundance of water (e.g., Kreidberg et al.
2014b; Line et al. 2016; Wakeford et al. 2017; Tsiaras et al.
2018). The low-resolution and limited near-IR coverage,
however, has precluded our ability, for most objects, to
sufficiently break degeneracies to constrain (beyond upper
limits) the abundances of other key diagnostic molecules like
methane, carbon dioxide, carbon monoxide, ammonia, hydro-
gen cyanide, and acetylene. The James Webb Space Telescope
(JWST), anticipated to launch within the next few years, will
significantly improve precisions on the aforementioned quan-
tities (Greene et al. 2016), due to its extremely broad,
continuous (0.6–12 μm), low-to-moderate resolution spectrosc-
opy (R∼100–3500). However, JWST is going to be a limited
resource, and it is therefore crucial to pair it with independent
but complementary observations.
A powerful emerging approach for characterizing exoplanet

atmospheres is high-resolution cross-correlation spectroscopy
(HRCCS). It leverages the ability to resolve molecular bands
into individual lines and to detect the planet’s Doppler shift
directly at the ∼km s−1 level. In addition, it benefits from the
large collective area of ground-based telescopes. Spectral
information is extracted through cross-correlation with model
templates, which acts as a robust signal filtering technique to
recognize the peculiar fingerprint of each species. HRCCS is
the best technique so far to unambiguously identify molecules,
and it is the only technique to have reliably detected carbon-
based molecules in the atmospheres of transiting and non-
transiting exoplanets, starting with the pioneering detection of
carbon monoxide by Snellen et al. (2010).
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Despite this potential, little work has focused on rigorously
determining the abundances of molecules, the vertical temper-
ature structure, and other fundamental atmospheric properties
from HRCCS data. One of the primary challenges in doing so
is placing HRCCS within a robust atmospheric retrieval
framework. In contrast to LRS data, where spectra are either
calibrated in flux or measured in comparison to a reference star,
HRCCS data are “self-calibrated,” meaning that the broadband
information and the time variations of flux at each wavelength
are divided out of the data. With such normalization, the small
variations due to the planet atmosphere are all measured
relative to the stellar flux. This peculiarity, together with the
small residual broadband structure due to imperfect normal-
ization, results in the loss of a reliable continuum, which
inhibits the use of the standard (data spectrum – model
spectrum) residual vector used in typical LRS parameter
estimation via chi-square. Cross-correlating with model
spectra, besides providing a matching filter for robust
identification of species, is also insensitive to any residual
broadband variations.

The challenge with retrieving atmospheric parameters from
high-resolution spectra is converting the cross-correlation
values into a goodness-of-fit estimator. Brogi et al. (2012)
developed a statistical test to assess the significance of cross-
correlation signals by comparing the distribution of cross-
correlation values around the planet radial velocity (typically
labeled as the “in-trail” sample) to the values away from it (the
“out-of-trail” sample). This strategy has been widely adopted in
the literature since then (Birkby et al. 2013, 2017; Brogi et al.
2013, 2014, 2018; Nugroho et al. 2017; Hawker et al. 2018).
Due to the necessity to compute a statistically significant
number of cross-correlation values (typically thousands of
values mapping the planet’s orbital and systemic velocity), its
application is limited to the evaluation of a relatively small
(∼100) number of models. Furthermore, this test is somewhat
sensitive to the range around the planet radial velocity chosen
for building the in-trail distribution.

Brogi et al. (2017) introduced a different method for
overcoming some of the above limitations. They estimated as
accurately as possible the model cross-correlation function and
compared it to the observed cross-correlation function via chi-
square fitting. To replicate the astrophysical, instrumental, and
data analysis effects as closely as possible, each model is added
to the real data, albeit at a sufficiently low level so that the
noise properties and data analysis are not altered. This
alternative strategy still requires significant computational
resources and is therefore limited to the evaluation of only a
few thousands model HRCCS spectra sampled from a pre-
existing LRS posterior. Such sparse sampling is only sufficient
to constrain confidence intervals within the 3σ level, and on a
limited portion of the parameter space. As a consequence, full
independent retrievals on HRCCS data cannot be performed.
Conditioning the HRCCS retrieval on the LRS retrieval
implicitly assumes that the two data sets contain the same
amount of evidence (or weighting), which is not necessarily the
case given the different spectral range and signal to noise of the
observations. Lastly, because neighboring cross-correlation
values can be correlated (depending on the sampling in velocity
and the instrumental resolution), chi-square is not necessarily
the correct statistic to compare cross-correlation functions.

The primary goal of this paper is to introduce a robust and
unbiased framework to perform Bayesian retrieval analyses on
HRCCS data, free from the limitations of previous approaches. In
Section 2, we define a likelihood function for high-resolution
spectra, and we describe its implementation into a nested-sampling
Bayesian estimator. In Section 3, we describe the setup used to
test our new Bayesian framework, including a simulated data
set replicating previous work on dayside spectroscopy of
HD209458b. We present the analysis of the simulated data set
(Section 3.2), the excellent match between the retrieved and the
modeled atmospheric parameters (Section 3.3), the effects of
uncertainties in the line list of water vapor (Section 3.5), and the
increased precision when combining space and ground observa-
tions (Section 3.6). We then apply the framework to real obser-
vations of two exoplanets, HD189733b and HD209458b, in
Section 4. We conclude in Section 5 by highlighting future
applications of this framework, in particular coordinated observa-
tions with space and ground-based telescopes.

2. A Novel HRCCS Atmospheric Retrieval Framework

At its core, an HRCCS retrieval is no different from the
typical LRS retrievals applied in numerous previous works
(see, e.g., the review by Madhusudhan 2018). The key
components of any retrieval algorithm are the data or
observable, the forward model that maps the quantities of
interest onto the data/observable, and the Bayesian estimator
that optimizes the forward model parameters (or the range
thereof) given a likelihood function (Figure 1). Below we
describe each of these key components and how they are
adapted within our HRCCS retrieval framework.

Figure 1. Illustration of the key components of the HRCCS retrieval algorithm.
Many components are the same as in a classic “low-resolution” retrieval: the
forward model, the data, and the Bayesian estimator. The key novelties
(indicated in blue) required to perform retrievals in cross-correlation space are
the inclusion of the radial velocities (system+orbital), a telluric subtracted
“data cube” of normalized spectrum vs. time/phase, and a mathematical
mapping from the correlation coefficient to a likelihood function that can be
used inside a parameter estimation package such as MCMC (figure modified
from MacDonald & Madhusudhan 2017 with permission).
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2.1. The Forward Model

A typical spectral retrieval forward model is a radiative
transfer routine that takes in gas abundances, cloud properties,
vertical thermal structure information, and/or geometric
information to produce a transmission or emission spectrum.
In this work, we leverage the CHIMERA forward model (Line
et al. 2013, 2014, 2015, 2016, 2017; Line & Yung 2013). The
CHIMERA5 forward model offers the flexibility to handle a
variety of atmospheric assumptions from simple 1D non-self-
consistent (Line et al. 2013, 2014, 2016) to full 1D self-
consistent thermochemical radiative–convective equilibrium
(Arcangeli et al. 2018; Kreidberg et al. 2018; Mansfield et al.
2018) to quasi-2D/3D parameterizations and observing
geometries (Feng et al. 2016; Line & Parmentier 2016) as
well as flexible treatments of opacities (e.g., line by line, line
sampling, and correlated-k) based upon a pre-tabulated line-by-
line (<0.01 cm −1) absorption cross-section database (Freedman
et al. 2008, 2014).

Specifically, here, we explore the classic free and chemically
consistent versions described in Kreidberg et al. (2015) but in
the emission geometry. In the free forward model, we include
as free parameters the H2O and CO mixing ratios (constant
with pressure), H2–H2/He collision-induced absorption (CIA),
and the three-parameter6 disk-integrated temperature–pressure
profile (T–p profile) parameterization of Guillot (2010).7 In
the chemically consistent forward model, we utilize the same
T–pprofile parameterization but parameterize the composition
with a metallicity ([M/H], where solar is 0) and log-carbon-to-
oxygen ratio (log(C/O), where solar is −0.26) under the
assumption of pure thermochemical equilibrium computed
using the NASA CEA2 routine (Gordon & Mcbride 1994;
Kreidberg et al. 2015) by scaling the solar elemental
abundances of Lodders et al. (2009). In the forward modeling
used in this work, we include H2O, CH4, CO, CO2, NH3, HCN,
and the H2–H2/He CIA as opacities; however, for nearly solar
abundances, only H2O and CO present themselves over the
K-band spectrum. The output from the forward model is a line-
by-line top-of-atmosphere flux over the K-band (2.26–2.35 μm),
which is then normalized to the stellar spectrum and planet-to-
star area ratio.

The forward model spectra are then Doppler-shifted by
spline interpolation8 (Brogi et al. 2014) based on the semi-
amplitude of the planet radial velocity (KP), the systemic
velocity (Vsys), and the barycentric velocity of the observer
Vbary, according to

V t V V t K tsin 2 , 1P sys bary P pj= + +( ) ( ) [ ( )] ( )

where we have ignored cross-terms in velocity due to their
small impact (on the order of m s−1). The Doppler-shifted
model spectra are finally convolved with the appropriate
instrumental profile (IP). Due to the fact that velocities in
Equation (1) are not perfectly known, we introduce two
additional key parameters: a differential systemic velocity
(dVsys) and a differential planet radial velocity (dKP). With

typical uncertainties of a few km s−1, detectable at the spectral
resolution and signal-to-noise ratio (S/N) of HRCCS observa-
tions, ignoring these differential velocities would lead to the
incorrect localization of the planet’s signal.

2.2. The Bayesian Estimator: Cross-correlation to Log-
likelihood Mapping

Bayesian estimation necessarily requires a well-defined
likelihood function (Gregory 2005; Sivia & Skilling 2006;
Feroz et al. 2009; Foreman-Mackey et al. 2013). The standard
likelihood function in LRS analysis is a Gaussian, or similarly,
a quadratic or chi-square log-likelihood. The challenge with
HRCCS data is to exploit the power of the large number of
spectral lines and relatively well-known orbital velocity via the
cross-correlation between a template model and the phase-
dependent data. Once a mapping from the readily calculable
cross-correlation coefficient to log-likelihood is found, one can
employ the standard suite of Bayesian analysis tools including
parameter estimation, prior inclusion, and model selection. We
utilize the powerful pymultinest tool (Buchner et al. 2014),
a Python wrapper to multinest (Feroz et al. 2009), to
perform all of the parameter estimation within our HRCCS
retrieval framework.
In building this HRCCS likelihood function, we want to

exploit some unique characteristics of the analysis of high-
resolution spectra. First, the continuum is divided out of the
data to allow for their self-calibration (i.e., to eliminate the
necessity for a reference star). Second, the planetary signal is
extracted via cross-correlation with model spectra, so our
metric for the goodness of fit must incorporate the cross-
correlation function or a closely related quantity. Third, the
sign of the correlation coefficient matters, as it allows us to
discriminate between emission lines incorrectly fitted with an
absorption spectrum and vice versa. Lastly, although the cross-
correlation function is by definition normalized and thus
insensitive to scaling of the model and/or the data, observa-
tions have a finite S/N. This means that two nearly identical
model spectra in terms of line-to-line ratios, but differing by
orders of magnitude in the overall line strength, should yield a
different likelihood.

2.2.1. Previous Cross-correlation to Log-likelihood Mappings

The idea of mapping the correlation coefficient to a log-
likelihood (hereafter CC-to- Llog ) is not new. One of the earlier
applications of such a mapping in the exoplanet community
was in the context of precise stellar radial velocities
(Zucker 2003). The aim of Zucker (2003) was to derive a
formalism that facilitated combining radial velocity measure-
ments obtained via cross-correlation from multiple spectral
regions and at varying S/Ns. Starting from the definition of χ2,
Zucker (2003) derived the following CC-to- Llog mapping:

L
N

Clog
2

log 1 . 22= - -( ) ( ) ( )

The key feature of this mapping is that the Llog depends on the
square of the correlation coefficient (C). For our application,
the use of the square of the cross-correlation function limits the
sensitivity to inversion layers. Although the actual line shape in
dayside spectra can be quite complex and it is not a trivial “sign
flip” when going from non-inverted to inverted (e.g., Schwarz
et al. 2015), spectra with emission lines cross-correlated with

5 A version of the transmission spectrum code is publicly available through
STScI’s ExoCTK package: https://github.com/ExoCTK/chimera.
6 log logirk =( ) of the Planck mean infrared opacity; log logg =( ) of the
visible-to-infrared opacity; Tirr=top-of-atmosphere irradiation temperature.
7 Different temperature profile parameterizations can be explored in a future
investigation.
8 With Python’s scipy.interpolation package.
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absorption models (and vice versa) produce some antic-
orrelation that would not be discriminated due to the
insensitivity to the sign of C. In addition, the log-likelihood
of Zucker (2003) weights the spectra based on their cross-
correlation value, assuming therefore that each spectrum
delivers a peak significantly above the level of the noise.
Although this is appropriate for stellar radial velocities, it is not
the case for planetary radial velocities, and we thus expect this
likelihood to struggle at low-S/N levels. This mapping should
work well for high-S/N spectra of isolated objects like brown
dwarfs and directly imaged planets, as demonstrated in Bowler
et al. (2017).

Lockwood et al. (2014) were the first to apply a CC-to- Llog
mapping to high-resolution exoplanet spectroscopy of the non-
transiting planet τBoötis b. Their analysis comprised two
steps. First, the formalism of Zucker (2003) as implemented in
the two-dimensional routine TODCOR is used to combine all
of the cross-correlation functions taken at a certain epoch (e.g.,
during one night of observations) into a maximum-likelihood
estimator, i.e., an effective cross-correlation value. Subse-
quently, a CC-to- Llog mapping is derived as

L Clog 3=( ) ( )

and used to combine cross-correlation functions taken at
different epochs. An important underlying hypothesis of their
formalism, which is instead violated by our CRIRES observa-
tions, is that the change in planet radial velocity during one set
of observations is negligible with respect to the instrumental
resolution. This is ensured by typically taking NIRSPEC
spectra when the planet is in quadrature. An additional
substantial difference with our analysis is that the cross-
correlation function contains both the stellar and the planet
spectrum, i.e., it is a two-dimensional cross-correlation with the
stellar coefficients dominating the planet coefficients by orders
of magnitude.

The mapping of Lockwood et al. (2014) was also recently
adopted in Piskorz et al. (2018) to combine Keck NIRSPEC K-
band data with Spitzer for the transiting hot-Jupiter Kelt-2Ab.
However, we again stress that such formalism cannot be
applied to our data analysis where we make use of the change
in planet radial velocity with time. We show indeed in
Section 3.4 that if we incorrectly apply Equation (3) to our
data, the resulting Llog is not distributed as a χ2 (Figure 5) as
Wilks’ Theorem demands (Wilks 1938).

2.2.2. A New Mapping

In this section, we derive a new CC-to- Llog mapping that
leverages all of the aforementioned key components of a
HRCCS observation. The starting point for building our
mapping closely matches the derivation in Section 2 of Zucker
(2003). We denote a single observed spectrum by f (n), where n
is the bin number, or spectral channel.

We compute a template spectrum g(n) in the same reference
frame as the data. We assume that the model describing the
data is

f n a g n s d , 4n= - +( ) ( ) ( )

where a is a scaling factor, s a bin/wavelength shift, and dn the
noise at bin n.

It is important that f (n) and g(n) are continuum subtracted. In
our current analysis and following common implementation of
numerical cross-correlation routines, we achieve this by subtracting
the mean from each of the vectors prior to cross-correlation. Under
these assumptions, we have that f n 0nå =( ) and g n 0nå =( ) .
We assume that the noise is Gaussian distributed at each

pixel with standard deviation σ. The likelihood function L of
our model is

L
f n a g n s

f n a g n s

1

2
exp

2

1

2
exp

2
, 5

n
N

n

2

2

2

2

2

2



å

ps s

ps s

= -
- -

= -
- -

⎧⎨⎩
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎫⎬⎭

[ ( ) ( )]

[ ( ) ( )] ( )

where N is the total number of spectral channels. This is typically
the number of pixels per spectrum (or per detector, or per spectral
order). The log-likelihood can be derived from the above:

L N f n a g n slog log
1

2
, 6

n
2

2ås
s

= - - - -( ) [ ( ) ( )] ( )

after ignoring constant additive terms. We note that throughout
this section, the function “log” will indicate the natural
logarithm.
At this stage, our analysis diverges from Zucker (2003). We

impose that the scaling factor is unity (a=1). Physically, this
means that we want the overall strength of spectral lines in the
model to match the observed data. Practically, because our data
f (n) is normalized and telluric corrected, any residual variations
are relative to the stellar continuum. We therefore scale g(n) by
the stellar flux and planet-to-stellar area ratio (Equation (12)
below). We note that the formalism in Zucker (2003) does not
specify whether the cross-correlation is performed with a model
spectrum, a binary mask, or generically a template. Therefore,
a does not carry any physical meaning in that context, as the
units of the template are arbitrary. This is why in their work a is
substituted with its maximum-likelihood estimator â.
Equation (6) contains another variable, σ. We do not fix this,

as it is difficult to estimate the exact level of noise in each spectral
channel, especially under imperfect removal of the telluric
spectrum. We instead compute the maximum-likelihood estima-
tor ŝ by nulling the partial derivative of the log-likelihood:

L

N
f n g n s

N
f n g n s

0
log

1

1
. 7

n

n

3
2

2 2

å

å

s

s s

s

=
¶

¶

= - -

= - -

( )

ˆ ˆ
[ ( ) ( )]

ˆ [ ( ) ( )] ( )

Substituting ŝ into Llog( ) and ignoring constant additive terms,
we get

8

L N
N

f n g n s
N

N

N
f n g n s

N

N
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log log
1

2

2
log

1

2
log

1
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n

n

n

2

2
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å
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We can now write the formulas for the variance of the data (sf
2),

the variance of the model (sg
2), and the cross-covariance R(s):

s
N

f n

s
N

g n s

R s
N

f n g n s

1

1

1
.

f
n

g
n

n

2 2

2 2

å

å

å

=

= -

= -

( )

( )

( ) ( ) ( )

Substituting them into Llog( ) leads us to

L
N

s R s slog
2

log 2 . 9f g
2 2= - - +( ) [ ( ) ] ( )

Factorizing out the product s sf g, we can make the cross-
correlation appear

L
N

s s
s

s

s
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log log 2 ,
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with the correlation coefficient

C s
R s

s s
. 11

f g
2 2

=( ) ( ) ( )

For practical applications, Equation (9) is slightly faster to
compute than Equation (10) and is the preferred choice for our
numerical implementation. It is important to note that the data
variance sf

2( ) only needs to be computed once at the end stage
of the data analysis (step 7 in Section 3.2 below). However, sg

2

will change as a function of the model tested, and also to a
lesser extent as a function of the Doppler shift tested.
Therefore, in our analysis we will recompute sg

2 every time a
model is evaluated, and for each of the spectra in the time
sequence.

Equation (9) preserves the sign of the cross-covariance and
will therefore discriminate between correlation and antic-
orrelation. This is a direct consequence of imposing a=1. In
addition, when the variance of the data and the variance of the
(scaled) model differ significantly, the likelihood decreases
accordingly. This incorporates a metric for comparing the
average line depth to the S/N of the data.

It is important to realize that if we carried out the
mathematical calculations with the scaling factor a as an
explicit variable and then imposed L alog 0¶ ¶ =( ) at the
stage of Equation (9) (had we kept an a and a2 multiplier in
front of the R(s) and sg

2 terms, respectively), we would have
obtained as solution a=1. This means that our physically
motivated choice of a=1 also corresponds to choosing the
maximum-likelihood estimator for this variable.

All of the quantities listed in Equation (9) are obtained as
byproducts of the current analysis techniques of high-resolution
spectra. In Section 3.2, we discuss additional details of the data
analysis important for the application of this formalism.

3. Tests on Simulated Data

In this section, we demonstrate, on a simulated emission
spectrum data set, the feasibility and utility of our novel
HRCCS retrieval framework and the CC-to- Llog mapping
presented in Section 2. We start by describing the construction
of the simulated data set in Section 3.1 and its analysis in
Section 3.2. We present the “fiducial” retrieved constraints in
Section 3.3, compare the constraints derived from the different
CC-to- Llog mappings in Section 3.4, explore the impact of
different water line lists in Section 3.5, and finally combine in a
coherent way the high-resolution spectra with a simulated HST
Wide Field Camera 3 (HSTWFC3) LRS data set in Section 3.6.

3.1. Construction of the Simulated Data Set

One half night of data is simulated based on real CRIRES
observations of HD209458b (Schwarz et al. 2015; Brogi et al.
2017). The synthetic data set incorporates the photon noise
from the star, variations in the Earth’s transmission spectrum
with airmass, variable detector efficiency, the phase-dependent
Doppler shift of the planet, and the time-dependent IP. This
simulated data set constitutes the basis for testing the retrieval
framework presented in the previous sections, as it incorporates
all the major sources of uncertainties in the analysis of
HRCCS data.
To generate this data set, we compute a solar-composition

planet atmosphere with parameters listed in Table 1 and using
the modeling tools described in Section 2.1. We run the
computations over the wavelength range 2267–2350 nm
(matching the CRIRES setup of the real observations) at a
resolving power of R∼440,000 and scale the model to the
stellar flux of HD209458 via

F
F

B T

R

R,
, 12scaled

eff

P
2


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where F is the model flux in Wm−2 m−1, RP and Rå are the
stellar and planet radii, respectively, and B the Planck function
at the stellar effective temperature Teff approximating the stellar
spectrum (Table 2). The top panel (Step 1) of Figure 2 shows a
small portion of this spectrum in the wavelength range
corresponding to detector 1 of CRIRES.
We adopt a Keplerian circular velocity of 145.9 km s−1, i.e.,

the literature value for HD209458b, and a combination of
systemic and barycentric velocities to match the actual
observations of night 1 in Brogi et al. (2017; Table 2). The
scaled model Fscaled is Doppler-shifted according to the radial
velocity at each epoch of observations computed via
Equation (1) and saved in a matrix F′(λ, t). In this test case,
the observations span 1024 pixels/wavelength channel and 59
separate integrations (spectra) covering phases 0.506–0.577
resulting in a ∼75 km s−1 change in Doppler shift throughout
the sequence (Figure 2, Step 2).
The wavelength- and time-dependent transparency T(λ, t) of

Earth’s atmosphere (the telluric spectrum) is computed via the
ESO Skycalc command-line tool, which is based on the Cerro
Paranal Sky Model (Noll et al. 2012; Jones et al. 2013). The
model takes into account the sky position of the target at the
time of the observation and meteorological data, except for
the precipitable water vapor (PWV) that needs to be adjusted
manually. We find a good match to the HD 209458 data set by
adopting the average PWV of 2.5 mm for Cerro Paranal.
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We measure the average flux levels in the observed CRIRES
spectra by taking the median of their brightest pixels, and we
compute the number of recorded photoelectrons by multiplying
by the exposure time and detector gain of those observations.
This gives us a vector ò(t), where we ignore any wavelength
dependence of the instrumental throughput. Such dependence
certainly occurs even over the small wavelength range of one
CRIRES detector (10–15 nm) and indeed measurable trends in
the continuum (typically a slope) are on the order of ∼1%.
However, owing to the good level of thermal stability of
CRIRES (0.01 K over a half night), these effects are not time-
dependent and are therefore divided out during telluric
removal.

The noiseless modeled data set is obtained by combining all
the above sources:

F t F t T t t, 1 , , , 13i i i imod l l l= + ¢( ) [ ( )] ( ) ( ) ( )

where the product is scalar, i.e., computed element by element,
and adding 1 accounts for the normalized stellar spectrum.

In the bright source limit, the noise budget is completely
dominated by the stellar photons, so the noise matrix is
governed by Poisson statistics. This leads to the following
noise matrix:

N t F t, 0, 1 , , 14mod modl l=( ) ( ) ( ) ( )

where 0, 1( ) is a normally distributed random variable. The
simulated spectrum is the sum of the recorded photons and the
noise matrix, i.e.,

F t F t N t, , , . 15sim mod modl l l= +( ) ( ) ( ) ( )

The panel labeled with step 3 in Figure 2 shows the final
simulated “raw data” product. The obvious features seen in the
final data matrix are the stationary telluric lines (dark vertical
stripes) and the airmass-throughput dependence (horizontal
stripes). This synthetic data set is then processed using the
procedure outlined below.

3.2. Analysis of the Simulated Data Set

The analysis devised for processing data within this new data
set is largely adapted from previous literature; however, there
are some caveats related to the nature of our cross-correlation-
to-likelihood mapping that require particular care. In Figure 2,
this analysis is labeled steps 4–7, which we detail below:

1. Step 4: each spectrum is calibrated in wavelength by
comparing the pixel position of telluric lines in the
observed spectra to their theoretical wavelength obtained
from a telluric model. As in Flowers et al. (2018), a
common wavelength solution with constant space in
velocity (constant dλ/λ) is computed and data are re-
gridded to this solution via spline interpolation. Each
spectrum is normalized by the median of its brightest 300
pixels to correct for throughput variations. Re-gridding is
necessary for estimating the IP of CRIRES, which is done
at this stage through the procedure described in Rucinski
(1999) and implemented in Brogi et al. (2016) and
Flowers et al. (2018). The IP is used to convolve the
model spectra at a later stage.

2. Step 5: the spectra are averaged in time and the mean
spectrum is fitted to each observed spectrum with a
second-order polynomial. This procedure removes the
main variability in the depth of methane telluric lines;
however, residuals are still visible at the position of water
vapor telluric lines, which behave differently from
methane due to the different scale height in the Earth’s
atmosphere and temporal changes in humidity.

3. Step 6: these extra changes in water telluric lines are
corrected by modeling the flux in each spectral channel as
a function of time with a second-order polynomial and
dividing out the fit. Since the planet’s orbital motion
produces a time-varying Doppler shift of the spectrum,
spectral lines from the exoplanet’s atmosphere will shift
across adjacent spectral channels and will be nearly
unaffected by the above correction.

Table 1
Forward Model Parameters and Uniform Prior Ranges

Parameter Symbol Uniform Prior Range Model Input “Truth”

Doppler/Scale Parameters
Relative Systemic Velocity dVsys −50–50 km s−1 0
Relative Planet Radial Velocity dKP −50–50 km s−1 0
Model Scale Factor log(a) −2–2 0.0

Temperature–Pressure Profile Parameters
Planck Mean IR Opacity log(κir) −3–1 −1
Visible to IR Opacity log(γ) −4–2 −1.5
Irradiation Temperature Tirr 300–2800 K 1400

Free Retrieval Abundance Parameters
H2O Mixing Ratio log(H2O) −12–0 −3.4
CO Mixing Ratio log(CO) −12–0 −3.22

Chemically Consistent Abundance Parameters
Metallicity [M/H] −2–2 0.0
Carbon-to-oxygen Ratio log(C/O) −2–1 −0.26

Note. The first three parameters are required to Doppler-shift and scale the template model spectrum. The second three control the temperature–pressure profile. The
planet metallicity and carbon-to-oxygen ratio replace the H2O and CO mixing ratios when using the chemically consistent model. In most tests, the free model
includes only H2O, CO, and H2/He CIA as opacity sources, whereas the chemically consistent model includes opacities from H2O, CH4, CO, CO2, NH3, HCN, and
the H2–H2/He CIA. Each model (free or chemically consistent) has eight total free parameters unless specified otherwise.
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4. Step 7: any further alteration of the noise properties in the
data must be avoided, because they would alter the data
variance sf

2 in Equation (9). Consequently, the common
practice of weighting down noisy spectral channels by
dividing them through their variance in time must be
avoided. In this revised analysis, noisy columns above
3× the standard deviation of the matrix are masked and

not used at the cross-correlation stage. The total number
of channels N is modified accordingly for subsequent use
in Equation (9).

As in previous work, the above analysis exploits the fact that
the planet spectrum is subject to a variable Doppler shift during
a few hours of observations, whereas the contaminant signals
(telluric and stellar) are stationary or quasi-stationary. How-
ever, we note that steps 5 and 6 are achieved with a variety of
methods in the literature, either by fitting airmass dependence
and then sampling time variations in common between spectral
channels directly from the data (Brogi et al. 2012, 2013,
2014, 2016), or by applying blind detrending algorithms such
as principal component analysis (de Kok et al. 2013; Piskorz
et al. 2016, 2017) or Sysrem (Birkby et al. 2013, 2017). All
these approaches rely on the assumption that a certain spectral
line from the exoplanet spectrum sweeps several spectral
channels (several columns in our data matrix) during one night
of observations, thus not influencing the detrending process
significantly. In reality, whatever algorithm is applied to the
data, the planet signal is stretched and scaled in the process. We
show an example of this alteration in the bottom panel (step 7 -
noiseless) of Figure 2, which is the end point of the data
analysis applied to a noiseless data set. When compared to the
initial spectrum at step 2, the end result clearly shows artifacts
and scaling effects due to telluric removal. If unaccounted for,
these artifacts can bias the retrieved planet parameters
(velocities, abundances, and thermal vertical structure).
As in previous work, the data at step 7 is cross-correlated

with models, and each cross-correlation value is converted into
the Llog( ) value through Equation (9). To account for the
stretching of the planet signal, we repeat steps 1–7 on each of
the tested model spectra, but without adding the noise matrix
Nmod. This mimics the effects of the data analysis on the model,
and eliminates the biases, at a small computational cost.
The standard approach to interpret HRCCS observations would

be to store the cross-correlation coefficients for each velocity, each
spectrum, each detector, and each night, and to determine the
“detection significance” of the planetary signal in the planetary–
systemic velocity plane via the total cross-correlation coefficient
summed over all observed orbital phases. This sum could be
weighted to account for the different S/Ns of each spectrum or
variable telluric or planet signal of CRIRES detectors, introducing

Table 2
Relevant Parameters for the Systems HD 209458 and HD 189733 Used Throughout the Paper

HD 209458 HD 189733

Parameter Symbol Value Reference Value References

Stellar radius (RSun) Rå 1.162 S10 0.756 T08
Effective temperature (K) Teff 6065 T08 5040 T08

Planet gravity (log10, cgs) log(gp) 2.96 S10 3.28 L
Planet radius (RJ) RP 1.38 S10 1.178 T09
Radial-velocity amplitude (km s−1) KP 145.9 B17 152.5 B16
Phase range (# spectra) f [0.506, 0.578](59) K07 [0.383, 0.479](110) A10

[0.557, 0.622](54) K07 L L
Radial velocity (km s−1) V Vsys bary+ [−26.92, −26.25] K07+T08 [−9.40, −8.84] T09+A10

[−13.44, −12.81] K07+T08 L L

Note. Parameter ranges for the phase range and radial velocity for HD 209458 system are given for both nights. References are K07=Knutson et al. (2007),
T08=Torres et al. (2008), T09=Triaud et al. (2009), A10=Agol et al. (2010), S10=Southworth (2010) B16=Brogi et al. (2016), B17=Brogi et al. (2017).

Figure 2. Step-by-step visualization of the process used to construct a
simulated data set (steps 1–3; detailed in Section 3.1) and analyze it (steps 4–7;
detailed in Section 3.2). This sequence is based on real on-sky performances of
the infrared spectrograph CRIRES while observing the exoplanet HD 209458
b. Shown is the spectral sequence computed for the first detector of the
spectrograph (out of four detectors), incorporating all the major astrophysical
and instrumental sources of noise. This simulated data set is used to test the
Bayesian framework explained in Section 2. The analysis at steps 4–7 is also
performed on the observed data sets, as explained in Section 4.
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some sort of subjectivity to the process. The significance of the
detection is then measured either by taking the ratio between the
peak value of the total cross-correlation and the standard deviation
of the cross-correlation coefficients around it, or by applying a
more sophisticated t-test on the distributions of the cross-
correlation coefficients around and far from the planet radial
velocity. If a high significance (usually larger than ∼4σ) is
obtained at the expected velocity pair, then the planetary
atmosphere is said to be detected (Snellen et al. 2010; Brogi
et al. 2012; Birkby et al. 2013, 2017; de Kok et al. 2013; Schwarz
et al. 2015). Figure 3 shows the detection significance for the
simulated planet signal (with the underlying CO and H2O
abundances given in Table 1), which should aid in the qualitative
mapping between standard methods and the constraints obtained
through our retrieval method. Given our simulated planetary/
stellar/noise properties, we would obtain a ∼14σ detection of
the planetary signal in the planetary–systemic velocity plane at the
input velocities. This fairly optimistic signal compared to the
majority of past CRIRES detections is a combination of a model
particularly rich in spectral lines, and of the omitted effects of
detector readout, thermal noise, additional photon noise from sky
emission, and effects of damaged pixels and regions on the
detector.

In this new framework, to obtain the total signal from the
planet we just need to co-add all the log-likelihood values as a
function of time, detector, and/or night of observation.
Contrary to previous studies, there is no longer any need to
weight cross-correlation functions, because our likelihood
contains the data and model variances (sf

2 and sg
2, respectively),

hence it intrinsically incorporates the variable S/N of the
observations. This is another significant advancement of our
framework, and it adds objectivity to the retrieval process. In
the following sections, we perform a series of exploratory

experiments with our novel HRCCS retrieval approach on this
processed simulated data set.

3.3. A Simple HRCCS “Free” Retrieval Example

Figure 4 summarizes the retrieved properties on the
simulated HRCCS data set (under the free retrieval assumption
parameterized with the variables given in Table 1). These
constraints are quite remarkable—on the order of 0.5 dex for
CO and H2O, despite the inclusion of realistic noise sources
and common atmospheric retrieval parameterizations utilized in
LRS data interpretations. It is encouraging to note that there is
no bias in the retrieved parameters, including the scale factor
a,9 beyond what is expected due to the random noise
instantiation (Nmod(λ, t) in Equation (15)).
We notice some curious, but expected, degeneracies. First,

the water and CO abundances are strongly correlated.
Increasing the water abundance would require an increase in
the CO abundance to maintain an acceptable log-likelihood.
The reason for this degeneracy is that the retrieval tries to
preserve the ratio between the CO and the water lines.
Increasing both together, over some range, preserves this ratio.
This suggests that the HRCCS data is highly sensitive to the
abundance ratios. In fact, the precision on log(CO)–log(H2O), a
good proxy for C/O, is ±0.18 dex, about a factor of 2 better
than for absolute abundances. Another noteworthy, but
unsurprising, degeneracy is between the two velocities. This
is simply a reproduction of the degeneracy between KP and Vsys

seen in the total cross-correlation signal/detection significance
(Figure 3) that is easily lifted by repeating observations at
different phase ranges. At least in this example, there do not
appear to be any degeneracies between the abundances and the
velocities. Additional degeneracies appear among the three
parameters describing the T–p profile (not shown) that reflect
the retrieval’s desire to maintain the temperature gradient over
the 1 bar to 10 mbar region of the atmosphere.
It is worth noting that the tightest constraint on the water

abundance through HST WFC3 emission spectroscopy
(1.1–1.7 μm) is ±0.6 dex (WASP-43 b, Kreidberg et al.
2014b). The high-resolution data, in particular this narrow
slice of K-band spectra from 2.29 to 2.34 μm, show potential to
constrain not only the water abundance to a higher precision,
but also the CO abundance unobtainable with WFC3 alone.
The sensitivity to absolute abundances is perhaps the most

unexpected outcome of this framework. One would expect that
normalizing the data as described in Section 3.2 removed any
sensitivity to absolute fluxes, hence absolute abundances.
However, this sensitivity is partially recovered by choosing
a=1 in Section 2.2.2. This still does not set the absolute
continuum; however, it sets the absolute planet line depth
compared to the continuum of the star. Conditional to a proper
normalization of the model (in planet/star units), this choice is
completely consistent with the analysis of transit or eclipse
spectroscopy at low spectral resolution. Furthermore, if
significantly uncertain, the normalization parameters (stellar
temperature, planet/star radii) can be inserted as free
parameters with appropriate priors into the framework at
nearly no computational cost.
We acknowledge that large uncertainties in the absolute

scaling (or stretch) in the line-to-continuum contrast, due to

Figure 3. Planetary signal detected in the Kp–dVsys plane. The x-axis is the
differential system velocity (0 km s−1 represents no deviation from the known
time-dependent system velocity) and the y-axis is the maximum radial
(Keplerian) velocity of the planet. The figure is generated by summing the
cross-correlation coefficient at all phases for each combination of Kp and dVsys,
and normalizing by the “noise,” which is an average of the cross-correlation
coefficients over a portion of velocity space far from the planetary signal. This
noise/planetary parameter setup results in a ∼12σ detection of the planetary
atmosphere at the “known” velocities (white dashed lines).

9 Leaving a as a free parameter allows us to verify that a=1 is an unbiased
choice.
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either uncertain planet/star properties or inaccurate telluric
removal, would seemingly inhibit absolute abundance deter-
minations. However, simply scaling the line-to-continuum ratio
is not the same as increasing or decreasing the absolute
abundances. Changing absolute abundances will not affect all
lines equally due to their different relative positions on the
curve of growth. Strong lines may saturate whereas weak lines
will continue to increase their contrast relative to the
continuum. It is this relative line depth (and shape) behavior
of lines of the same gas that permits the absolute abundance
constraints. Certainly there will be regimes where this
degeneracy is prohibitive, such as in nearly isothermal
atmospheres or ultra-low abundances of all gases over a given
passband. However, such scenarios are likely to be rare.

It is also important to assess the statistical validity of the
cross-correlation to log-likelihood mapping. Wilks’ theorem
(Wilks 1938) suggests that the distribution of Δlog-likelihoods
(specifically, L2 log- D ( ) differenced from the maximum

Llog( )) over a posterior probability distribution should follow
a chi-square distribution with number of degrees of freedom
equal to the number M of parameters—in this example, M=8
free parameters (Table 1). The left panel in Figure 5 shows the
distribution of L2 log- D ( ) drawn from the posterior prob-
ability distribution of our test case under the CC-to- Llog
mapping described in Section 2.2.2. The histogram of

L2 log- D ( ) correctly follows a χ2 distribution with eight
degrees of freedom, suggesting an appropriate mapping.

As an additional check, though not shown, we performed
100 independent HRCCS retrievals on 100 separate photon
noise instances (Nmod(λ, t), but under the same telluric and
planetary model, Fmod(λ, t)). From this experiment, we found

that the distribution of parameter means (due to random noise
scatter) agreed with what was expected from the uncertainties
derived on individual retrievals. In addition, the deviations
from the truth values are random in the parameter space, i.e.,
they occur in random directions according to the particular
noise instance. This fact strongly points to the absence of
biases. The success of these robustness tests should not be
surprising as the Llog( ) given by Equation (9) derives directly
from inserting the relation between data and model in
Equation (6) and carrying out the algebraic passages without
approximations.

3.4. Comparison of CC-to- Llog Mappings

Figure 6 compares the constraints obtained under the three
different mappings. The mappings derived through
Equation (9) in this work and Equation (2) in Zucker (2003)
provide comparable parameter constraints. Nevertheless, the
Zucker (2003) mapping results in a bias in the medians of the
retrieved H2O and CO abundances. These differences arise
because the two mappings respond differently to a particular
noise instantiation due to the inclusion (or lack thereof) of the
sf
2 and sg

2 terms. As with our mapping, we find that the
distribution of L2 log- D ( ) derived from the Zucker (2003)
mapping agrees well with a chi-square distribution of eight
degrees of freedom, as required by Wilks’ theorem (Figure 5,
left and middle panels). As an example of the importance of
using the correct CC-to- Llog mapping, we also show the
consequence of applying Equation (3) incorrectly to our data.
In Section 2.2.1, we explained that the mapping described in
Lockwood et al. (2014) is only valid for stationary planet

Figure 4. Retrieved constraints from the simulated HDS data set. Constraints are summarized with a corner diagram for the abundances and velocities, and the T–p
profile spread reconstructed from the parameterization, as is common in the LRS retrieval literature (e.g., Line et al. 2013). We also show the marginalized constraint
on the retrieved scale factor, a, to show that we indeed recover the expected maximum-likelihood estimator (a 1=ˆ or alog 0=ˆ ). The water abundance is constrained
to ±0.3 dex, CO to ±0.43 dex, and the velocities to ±0.93 and ±0.26 km s−1, respectively. The difference between log(CO) and log(H2O), a proxy for the C-to-O
ratio (not shown), is constrained to ±0.18 dex. The input values, or “truths,” are indicated with the vertical light blue lines and box in the corner plot. All corner plots
in the remainder of the manuscript were generated with a modified version of the corner.py routine.
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signals, and indeed forcing such mapping on our data analysis
results in very broad, virtually non-existent constraints on all of
the parameters (Figure 6, green contours). Furthermore, the
resulting distribution of L2 log- D ( ) clearly does not follow a
chi-square distribution (Figure 5, right panel), confirming that
this mapping is not appropriate for spectral time sequences
where the planet radial velocity changes rapidly.

3.5. Impact of H2O Cross-sections

Brogi et al. (2017) explored the potential impact of
incomplete or incorrect line lists on the cross-correlation

signal. That work concluded that these uncertainties were not
important mainly because water vapor was not detected in the
high-resolution spectra. Having tested simulated spectra with
both CO and H2O in this work allows us to reassess the
importance of cross-sections in a completely controlled
environment, and we present in this section the main results.
Our simulated spectral sequence is the same as in

Section 3.3, and it uses H2O cross-sections calculated from
Freedman et al. (2014) based upon the Partridge & Schwenke
(1997) line list. We run two separate retrievals on this spectral
sequence. The former uses the same absorption cross-sections
and should therefore result in unbiased parameters. The
latter uses absorption cross-sections generated from HITEMP
(Rothman et al. 2010) via the HITRAN HAPI routine (Kochanov
et al. 2016) and is based on the Barber et al. (2006) line list. These
cross-sections are computed at 0.003 cm−1 sampling resolution,
100 cm−1 Voight wing cutoff. They assume “air” broadening over
a well-sampled pressure and temperature grid (Freedman et al.
2014, 2008). Although there are subtle differences10 in the line
profile assumptions between the two sets of absorption cross-
sections, the main impact on HRCCS is the variable line
position arising from different choices of line lists. We note that
Shabram et al. (2011) explored the differences in these two line
lists at low resolution and found a negligible difference.
Figure 7 shows the impact of the line-list/cross-section

assumptions. By eye (top panel), it is easily seen that the two
spectra are not perfectly overlaid on each other at the
resolutions attainable by CRIRES. The line position differences
are not uniform in wavelength, suggesting that these differ-
ences cannot be compensated by a single velocity offset. These
inconsistencies, when combined over the entire CRIRES K-
band, result in substantial biases in the retrieved parameter
distributions, which are offset by many sigma from their true
state (Figure 7). The constraints on the abundances are also
much tighter when using the “incorrect” line list. It is a
reasonable question, in the case of actual data, to ask which line
list is correct. Unlike LRS data, with HRCCS data it is difficult
to obtain a “visual” model fit to make such assessments. We
therefore rely upon the Bayesian evidence to guide us (a natural
output of the nested-sampling algorithm used in this work). The

Figure 5. Test of the robustness of our cross-CC-to-log(L) mapping. Wilks’ theorem states that the test statistic L2 log- D ( ) for an M-parameter (in this case M=8)
estimator should follow a chi-square distribution with M degrees of freedom (DOF). Here, Δlog(L) is the difference in the log-likelihood between the maximum
likelihood and all other likelihoods within the posterior probability distribution. Histograms of this test statistic computed with our CC-to- Llog mapping (Equation (9),
left panel) or with the mapping of Zucker (2003) (Equation (2), middle panel) closely follow a 8

2c distribution as expected. By contrast, if we incorrectly apply the
mapping of Lockwood et al. (2014) to our data (Equation (3) and Section 2.2.1), the resulting histogram does not appear to follow any DOF

2c distribution.

Figure 6. Comparison of constraints obtained under different CC-to- Llog
mappings on the same simulated data set. The mapping derived in this work
(Equation (9)) is shown in blue (same as Figure 4), Zucker (2003) in red, and
Lockwood et al. (2014) in green. Our mapping and that of Zucker (2003) result
in similar constraints, albeit with a parameter bias when using Zucker (2003).
The Lockwood et al. (2014) mapping provides virtually no constraint on our
data set, which is expected because such a formalism is not applicable to our
CRIRES data (see Section 2.2.1). Note that the parameter prior ranges are
broader than the plot axes.

10 The difference in line widths due to air versus H2/He pressure broadening is
well below the CRIRES instrumental resolution.
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log-Bayes factor between the model using the “correct” line list
(blue in Figure 7) and the model using the “incorrect” line list
(red in Figure 7) is 147.4. Note that there is no change in the
number of parameters between the two models. Since a log-
Bayes factor larger than 5.0 on the Jefferey’s scale is
considered significant, this extreme difference overwhelmingly
favors the model utilizing the “correct” line list. This
conclusion would not be apparent from the posterior alone,
hence it is always important to compare the model evidences.

Performing the same experiment within the chemically
consistent model framework results in a similar degree of bias
(in metallicity and carbon-to-oxygen ratio) and large Bayesian
evidence differences. This suggests that line-list biases may
exist regardless of the model parameterization.

It is important to note that if our simulated data set was
calculated with cross-sections from Rothman et al. (2010), the
results would have been the opposite, i.e., the retrieval with
Freedman et al. (2014) cross-sections would have been biased.
This is an important point to make, because although there is
no extensive testing in the literature regarding the choice of line

lists at high spectral resolution, all the past H2O detections with
CRIRES were achieved with the line lists from Rothman et al.
(2010). When CO and H2O were detected simultaneously,
measured radial velocities (KP and Vsys) were consistent
between species, which suggests unbiased water determinations
with this database. The only explicit test of different line lists in
the literature, besides that of Brogi et al. (2017), is mentioned
in Flowers et al. (2018). In the latter paper, water opacities from
Lupu et al. (2014; which are similar to those in Freedman et al.
2014) did not produce any correlation signal with CRIRES
transmission spectra of HD189733b, in contrast to the >5σ
detection of Brogi et al. (2016) obtained with the HITEMP
database.
The results of this section are rather alarming, and we should

take this as a further warning that all HRCCS interpretations
are going to be strongly dependent on the choice of line lists
used in the model templates. From a purist retrieval modeling
perspective, line-list properties (positions, broadening,
strengths) should be parameterized so as to appropriately
marginalize over them within an HRCCS retrieval. However,
this is extraordinarily unwieldy as this would slow down a
forward model computation to the point of being unusable
within a retrieval framework. Furthermore, a proper way of
readily parameterizing these effects other than the standard
brute-force, line-by-line computation does not yet exist. Such
an approach, to be feasible, would likely have to make
assumptions and approximations that would introduce addi-
tional uncertainties to the point of obviating its purpose.
Instead, we strongly advocate for further laboratory, astro-
physical, and ab initio efforts to determine accurate line
positions, intensities, and broadening for exo-atmosphere
relevant molecules and conditions (e.g., Fortney et al. 2016).
We would anticipate that as we push toward cooler
temperatures or more Earth-like conditions, we will have the
opportunity to better quantify and reduce line-list uncertainties
by validating the output of radiative transfer calculations on
spectra of our own planets or other solar system planets. More
accurate line lists will likely increase the overall level of
correlation with terrestrial exoplanet spectra and minimize
biases in retrieved parameters, which will be crucial for the
robust assessment of habitability and biosignatures.

3.6. Combined LRS and HRCCS

Once a statistically robust CC-to- Llog mapping is achieved,
one can trivially combine information from various data sets.
One such potentially useful combination is that between low-
resolution spectroscopy with HST WFC3 and high-resolution
spectroscopy with VLT CRIRES or Keck NIRSPEC. In this
section, we combine simulated HST WFC3 data (loosely based
upon the typical emission observations—30 ppm/channel at
0.035 μm bins) with the above CRIRES K-band data within the
chemically consistent modeling framework (whereby metalli-
city and C/O are retrieved under the assumption of equilibrium
chemistry).
Trivially, to combine the inference from different sets of

data, we just sum their log-likelihoods:

L L Llog log log , 16tot HDS LDS= +( ) ( ) ( ) ( )

Figure 7. Impact of the line-list choice on the retrieved parameters. We retrieve
on the same synthetic data set under two different line-list assumptions: in blue,
Partridge & Schwenke (1997) implemented with the Freedman et al. (2014)
cross-sections (used to generate the “true” model) and HITEMP based upon the
BT2 (Barber et al. 2006) line list (red). The top panel compares spectra (using
the same inputs given in Table 1) generated with the different absorption cross-
section databases over a small portion of the K-band. The lines are clearly
haphazardly shifted. The posterior probability distribution summarized in blue
is the same as in Figure 4. It is clear that there are significant parameter biases
and uncertainty differences when retrieving with different sets of water
absorption cross-sections utilizing different underlying line lists.
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where Llog HDS( ) is given by Equation (9) and

Llog
1

2
. 17LDS

2c= -( ) ( )

The top panel of Figure 8 shows the spectral regions covered
by these simulated data and is representative of observations
that would have been already feasible five years ago. The
bottom panels show the retrieved planet properties by running
our framework on the two data sets separately (WFC3 only in
red, CRIRES K-band in blue, and on their combination in
magenta derived through the combined log-likelihood function
in Equation (16)) under the chemically consistent model
parameterization (Table 1).

The simulated HST WFC3 data alone are able to constrain
the planet metallicity ([M/H]) to within 1.7 dex (68%
confidence), slightly better than expectations from published
results (Line et al. 2016). This uncertainty is primarily driven
by the degeneracy between the C/O and metallicity in
producing the same water abundance (H2O is the main
measurable gas over the WFC3 passband). In contrast, the K-
band CRIRES observations alone result in a 1.0 dex (68%
confidence) constraint, nearly a factor of 2 better than that
obtained with WFC3. However, the power in these particular
HRCCS observations is in their ability to constrain the carbon-
to-oxygen ratio to within 0.2 dex (68% confidence), driven by
the enhanced sensitivity to CO-to-H2O line ratios at high-
resolution. WFC3 observations alone naturally struggle to

constrain the C/O (upper limits only), due to the lack of
presence of carbon-bearing species in this wavelength range. In
this particular setup, however, combining these two data sets
through a joint likelihood does little to improve beyond the
HRCCS constraints alone. In fact, the abundant parameter
space mass present at higher metallicities in the WFC3 only
scenario tends to pull the joint constraint toward these higher
metallicities. The HST observations, however, help in con-
straining the T–p profile as they are weighted toward deeper
layers of the atmosphere. Certainly this only a single example
of the combination of these two data sets—perhaps unfairly at
the detriment to the HST observations. We imagine that
perhaps a more synergistic setup might be with LRS mid-
infrared (>5 μm), which are best obtained from space (e.g.,
JWST MIRI), combined with ground-based near-IR HRCCS
observations. This would provide maximum leverage of the
strengths of each approach.
Since we are testing a data set based on a planet without a

thermal inversion, in terms of the T–pprofile, the two data sets
probe reasonably similar regions of the planet photosphere
(Figure 4, bottom-right panel), with only the CO line cores
absorbing at significantly lower pressures (up to 10−4 bar).
Nevertheless, the combined data set allows us to precisely
determine both the atmospheric lapse rate and the photospheric
temperatures.11 In the case of high-altitude thermal inversion
layers (temperature increasing with altitude), we anticipate that
the complementarity between low- and high-resolution spectra
would be even more evident, with the two constraining mostly
the lower and the upper atmospheres, respectively.

3.7. Influence of Missing Gases

As with LRS retrieval analyses, failure to include all of the
key relevant opacity sources in an HRCCS model could result
in significant biases in inferred atmospheric properties. We
perform a simple experiment to explore the impact that
unaccounted gases can have on the retrieved atmospheric
properties.
We utilize the same setup as in Section 3.3 (the “free

retrieval”) but include in the simulated “true” spectrum
additional molecular opacities due to CH4, NH3, CO2, and
HCN (log(mixing ratio)=−5.0, −5.0, −4.5, and −9,
respectively), though the latter two gases have little impact.
Figure 9 shows the abundance-weighted contributions of the
dominant gases to the spectrum.
We then perform three different retrievals (summarized in

Figure 10). The first scenario (red posterior distribution in
Figure 10) zeros out the abundances of the other gases within
the retrieval and fits for the standard “free retrieval” parameters,
as in Section 3.3. In other words, this scenario fails to account
for all of the opacity sources. The resulting constraints are
biased and produce large uncertainties. The water abundance is
poorly constrained. The second scenario (blue) retrieves for all
six gases. That is, the wide uncertainties reflect the full
marginalization over all of the included gases, but there is no
bias. This is the “most correct” of the three scenarios. Finally,
the last scenario (green) retrieves again the “default” set of
parameters, but we assume we have perfect a priori knowledge
of the other four gases of which are fixed to their true input

Figure 8. Simulated combined observations with HST/WFC3 (black dots, top
panel) and VLT/CRIRES around 2.3 μm (blue lines, top panel). The bottom
panels show the posterior distributions for planet metallicity ([M/H]), carbon-
to-oxygen ratio (C/O), and T–pprofile (bottom-right panel; summarized with
the 68% confidence intervals) obtained by running our framework on the HST
data alone (red curves), VLT data alone (blue curves), and on the combined
data set (magenta curves). The dashed curves (blue=CRIRES, red=WFC3)
are the temperature Jacobians at the indicated wavelengths (on and off band/
line). In general HST WFC3 probes a relatively deep and narrow region. In
contrast, the high dynamic range in the CRIRES spectrum permits broad
altitude coverage. Combining low- and high-resolution spectra leads to a
substantial improvement in the precision of these measurements.

11 We are aware that these may be overly optimistic constraints due to the
particular choice of T–p profile parameterization. Certainly the temperature is
not constrained this precisely over the entire atmospheric column shown.
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values. Of course, this would rarely be the case. This results in
artificially tight constraints, unsurprisingly, as there are fewer
“free” gases to confuse water and CO. The Bayesian evidence
overwhelmingly favors, obviously, the latter scenario (log-
Bayes factor of 22.8 between scenario 3 and 1, and 34.3
between 3 and 2). However, perhaps unfortunately, the first
scenario (H2O, CO only; other gases set to 0) is favored (11.5)
over the second (all gases retrieved). Relying upon the Bayes

factor alone, in this situation, would lead one to conclude that
the H2O/CO only model is the correct one, when in fact it is
not. This is likely because of the unnecessarily large prior
volume due to the inclusion of CO2 and HCN in the retrieval
despite their negligible impact on the spectrum (due to their
low abundances). In practice, as is now routinely done in LRS
modeling analysis (e.g., Kreidberg et al. 2015), nested model
comparison with sequential removal of gases relative to some
parent model should be performed to determine the “optimal”
number of gases to include.
In summary, it is extremely important to be cognizant of all

of the potential sources of opacity present over a given high-
resolution bandpass and how their lack of inclusion could bias
atmospheric inferences. This will indeed become increasingly
important with broader spectral range instruments slated to
come online in the not too distant future.

4. Application to CRIRES HD209458 b and HD189733 b
K-band Data

4.1. Reduction Process and Setup

We applied the framework described in Sections 2 and 3 to real
K-band dayside spectra of exoplanets obtained with CRIRES at
the VLT. We reanalyze the half night of observations of
HD189733 b published in de Kok et al. (2013) and the two
half nights of HD209458b presented in Schwarz et al. (2015)
and Brogi et al. (2017), to which we point the reader for more
information. Here we recall that these data sets were observed
around the strong 2–0 rovibrational band of carbon monoxide at
2.3 μm, but also that they should contain additional opacity from
water vapor. Although H2O was indeed detected in the same
CRIRES range for other exoplanets observed in dayside (Brogi
et al. 2013, 2014), it was not detected for these two planets. In the
case of Schwarz et al. (2015), only a tentative detection of CO was
presented, whereas a more advanced weighting of the CRIRES
detectors allowed Brogi et al. (2017) to recover the signal of CO at
an S/N=5, but again no water. Recently, Hawker et al. (2018)
revisited the data set with a different detrending algorithm for
telluric lines and confirmed the detections of CO and H2O.
Since we have substantial literature to support the potential

of these data, in this work we apply the most objective analysis
process by matching steps 4–7 described in Section 3.2 and
visualized in Figure 2. In contrast to past work, this analysis
does not require the optimization of detrending parameters and
is therefore ideal to apply our framework to data as uniformly
as possible.
There is only one extra step required in the analysis of

HD189733 b data. With a spectral type of K1V, the parent star
shows strong CO absorption lines in the CRIRES spectral
range. These lines are not completely stationary in wavelength
in the observer reference frame, because the barycentric
velocity changes by about 0.5 km s−1 during the 5 hr of
observations. This is due to the changing orbital and rotational
radial velocity of Earth compared to the center of mass of the
solar system. Fortunately, we have devoted abundant work in
the past to the correction of stellar CO lines from HD189733.
In this context, we apply the state-of-the-art three-dimensional
modeling of the stellar photosphere described in Magic et al.
(2013) and Chiavassa et al. (2018), and implemented as in
Flowers et al. (2018). We divide out this modeled stellar
spectrum between steps 4 and 5 of the analysis (see Figure 2),
i.e., just before the removal of telluric lines. We note that this

Figure 9. Spectral components of the important absorbers over the CRIRES K-
band. H2O and CO have the strongest influence, whereas CH4 and NH3

contribute mostly to continuum absorption due to their reduced line-to-
continuum contrast. These spectra are at the native line-by-line cross-section
resolution.

Figure 10. Influence of unaccounted-for absorbers on the water, CO, and
velocity constraints. The underlying true model includes opacities from H2O,
CO, CH4, CO2, NH3, and HCN in near-solar proportions, though only H2O,
CO, CH4, and NH3 noticeably contribute. The posterior distributions
summarized in red represent the scenario for which only H2O and CO are
retrieved, and the other opacities are turned off. This results in both large
uncertainties and biases in the constraints. Blue represents a full margin-
alization over all six gases. The uncertainties are larger, but there is no bias.
Finally, green represents a scenario where the other gases are fixed to their true
input values but only H2O and CO are retrieved. This produces the most
precise constraints.
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modeling is not parametric. Being completely self-consistent,
our stellar 3D models only assume an initial metallicity for the
star, which is well constrained in the literature and has been
also verified by inspecting the shape and depth of stellar CO
lines in the CRIRES data. Therefore, there is no subjectivity in
the correction of the stellar spectrum, as no extra fitting or
optimization is required at this stage.

One final caveat for the analysis of real spectra is that we do
not have an accurate model for the temporal variations of the
telluric spectrum, which is needed to replicate the stretching
and scaling of planetary signals due to telluric removal. We
thus store the fitted telluric absorption spectrum obtained
through steps 4–6 of the analysis and use it to process each of
the tested models, following the same prescriptions as for the
simulated data set (Section 3.2).

The forward model used for both objects deviates slightly
from that used in the simulated case (Section 3.3) in that we
add an optically thick gray cloud parameterized by a cloud-top
pressure (CTP, log(Pc)) and explore an additional “simple” T–
pprofile parameterization similar to that described in Line et al.
(2016). We also adjusted the prior upper bound on the
irradiation temperature (Tirr in Table 1) for each object to
prevent unphysically hot temperatures.

4.2. HD 189733 b Retrieval Results

Figure 11 summarizes the HRCCS retrieval results within
our framework. We find only an upper limit on the water
abundance, which is significantly lower than expected for solar
elemental ratios, and a lower limit on the CO abundance but
consistent with solar expectations. The lower pressure limit on

the CTP is consistent with a cloud-free dayside; however, there
is a notable degeneracy with the CO abundance whereby
decreasing the CTP (higher altitude) results in an increase in
CO abundance. This is simply understood as the competition
between the muting of the line-to-continuum ratio by the cloud
and increasing line-to-continuum ratio with increasing CO
abundance. However, not including the cloud has little impact
on the CO abundance. We also find that the abundances are
largely insensitive to our choice of T–pprofile parameteriza-
tion, even if the retrieved T–pprofiles themselves are different.
The planet velocities are shifted by a few km s−1 from their

nominal values. We emphasize that it is important to margin-
alize over the velocities as uncertainties in orbital properties,
especially years after their publication, can result in artificial
velocity shifts. In fact, even for well-known exoplanets such as
HD 189733b, errors in the quantities defined in Equation (1),
in particular KP and j, can lead to radial velocity uncertainties
of a few km s−1, well above the sensitivity of these observa-
tions. A more subtle aspect is that many of the fundamental
orbital parameters such as semimajor axis and orbital period
can be correlated, hence using the reported error bars in the
literature might lead to lower limits only on the final
uncertainties.
In order to assess the uncertainties in planet velocities, we

compute the error bars on KP from the stellar radial velocity
amplitude and planet/star mass ratio, and the error bars on the
orbital phase j from the time of midtransit and the orbital
period, all in the hypothesis of circular orbits. In the case of HD
189733 b, we obtain negligible errors in the orbital phase, but a
ΔKP of about 6 km s−1, which is sufficient to bring the
retrieved KP within the 1σ uncertainty.
The obvious finding from the retrieval of HD 189733 b data

is the strong detection of CO (lower abundance limit 4.67σ,
according to the nested-sampling-derived Bayesian evidence
ratio) and non-detection of water (upper abundance limit).
Although this is surprising from solar elemental ratios and
thermochemical arguments, it is not in the context of previous
analysis of this data set. Using a completely independent
analysis on the same 2.3 μm data, de Kok et al. (2013) reported
a detection of carbon monoxide at 5σ and no detection of water
vapor. In contrast, the L-band data presented in Birkby et al.
(2013) showed a clear detection of water vapor at 4.8σ. The
spectra are taken with the same instrument (CRIRES), but at
wavelengths with radically different water opacity. It is
possible that a moderately low abundance of water vapor (e.g.,
VMR∼10−5) produces a water spectrum too weak to be
detected at 2.3 μm but sufficiently strong to dominate the
spectrum at 3.2 μm. Through transmission spectroscopy, water
vapor is detected both at 2.3 μm (Brogi et al. 2016) and over
the entire NIR (Brogi et al. 2018), though the abundance of
H2O is unreported in those works. We note that a recent
independent reanalysis of the CRIRES spectra above (Cabot
et al. 2019) confirms the detection of CO at 2.3 μm and H2O at
3.2 μm. Additionally, HCN absorption is found in the
3.2 μm data.
Our retrieved T–p profile is qualitatively consistent with that

of de Kok et al. (2013) and Birkby et al. (2013), who both rule
out a strong inversion due to the poor correlation with
atmospheric models containing emission lines.
Finally, as motivated by our findings in Section 3.5, we again

explored the impact of the line-list choice. Unsurprisingly, because

Figure 11. Summary of the HRCCS retrieval results for the CRIRES K-band
dayside emission spectrum of HD 189733 b. The blue histograms summarize
the posterior under the “default” Guillot (2010) T–p profile parameterization,
and red the “simple” T–p profile parameterization described in Line et al.
(2016). The light blue lines/box within the 1D/2D histograms indicate the
approximate mixing ratios predicted by thermochemical equilibrium at solar
abundance and the zero-offset velocities. Only an upper bound on water and a
lower bound on CO are retrieved, with the cloud and T–p profile
parameterization having a negligible impact.
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there is a lack of detection of water, we found virtually no
difference in the posterior probability distribution.

4.3. HD 209458 b Retrieval Results

Figure 12 summarizes the posterior probability distribution
under the assumption of the default T–p profile parameteriza-
tion from Section 3.3. As with HD 189733 b, we again find
only a subsolar upper limit on the water abundance. However,
we obtain a rather stringent constraint (±0.3 dex, resulting in a
7.44σ evidence-based detection) on the CO abundance, which
is only marginally supersolar (0.5 dex higher, or just over 1σ).
We again find a lower pressure limit on the CTP with a similar,
albeit with a less pronounced, degeneracy with CO.

Similar to HD 189733 b, the dayside spectrum of HD
209458 b was also observed with CRIRES at both 2.3 and
3.2 μm. The 2.3 μm data were originally published by Schwarz
et al. (2015) and resulted in a marginal detection of CO
absorption, no detection of water, and rejection of strong
inversion layers. A reanalysis by Brogi et al. (2017) found that
the planet signal was very unequally distributed across the four
detectors of CRIRES and could recover CO absorption signal
at S/N=5 by unequally weighting the data.

These data along with previously unpublished 3.2 μm data
were recently analyzed by an independent team (Hawker et al.
2018). They reported the detection of both H2O and CO
absorption in K-band data, and in addition, the L-band data
reveal clear absorption from HCN but not from H2O.
Therefore, opposite to HD 189733 b, water is detected at
2.3 μm but undetected in the L-band.

In contrast to HD 189733 b, though, the CRIRES
transmission spectrum of HD209458b at 2.3 μm does not
show any water absorption lines. As this was the first
successful detection published with HRCCS (Snellen et al.
2010) and the analysis was optimized for CO lines, it is
possible that the sensitivity of the data was not sufficient to
detect H2O.
We again explore the impact of the water line list, as with

HD 189733 b. In general we do not find that the choice of
water opacity influences the primary conclusions but it does
change the shape of the marginalized water histogram toward a
more concentrated solution near 1 ppm. However, there still
exists a non-negligible tail extending to lower abundances,
suggesting again that this is still just an upper limit, consistent
with a non-detection (according to the Bayesian evidence
ratios).

4.4. Implications

It is worth briefly discussing how these results compare to
LRS retrievals from emission spectroscopy with HST and
Spitzer, as both objects have been thoroughly investigated with
these instruments. The dayside emission spectrum of HD
189733 b is by far the most complete in terms of wavelength
coverage and “spectral density” composed of HST WFC3,
NICMOS, and Spitzer IRAC/MIPS/IR (see Lee et al. 2012;
Line et al. 2014, for a summary), though with questionable
reliability of some of the data sets (Gibson et al. 2011; Hansen
et al. 2014). Retrievals on this emission data set have suggested
water and CO abundances that are broadly consistent with solar
thermochemical expectations (Lee et al. 2012; Line et al.
2014). Our retrieved abundances for CO are rather consistent
with those previous findings (e.g., 10 105 2~ - -– in Line et al.
2014) but our retrieved water abundance upper limit (∼10−4,
Figure 11 top histogram) skirts the lower bounds of previous
findings (see, e.g., Table 3 in Line et al. 2014). The most recent
analysis of the fairly complete dayside emission spectrum of
HD 209458 b (Line et al. 2016) includes a strong water vapor
absorption feature over the HST WFC3 bandpass suggestive of
water mixing ratios no lower than 10−5, right near the upper
limit of what we retrieve (Figure 12, top histogram). Brogi
et al. (2017) investigated both the LRS (Line et al. 2016) and
HRS data sets (Schwarz et al. 2015) and found that the water
abundances are largely inconsistent, due to the fairly stringent
lower bound from the LRS data and lack of water detection in
the HRS data.
Both objects also have fairly precise HST/WFC3 (Deming

et al. 2013; McCullough et al. 2014) and HST/STIS (Sing et al.
2011, 2016) transmission spectra, with multiple independent
analyses suggesting water abundances that span a broad range
from ∼10−6 to 10−2 depending on the specific analysis and
data sets used (Madhusudhan et al. 2014; Line & Parmentier
2016; MacDonald & Madhusudhan 2017; Tsiaras et al. 2018),
but no constraints on CO due to the limited wavelength
coverage.
The reason for the HRS–LRS water inconsistency is not

immediately clear. Whereas one would be tempted to blame it on
water line-list uncertainties, our tests reveal no impact of the
different line lists on the analysis of HD 189733 b data, and only a
marginal impact on the analysis of HD 209458 b. One additional
speculation relates to the different atmospheric pressures at which
the core of H2O and CO lines are formed. As low- and high-
altitude wind patterns can differ by many km s−1 in hot Jupiters, it

Figure 12. Summary of the HRCCS retrieval results for the CRIRES K-band
dayside emission spectrum of HD 209458 b. The blue histograms summarize
the posterior under the “default” water line list (Partridge & Schwenke 1997;
Freedman et al. 2014), and red using HITEMP (Rothman et al. 2010; Barber
et al. 2006). Both scenarios assume the Guillot (2010) T–p profile
parameterization. The light blue lines/box within the 1D/2D histograms
indicate the approximate mixing ratios predicted by thermochemical equili-
brium at solar abundance and the zero-offset velocities. An upper limit on the
water abundance is obtained under both line-list scenarios, but the CO
abundance is fairly tightly constrained at values slightly higher than expected
under solar composition, thermochemical equilibrium at these temperatures.
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is possible that CO and H2O lines track slightly different Doppler
velocities. As water has the biggest dynamic range in terms of
weak/strong lines, it is the most affected by vertical wind shears,
to the point where the cross-correlation signal is smeared below
detectability. Only a comparison with three-dimensional general
circulation models as recently shown by Flowers et al. (2018) will
help us determine if atmospheric circulation has a detectable
impact on the dayside spectra of hot Jupiters observed through
HRCCS. In general, it would not be surprising that the 3D nature
of a planet can and will play a role in interpreting HRS data as
these data are observed over a range of orbital phases with the
potential for spatially variable temperatures, composition, clouds,
and winds.

5. Conclusions

This work demonstrates that an appropriate mapping of the
cross-correlation coefficient to likelihood function allows us to
coherently merge high-resolution cross-correlation spectrosc-
opy with powerful atmospheric retrieval techniques. This
approach opens up a new avenue in interpreting HRCCS data
and fully exploits the information buried within it. Below we
summarize our primary developments and findings:

1. Developed (Section 2.2.2) a novel mapping from cross-
correlation to log-likelihood and demonstrated that it is
statistically appropriate, permitting accurate parameter
confidence intervals (Figure 5).

2. Formalized data analysis techniques, in particular the
removal of telluric lines, and made them applicable to this
new formalism without artificially scaling or biasing the
planetary signal (Section 3.2).

3. Explored the potential for this novel framework to constrain
fundamental atmospheric properties like temperatures and
abundances on a realistically simulated data set (Figure 4,
Section 3.3). Despite being more degenerate than in LRS
data, water abundance constraints are comparable to those
obtained with HST WFC3. In addition, due to tight
constraints on the relative molecular abundances of CO and
H2O, HRCCS + retrievals permit precise C-to-O ratio
determinations.

4. Provided a comprehensive comparison and discussion of
the strengths and weaknesses of other correlation
coefficient to log-likelihood mappings (Sections 2.2.1,
3.4, Figures 5 and 6).

5. Determined the significance of the impact that water
opacities can have on the results. Precise knowledge of
exo-atmosphere relevant opacities is required at high
resolution for these approaches to work (Section 3.5,
Figure 7).

6. Explored the impact of missing gases on the retrieved
constraints. Failure to include gases could result in biases
and/or artificially broadened constraints (Section 3.7,
Figure 10).

7. Provided a simple framework for combining HRCCS
data and LRS data within a unified likelihood function
(Section 3.6, Figure 8). Such an approach leverages the
strengths of both types of data in a way that is analogous
to combining radial velocity and transit data.

8. Applied the framework to existing dayside observations
of the transiting hot Jupiters HD 189733 b and HD
209458 b, obtained with CRIRES at the Very Large

Telescope. In spite of a clear signature of CO absorption,
H2O is not clearly detected, regardless of the line list
used, T–p profiles implemented, or assumptions on the
presence of a thick cloud deck. We also rule out
confidently the presence of inversion layers in the
atmospheres of these two planets.

Currently, there is a shortage of observations of transiting
exoplanets with both HST/WFC3 and high-resolution spectro-
graphs from the ground. The main reason for this is that CRIRES
and NIRSPEC, the two most active instruments to provide
HRCCS observations in the past 5–10 yr, have relatively poor
throughput and spectral range. They are thus limited to observing
the brightest exoplanets in the sky, which are mostly non-
transiting. However, modern spectrographs have drastically
superior simultaneous spectral range and equal or better
throughput. This increase in sensitivity can be used to move
HRCCS observations to smaller telescope facilities (Brogi et al.
2018), to enable observations of fainter planets, or both, as in the
case of the highest performance instruments such as CARMENES
or SPIRou. This technological evolution timely matches the future
availability of JWST observations, which will also have increased
sensitivity, spectral range, and in some cases spectral resolution. It
is also well timed with the recent launch of the TESS satellite,
which will find a significant fraction of exoplanets orbiting bright-
enough stars to be followed up for atmospheric characterization.
Lastly, the age of the next-generation large telescopes is just a few
years away. With the construction of the Giant Magellan
Telescope and the Extremely Large Telescope already ongoing,
and first-light high-resolution instrumentation approved for both
telescopes, it is crucial to develop techniques to pair the most
exquisite JWST observations to the enormous collective power of
the GMT and ELT telescopes.
This paper sets the foundation for rigorous analysis of

HRCCS data sets and their coherent combination with LRS
data. Future work will focus on three main directions:

1. Implementing the retrieval on transmission spectroscopy
data and jointly analyzing all of the currently available
LRS and HRCCS data sets of HD 189733 b and HD
209458 b as well as those of other planets.

2. Implementing in the algorithm other telluric removal
algorithms such as PCA and Sysrem, which seem to
perform excellently at wavelengths affected by strong
telluric bands. Currently, the main restriction in imple-
menting these algorithm is purely computational, as the
framework forces us to repeat on each tested model
spectrum the same exact analysis as on the real data,
which comes at a significant computational cost for
PCA/Sysrem algorithms.

3. Exploiting the strong predictive power of the framework,
in particular for simulating future joint JWST and ELT/
GMT/TMT observations of temperate terrestrial worlds.
These simulations will identify the optimal wavelength
range, spectral resolution, and exposure times to max-
imize the science return from top-class space and ground-
based observatories.
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