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Abstract

We compute the next-to-leading order (NLO) QCD corrections to the gluon-fusion subprocess of
diphoton-plus-jet production at the LHC. We compute fully differential distributions by combining
two-loop virtual corrections with one-loop real radiation using antenna subtraction to cancel in-
frared divergences. We observe significant corrections at NLO which demonstrate the importance
of combining these corrections with the quark-induced diphoton-plus-jet channel at next-to-next-
to-leading order (NNLO).
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1. Introduction

Recent breakthroughs in two-loop amplitude technology are opening up a new range of pre-
cision two-to-three scattering problems. Diphoton-plus-jet production has been one of the first
predictions to appear at NNLO in QCD [1]. This progress is extremely timely given the con-
tinually improving experimental measurements of diphoton signatures [2]. Predictions for pure
diphoton production have been known to NNLO accuracy for some time [3–7]. A qT -resummed
calculation at order N3LL′ + NNLO was presented recently [8]. Steps towards N3LO are being
taken with the completion of the three-loop amplitudes [9]. Diphoton-plus-jet signatures are of
particular importance at the LHC since they form the largest background to Higgs production at
high transverse momenta. The extra jet is necessary to ensure a non-zero transverse momenta in
the diphoton system.

The recently computed NNLO corrections [1] of diphoton-plus-jet production display a good
perturbative convergence, except in regions where the loop-mediated gluon-fusion process (which
contributes to the cross section only from NNLO onwards) is numerically sizable compared to
other contributions. In order to capture the full effects of the QCD corrections, it is important
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to include loop-induced gluon-fusion channels from at least one order higher in the perturbative
series. These corrections are the subject of this article.

High precision two-to-three scattering problems have presented an enormous challenge to the
theoretical community. The development of new techniques and methodology have been necessary
to address several major bottlenecks that have prevented predictions at NNLO in QCD from being
completed.

One important ingredient is the two-loop amplitudes for which complete sets of helicity am-
plitudes have recently been completed [10–13]. These new results have been achieved thanks to a
complete understanding of the special functions basis [14–17] and a new range of reduction tools
based in finite field arithmetic [18–20]. The end products are fully analytic formulae which can be
evaluated efficiently over the phenomenologically relevant phase-space [10–13, 21–23].

Combining and integrating the amplitudes into differential cross sections requires the subtrac-
tion of infrared divergences. To achieve this in a stable and efficient way is an extremely hard
problem and many solutions have been proposed and applied in calculations up to NNLO. Such
algorithms often scale poorly with the number of external particles and only a handful of examples
for high multiplicity processes at NNLO currently exist [1, 24–26].

For the process considered in this article, the infrared divergences are only at NLO. However,
since the real radiation involves 2 → 4 one-loop squared amplitudes, the automated numerical
algorithms are tested in extreme phase-space regions. The leading order (LO) QCD contributions
to the gluonic subprocess were first considered in Ref. [27] based on the compact one-loop five-
gluon amplitudes [28].

Our paper is organised as follows. We first review the computational setup, discussing the
amplitude-level ingredients and antenna subtraction method used to cancel infrared divergences.
We then present results for the NLO corrections to differential cross sections at the 13 TeV LHC.
We study the perturbative convergence in both transverse momentum and mass variables as well
angular distributions in rapidity and the Collins-Soper angle before drawing our conclusions.

2. Computational setup

We consider the scattering process

gg→ γγg + X (1)

at a hadron collider. As the process is loop-induced, the LO contribution is at order α3
s and involves

the integration of a one-loop amplitude squared. The NLO QCD corrections are computed by
combining the two-loop virtual corrections to the 2 → 3 process with the 2 → 4 processes with
an additional unresolved parton: gg → γγgg and gg → γγqq̄. Pictorially, we can represent the
parton level cross sections up to NLO in QCD as,

σNLO
gg→γγg+X =

∫
dΦ3

∣∣∣∣∣∣∣∣
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2

+

∫
dΦ32Re

 †

·

 +

∫
dΦ4

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

+

∫
dΦ4

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

+ O(α5
s), (2)
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where dΦn represents the on-shell phase-space measure for n massless final state particles. The
one-loop amplitude for qq̄ggγγ indicates the loop contribution in which the photons couple to
an internal fermion loop. The observable process pp → γγ j also includes channels where the
photons couple to an external quark pair. The expansion up to the NNLO of pp → γγ j includes
terms up to O(α3

s) and so the contributions coming from Eq. (2) are technically N3LO. However,
due to the large gluon flux at high energy hadron colliders, such contributions can be significant.

The one-loop amplitudes for the LO process and the real correction are finite, since the corre-
sponding tree-level processes vanish. The renormalised two-loop five-particle amplitude contains
explicit infrared divergences generated by the integration over the loop momenta, while the one-
loop six-particle amplitudes exhibit a divergent behavior when a final-state parton becomes unre-
solved. The divergences cancel in the final result, as established by the KLN theorem, and a finite
remainder of the virtual amplitudes can be defined using QCD factorization [29]. In our calcu-
lation, this cancellation is performed using the antenna subtraction method [30–32]. The method
extracts the infrared singular contributions from the real radiation subprocess, and combines their
integrated form with the virtual subprocess, thus enabling their numerical integration using Monte
Carlo methods, performed here in the NNLOjet framework. The QCD structure of the process
under consideration is very similar to Higgs-plus-jet production in gluon fusion, which has been
computed previously [33, 34] using antenna subtraction, and identical antenna subtraction terms
are applied here.

The infrared-finite remainders of the two-loop amplitudes have recently been computed [13]
using a basis of pentagon functions [14, 15, 17], which permit efficient and reliable numerical
evaluation [17]. The full colour and helicity summed expressions are obtained from the NJet
amplitude library. Within NJet, a dimension scaling test is performed for each phase-space point
to assess the accuracy of the evaluation. If the test is unsuccessful, the point is recomputed in
higher precision. We set a three digits accuracy threshold for this test, which guarantees a stable
result without significantly affecting the performance.

The one-loop six-particle amplitudes are obtained using a combination of implementations
from the OpenLoops2 [35] generator and from the generalised unitarity [36–38] approach within
NJet [39]. We use an improved version of OpenLoops2 in combination with the new extension
Otter. Otter [40] is a tensor integral library based on the on-the-fly reduction [41] of OpenLoops2
and on stability improvements described in Ref. [35]. This new version of OpenLoops2 allows for a
stable computation of the needed one-loop squared amplitudes in deep infrared regions. Internally,
Otter uses double-precision scalar integrals that are provided by Collier [42, 43], as well as quad-
precision scalar integrals provided by OneLoop [44]. Minor modifications were made in NJet to
avoid de-symmetrisation over the two photons and allow for a pointwise correspondence with the
subtraction terms. To compute the one-loop amplitude ggggγγ, the OpenLoops implementation
was generally more efficient, but for exceptional phase-space points it was necessary to use the
high precision (32 digits) implementation within NJet. For the qq̄ggγγ channel, we used NJet,
which allowed for a straightforward selection of the required loop contribution. We note that
this amplitude is also available within OpenLoops2 and we checked that the two implementations
agree.

The amplitude-level ingredients have been validated in all relevant collinear and soft limits by
checking their convergence towards the respective antenna subtraction terms.
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3. Results

For the numerical evaluation of our NLO results on the gluon-induced diphoton-plus-jet pro-
cess, we apply the same kinematical cuts as were used for the NNLO calculation [1] of the quark-
induced processes. These represent a realistic setup relevant for physics studies at the 13 TeV
LHC. The cuts are as follows:

• minimum photon transverse momenta and rapidities: pT (γ1) > 30 GeV, pT (γ2) > 18 GeV
and |η(γγ)| < 2.4.

• smooth photon isolation criterion [45] with ∆R0 = 0.4, Emax
T = 10 GeV and ε = 1.

• minimal invariant mass of the photon pair: m(γγ) ≥ 90 GeV.

• minimal separation of the photons: ∆Rγγ > 0.4.

• minimal transverse momentum of the photon pair: pT (γγ) > 20 GeV.

We consider kinematical distributions in the following diphoton variables: transverse momen-
tum of the diphoton system pT (γγ), pair invariant mass mγγ, diphoton total rapidity |y(γγ)| and
rapidity difference ∆y(γγ), as well as Collins-Soper angle |φCS (γγ)| [46] and azimuthal decorre-
lation ∆φ(γγ). For these distributions, no jet requirement is applied, as done in Ref. [1], since
the transverse momentum cut on the diphoton system is already sufficient to avoid NNLO-like
configurations where all final-state QCD partons become unresolved.

Our numerical results use the NNLO set of the NNPDF3.1 parton distribution functions [47]
throughout, thus allowing a straightforward comparison with the existing NNLO results [1] in the
quark-initiated channels. The strong coupling constant is evaluated using LHAPDF [48], with
αs (mZ) = 0.118. The electromagnetic coupling constant is set to α = 1/137.035999139. Monte
Carlo integration errors are below 1% on average and not displayed in the plots.

The uncertainty on our theory predictions is estimated by a seven-point variation of the renor-
malisation and factorisation scales around a central value, chosen in dynamical manner on event-
by-event basis to be

µF = µR =
1
2

mT =
1
2

(
m2(γγ) + p2

T (γγ)
)1/2

(3)

Figures 1–3 display the theory predictions for the different single-differential distributions in
the diphoton variables. We observe the NLO corrections to be very sizable, often being comparable
in size to the LO predictions. The corrections are largest at low pT (γγ) or at low invariant mass,
Figure 1, where the NLO/LO ratio reaches 2 and NLO and LO uncertainties fail to overlap, while
the ratio is smoothly decreasing towards values of 1.5 for large pT (γγ) or m(γγ), with overlapping
scale uncertainty bands above pT (γγ) = 200 GeV or m(γγ) = 175 GeV.

The integrated cross section is dominated by the region of low pT (γγ) or low m(γγ), such that
distributions that are differential only in geometrical photon variables, Figures 2 and 3, display
typically near-uniform NLO/LO ratios of 2, and no overlap of the LO and NLO scale uncertainty
bands. Visually, the scale uncertainty bands at NLO and LO appear to be of comparable width
in all distributions. However, owing to the large size of the NLO corrections, the relative scale
uncertainty is reduced from about 50% at LO to 30% at NLO.
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Figure 1: Differential distributions in the transverse momentum pT (γγ) (left) and invariant mass m(γγ) (right) of the
diphoton system.
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Figure 2: Differential distributions in the Collins-Soper angle |cos φCS (γγ)| (left) the azimuthal decorrelation ∆φ(γγ)
(right) of the diphoton system.

By inspecting the two-dimensional differential distribution in m(γγ) and |φCS (γγ)|, Figure 4
(left), we observe that the relative magnitude of the NLO corrections decreases with increas-
ing m(γγ), while the corrections remain uniform in |φCS (γγ)| for all bins in m(γγ). The two-
dimensional differential distribution in |y(γγ)| and pT (γγ) also shows the decrease of the correc-
tions towards larger pT (γγ). The decrease is more pronounced at forward rapidity than at central
rapidity.

Considering two-dimensional distributions in pT (γγ) and m(γγ), Figure 5, largely reproduces
the features of the one-dimensional distributions of Figure 1, both for distributions in bins of
pT (γγ) or for varying lower cut in pT (γγ). The only novel feature is a non-uniform shape in m(γγ)
for the highest bin in pT (γγ) (lowest curves in left Figure 5), which is indicative of the onset of
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Figure 3: Differential distributions in the diphoton rapidity difference ∆y(γγ) (left) and the diphoton total rapidity
|y(γγ)| (right).

large logarithmic corrections in log(m(γγ)/pT (γγ)) in this range.
The numerical size of the NLO corrections and the scale uncertainties at LO and NLO are

comparable to what was observed in inclusive Higgs boson production in gluon fusion [49] or in
the Higgs boson transverse momentum distribution in gluon fusion [50, 51]. These processes are
mediated through a heavy top quark loop and are very similar to the diphoton-plus-jet production
considered here in terms of kinematics and initial-state parton momentum range. The pathology
of the NLO corrections observed here is thus not that surprising after all; it does however indicate
the potential numerical importance of corrections beyond NLO.

The Born-level gg → γγg subprocess (corresponding to the LO in our results) contributes to
the full diphoton-plus-jet production as part of the NNLO corrections. Corrections to this order
were computed most recently [1]: these were observed to be moderate and within the scale un-
certainty of the previously known NLO results for most of the kinematical range, where they also
led to a substantial reduction of the scale uncertainty at NNLO. Only at low pT (γγ) or low m(γγ),
larger positive corrections and an increased scale uncertainty were observed [1]. These effects
could be identified to be entirely due to the contribution of the gg → γγg, which only starts to
contribute from NNLO onwards, and it was anticipated in Ref. [1] that NLO corrections to the
gg → γγg (which form a subset of the N3LO corrections to the full diphoton-plus-jet process)
could help to stabilise the predictions in the relevant kinematical ranges.

Our results demonstrate that this is not the case. The absolute scale uncertainty on the gluon-
induced process does not decrease from LO to NLO, and the NLO correction is of about the size
of the LO contribution. Consequently, inclusion of the NLO corrections to the gg → γγg into
the full NNLO diphoton-plus-jet process will further enhance the predictions at low pT (γγ) or low
m(γγ), thereby further elongating them from the previously known order, and will leave the scale
uncertainty band largely unchanged.
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Figure 4: Two-dimensional differential distributions in the diphoton invariant mass m(γγ) and Collins-Soper angle
|φCS (γγ)| (left) and in the diphoton rapidity |y(γγ)| and transverse momentum pT (γγ) (right).
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Figure 5: Two-dimensional differential distributions in the diphoton transverse momentum pT (γγ) and invariant mass
m(γγ), in bins in pT (γγ) (left) and for varying lower pT (γγ)-cut (right)

4. Conclusions

In this article, we have presented the NLO QCD corrections to the diphoton-plus-jet production
in the gluon-fusion channel for the first time. The loop-induced process requires the evaluation
of six-point one-loop real emission amplitudes and full-colour five-point two-loop virtual ampli-
tudes. To the best of our knowledge it is the first time that five-point two-loop amplitudes with the
full colour information have been integrated to provide fully differential cross section predictions
relevant for the LHC experiments.

Using a realistic set of kinematic cuts and simulation parameters, we find significant correc-
tions at NLO. This is particularly relevant at low values of pT (γγ) and m(γγ). Since angular
observables such as rapidity and the Collins-Soper angle are inclusive over the energy variables,
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one observes significant NLO corrections across the full parameter range. Double differential
distributions further highlight this feature, which is reminiscent of the perturbative convergence
observed in other gluon-induced processes such as inclusive Higgs production and the Higgs bo-
son transverse momentum distribution. The relative scale uncertainty is reduced by the higher
order corrections, although in absolute terms the scale uncertainty does not decrease from LO to
NLO in the low pT (γγ) and m(γγ) regions.

This work demonstrates the importance of a combined prediction for quark-induced and gluon-
induced diphoton-plus-jet signatures for future precision studies at the LHC.
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