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Abstract: We compute helicity amplitudes for the one-loop QCD corrections to
top-quark pair production analytically in terms of a set of uniformly transcendental
master integrals. We provide corrections up to O(ε2) in the dimensional regulator
for the first time which are relevant at NNLO. Four independent pentagon inte-
gral topologies appear in the complete description of the colour structure for which
we provide numerical solutions using canonical form differential equations and the
method of generalised power series expansions. Analytic forms of the boundary val-
ues are obtained in all cases except one where we find a one-dimensional integral
representation.
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1 Introduction

Precision predictions for the production of a pair of top-quarks in association with a
jet in hadron collisions is a high priority for current and future experimental measure-
ments. Next-to-next-to-leading order (NNLO) corrections in Quantum-Chromodynamics
(QCD) would allow percent level predictions for a wide variety of observables. The
theoretical challenge and the degree of calculation complexity for such predictions
remains extremely high.
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Next-to-leading order (NLO) QCD corrections to pp → tt̄j were first computed
by Dittmaier, Uwer and Weinzierl [1, 2] where the amplitude level ingredients were
obtained analytically. This computation was performed using an on-shell approxi-
mation for the top quarks, corrections including decays in the narrow width approx-
imation [3] and with complete off-shell effects [4] were later included using modern
numerical techniques [5–11]. Predictions for top quark pair production in association
with multiple jets [12] or matched to a parton shower [13–15] have been made possible
thanks to the latest generation of automated numerical tools. The pp→ tt̄j process
is of particular interest since it is extremely sensitive to the top quark mass [16, 17].

Precision predictions at NNLO are currently only available for the four particle
process pp→ tt̄. Advanced techniques for the subtraction of infrared divergences [18]
have enabled a comprehensive range of phenomenological studies [19–21]. The am-
plitude level ingredients for these predictions are largely known analytically [22–30]
although there are still a small number of non-planar double-virtual contributions
that are only known numerically.

In this article we present one previously missing ingredient relevant for a next-
to-next-to-leading computation of pp → tt̄j: the expansion of the one-loop helicity
amplitudes up to O(ε2) in the dimensional regulator. This requires the computation
of new pentagon integrals that first appear at O(ε) and are one of the new results
presented here.

Helicity amplitudes (including decay information for the top-quark pair in the
narrow width approximation) for this process have not been presented analytically
before. One-loop expressions for pp→ tt̄ production were computed in this formalism
using unitarity based methods and led to relatively compact expressions [31]. The
motivation to do so here for the high multiplicity process is to get a sense of the
complexity that might arise in an analytic two-loop computation of pp → tt̄j. The
new loop integrals appearing at O(ε) depend on genuine five-point kinematics for the
first time. While at one-loop all the special functions are of a polylogarithmic form,
the alphabet is quite complex and efficient evaluation and analytic continuation to
physical kinematics is challenging. In this context recent progress has been made
to compute analytically five-point one-loop integrals with massive external legs and
internal propagators [32]. In this article we explore the technique of generalised
series expansions [33], as implemented in the software DiffExp [34], to numerically
solve the differential equations for the master integrals. Such a technique would be
applicable to two-loop integrals even in the presence of non-polylogarithmic forms,
and it has been exploited recently for several processes [35–38]. This approach as
well as related methods for the numerical solution of differential equations for master
integrals [39–43] have been of particular interest recently due to their wide range of
applicability.

The rational coefficients of the special functions also represent a step up in an-
alytic complexity in comparison with previously considered two-loop five-point am-
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plitudes [44–65]. We present a complete set of partial colour amplitudes in terms
of master integrals valid to all orders in the dimensional regulator. These objects
are considerably more complex than the four-dimensional limits and we employ a
finite field reconstruction technique [66, 67] and a rational parametrisation of the
kinematics based on momentum twistors [68] to overcome the algebraic complexity.

Our paper is organised as follows. We begin by reviewing the colour decomposi-
tion of the amplitudes in both tt̄ggg and tt̄qq̄g channels and describe the infrared and
ultraviolet pole structure. We then describe the finite field reconstruction approach
taken to extract the independent helicity amplitudes. We then turn our attention to
the evaluation of the master integrals. We present canonical form differential equa-
tions for the four independent topologies appearing in our process. The computation
of the boundary terms is described and the numerical evaluation using generalised se-
ries expansions with DiffExp is presented. Finally we present some numerical results
before giving an outlook for the future.

2 Colour decomposition and infrared pole structure

We choose to define the two partonic channels for pp → tt̄j with all momenta out-
going. Evaluation for physical kinematics can be performed using the appropriate
analytic continuation. We write the amplitudes according to the colour decomposi-
tion [69]. Therefore, for the process 0→ t̄tggg we have:

A(L)(1t̄, 2t, 3g, 4g, 5g) = g3+2L
s NL

ε

{
∑
σ∈S3

(taσ(3)taσ(4)taσ(5))ī1i2A
(L)
1 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

+
∑

σ∈S3/Z2

δaσ(3)aσ(4)(taσ(5))ī1i2A
(L)
2 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

+
∑

σ∈S3/Z3

Tr(taσ(3)taσ(4)taσ(5))δ ī1i2A
(L)
3 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

}
. (2.1)

Here we have used gs to denote strong coupling and taken an overall normalisation

Nε =
eεγEΓ2(1− ε)Γ(1 + ε)

(4π)2−εΓ(1− 2ε)
. (2.2)

A
(L)
i are the partial amplitudes which appear in the full amplitude as sums over

permutations of the momenta. S3 indicates the six permutations of the three gluons
while S3/Z2 and S3/Z3 are smaller symmetry groups with 3 and 2 elements respec-
tively. The SU(Nc) colour structures are written using the fundamental generators
(ta)j̄i where a = 1, · · · , 8 are indices of the adjoint representation, while i, j̄ = 1, 2, 3

are indices in the fundamental and anti-fundamental representation respectively.
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Following the same conventions, we colour decompose the process 0 → t̄tq̄qg as
(see for example [70]),

A(L)(1t̄, 2t, 3q, 4q̄, 5g) = g3+2L
s NL

ε

{
δ ī4i1 (ta5)ī2i3A

(L)
1 (1t̄, 2t, 3q̄, 4q, 5g)

+δ ī3i2 (ta5)ī4i1A
(L)
2 (1t̄, 2t, 3q̄, 4q, 5g)

− 1

Nc

δ ī2i1 (ta5)ī4i3A
(L)
3 (1t̄, 2t, 3q̄, 4q, 5g)

− 1

Nc

δ ī4i3 (ta5)ī2i1A
(L)
4 (1t̄, 2t, 3q̄, 4q, 5g)

}
. (2.3)

Each of the partial amplitudes is further decomposed into a polynomial in Nc and
the number of light and heavy flavours, nf and nh = 1 respectively. Suppressing the
momentum arguments we have

A
(0)
1 = A

(0)
1;0 = A(0) (2.4)

A
(0)
2 = 0 (2.5)

A
(0)
3 = 0 (2.6)

A
(1)
1 = NcA

(1)
1;1 +

1

Nc

A
(1)
1;−1 + nfA

(1),f
1;0 + A

(1),h
1;0 (2.7)

A
(1)
2 = A

(1)
2;0 (2.8)

A
(1)
3 = A

(1)
3;0 (2.9)

for the 0→ t̄tggg channel, and

A
(0)
X = A

(0)
X;0 (2.10)

A
(1)
X = NcA

(0)
X;1 +

1

Nc

A
(1)
X;−1 + nfA

(1),f
X;0 + A

(1),h
X;0 (2.11)

for 0→ t̄tqq̄g channel where X = 1, · · · , 4.
The kinematics for these processes is:

p2
1 = p2

2 = m2
t , p

2
3 = p2

4 = p2
5 = 0, dij = pi · pj, sij = (pi + pj)

2 (2.12)

where p1 and p2 are the momenta of the external top quarks, p3 and p4 are the
momenta associated either to the a pair of gluons or a pair of massless quarks, and
p5 is the momentum of the remaining gluon. All the particles are on-shell and the top
quarks are considered to be massive, with mt the top mass. Finally, throughout this
paper, we work both with the kinematic invariants dij and sij as defined in (2.12).
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2.1 Infrared Singularities

Catani, Dittmaier and Trocsanyi (CDT) were the first to present a closed formula
for the universal infrared (and ultraviolet) pole structure of an arbitrary one-loop
amplitude with massless and massive QCD partons [71]. Using the colour space
notation [72] the factorisation of the infrared poles can be denoted simply as,

|A(1)
n 〉 = In |A(0)

n 〉+ |A(1)
n 〉

fin
+O(ε). (2.13)

For renormalised amplitudes the pole operator In is defined as1,

In = Nε

(
n∑

i,j=1

Ti ·Tj

(
µ2
R

−2dij

)ε
Vij −

n∑
j=1

Γj

)
(2.14)

where we have followed the normalisation conventions from Eq. (2.2)2. The function
Vij arises from the soft singularities which contains colour correlations of the form
Ti ·Tj,

Vij =



1

ε2
i and j are massless

1

2ε2
+

1

2ε
log

(
m2
j

−2dij

)
− 1

4
log2

(
m2
j

−2dij

)
− π2

12
i massless, j massive

2dij
(sij − (mi −mj)2)βijε

log

(
−1 + βij

1− βij

)
−1

4

(
log2

(
m2
i

−2dij

)
+ log2

(
m2
j

−2dij

))
− π2

6

i and j are massive

(2.15)

where βij =
√

1− 4mimj
sij−(mi−mj)2 comes from the kinematic threshold for the production

of a top quark pair. Since we only have two massive partons in our process with the
same mass we have a single threshold β12 = β(s12,m

2
t ) =

√
1− 4m2

t

s12
. The finite

parts of the function Vij will not play a role in the cross checks of our computation
though they are important to ensure the correct small mass limits, as stated in [71].
The functions Γj arise from the hard collinear region and depend on the anomalous
dimensions of the partons. Our amplitudes are computed including wave-function
renormalisation but excluding coupling renormalisation and therefore additional UV
poles proportional to the QCD β function are present in the expressions.

1We omit the imaginary parts in our reproduction of the In operator. For a correct treatment
across the full physical phase-space the prescription is given in Ref. [71]. At the test points we
provide, the form given and Mathematica’s internal prescription are sufficient to find agreement
up to O(ε−1).

2Note that the difference between Nε and the factor used in reference [71] appears at O(ε3) and
therefore does not effect the one-loop singluarities.
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We will compute all partial amplitudes in terms of master integrals valid to all
orders in ε. The verification of the infrared pole structure is therefore an extremely
strong check on the validity of our expressions. The inclusion of the wave-function
renormalisation counter-terms ensures the amplitude is gauge invariant which also
provides a strong cross check.

Explicit evaluations of the CDT formula, including for the two partonic channels,
into the partial decompositions Eq. (2.1) and Eq. (2.3) are given in Appendix B.

3 Helicity Amplitude Setup

In this section we describe the computational set up for the helicity amplitudes.
This makes use of the well known spinor-helicity formalism for massless and massive
particles.

3.1 Helicity amplitudes

The helicity states for the massive fermions are computed using the standard decom-
position along an arbitrary reference direction [73]:

u+(p,m) =
(/p+m)|n〉
〈p[n〉

(3.1)

where p is the massive fermion momentum, m is the mass, n is the arbitrary reference
direction and p[ = p − m2

2p·nn. Since the direction n is arbitrary the positive helicity
state is related to the negative helicity state through the transformation n ↔ p[

together with a normalisation factor accounting for the change in spinor phase. For
further details of this relation, and other aspects of the massive spinor-helicity for-
malism used in this article, we point the reader to [30] and references therein.

We perform an analytic reconstruction in the minimal set of six on-shell variables
making use of the following basis for spin structures,

A(L)
x (1+

t , 2
+
t̄ , 3

h3 , 4h4 , 5h5 ;n1, n2) = mtΦ(3h3 , 4h4 , 5h5)

4∑
i=1

Θi(1, 2;n1, n2)A(L),[i]
x (1+

t , 2
+
t̄ , 3

h3 , 4h4 , 5h5). (3.2)

The decomposition involves a phase factor Φ to account for the massless parton
helicities, four basis functions Θi for the spin dependence of the top-quark pair and
the associated subamplitudes A(L),[i]

x . This representation and notation has been
introduced in the recent study of top-quark production [30]. The functions Θ contain
all dependence on the arbitrary reference vectors introduced to define the positive
helicity massive fermions. Such a spin basis is not unique and the normalisations
for the Θ functions have been chosen such that all subamplitudes have the same
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dimension and are free of any spinor phase. This form is sufficient to account for the
decays of the top quarks in the narrow width approximation [3, 74].

For the amplitudes considered in this article the explicit forms for Φ and Θ are:

Φ(3+, 4+, 5+) =
[35]

〈34〉〈45〉
, (3.3)

Φ(3+, 4+, 5−) =
〈5|p3p4|5〉
〈34〉2

, (3.4)

Φ(3+, 4−, 5+) =
〈4|p5p3|4〉
〈35〉2

(3.5)

and,

Θ1(1, 2, n1, n2) =
〈n1n2〉s34

〈1[n1〉〈2[n2〉
, (3.6)

Θ2(1, 2, n1, n2) =
〈n13〉〈n24〉[34]

〈1[n1〉〈2[n2〉
, (3.7)

Θ3(1, 2, n1, n2) =
〈n13〉〈n23〉[3|p4p5|3]

s34〈1[n1〉〈2[n2〉
, (3.8)

Θ4(1, 2, n1, n2) =
〈n14〉〈n24〉[4|p5p3|4]

s34〈1[n1〉〈2[n2〉
. (3.9)

The amplitudes with a massless fermion pair use the same spin decomposition (3.9)
but with different phases:

Φ(3−q , 4
+
q̄ , 5

+) =
〈34〉
〈45〉2

, (3.10)

Φ(3+
q , 4

−
q̄ , 5

+) =
〈34〉
〈35〉2

. (3.11)

3.2 Rational phase space parametrisation

Our computation uses a rational phase-space parametrisation together with a nu-
merical sampling of the relevant set of Feynman diagrams using modular arithmetic.
The generation of this rational parametrisation uses the momentum twistor formal-
ism [68], a technique that has been applied numerous times in similar amplitude
computations. For the case of a top-quark pair plus three massless partons the
method is essentially the same as the one described in Ref. [30] for a top-quark pair
plus two massless partons.

We begin by generating a rational parametrisation for configurations of seven
massless particles (11 free variables) with momenta q1, · · · q7

3. The five particle sys-
tem for tt̄ plus three partons can then be written,

p1 = q1 + q2, p2 = q3 + q4, p3 = q5, p4 = q6, p5 = q7, (3.12)

3The specific form of the massless configuration is not important. A few all multiplicity
parametrisations have been presented in the literature [75–77].
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with additional constraints to ensure the massive momenta p1 and p2 are on-shell.
Specifically we solve the constraints:

q1 · q2 = q3 · q4, 〈q2q5〉 = 0, [q2q5] = 0, 〈q4q5〉 = 0, [q4q5] = 0. (3.13)

Having found the rational parametrisation we change variables to,

s34 = (p3 + p4)2, (3.14)

t12 = s12/s34, (3.15)

t23 = (s23 −m2
t )/s34, (3.16)

t45 = s45/s34, (3.17)

t15 = (s15 −m2
t )/s34, (3.18)

x5123 = −〈5|p1p45|3〉
〈53〉s12

. (3.19)

In the last variable we have introduced the notation pij = pi + pj. We note that the
only dimensionful variable s34 can be set to 1 and restored easily through dimensional
analysis. It is not possible to use the top quark mass as a variable without introducing
square roots and hence we choose a spinorial trace. For completeness we present
explicitly the map from Lorentz invariants to the rational parametrisation:

d12 =
s34t12

2t45

(
t45 + 2t45(−1 + t51)x5123

+ 2t12t45x
2
5123 − 2(t51 + (−1 + t12)x5123)(t23 + t12x5123)

)
, (3.20)

d23 =
s34t23

2
, (3.21)

d34 =
s34

2
, (3.22)

d45 =
s34t45

2
, (3.23)

d15 =
s34t51

2
, (3.24)

m2
t =

s34t12

t45

(
t23(t51 + (−1 + t12)x5123)

+ x5123(t45 + t12t51 − t45t51 + t12(−1 + t12 − t45)x5123)

)
. (3.25)

3.3 Reduction to master integrals

Our amplitude computation strategy follows the method applied to recent two-loop
computations [30]. The colour-ordered helicity amplitudes are first generated from
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Feynman diagrams using QGraf [78] which are then processed using a combination
of Mathematica and FORM [79, 80] scripts. The Spinney package is used to
process parts of the numerator algebra [81]. The integral topologies are identified
from the loop momentum dependent propagators and the coefficients of the loop-
dependent numerators are computed using the momentum twistor parametrisation.
A tensor integral representation for each diagram is obtained using a basis of irre-
ducible numerators for the maximal cut topologies. Since the maximal cut has four
independent momenta, no transverse integration [82] step is required in contrast to
the method of reference [30]. The diagram numerators are computed using a symbolic
value for the spin dimension ds = gµµ and our results are presented as an expansion
around ds = 2,

A(L),[i]
x = A(L,0),[i]

x + (ds − 2)A(L,1),[i]
x . (3.26)

The dimension ds used in the numerator algebra is kept separate from the loop inte-
gration dimension d = 4−2ε in order to account for the scheme dependence between
the FDH (ds = 4) and tHV (ds = 4−2ε) schemes. The diagram numerators are then
reduced to master integrals via integration-by-parts identities [83, 84] following the
Laporta algorithm [85]. The complete reduction is implemented in LiteRed [86]
and FiniteFlow [67] so that numerical sampling with modular arithmetic can be
used to reconstruct the coefficients of the master integrals directly without analytic
intermediate steps. Wave-function renormalisation must also be performed in order
to obtain a gauge invariant result. We generate diagrams with the counter-term
insertions which are added to the one-loop numerators as shown in figure 1. The
counter-terms are written in terms of loop integrals valid to all orders in ε. The
Feynman rule for the counter-term insertion can be written as,

=

(
Nc −

1

Nc

)(
1 +

(ds − 2)(1− 2ε)

4(1− ε)

)
. (3.27)

The right hand side of this equation consists of: a line representing the Feynman
rule for a massive fermion propagator, a rational function of Nc, ds and ε, and a
wave-function bubble graph representing the Feynman integral with one massive and
one massless propagator and a mass scale of m2

t . We note that using this integral
form for the counter-term, the amplitude is already guage invariant at the level of
master integrals. This ensures that only gauge invariant quantities are reconstructed
analytically and allows us to sidestep the issue of including external leg corrections
with on-shell ingredients [8, 87, 88].

The coefficients of the master integrals are functions of the dimensional regulari-
sation parameter ε and the six free parameters in the rational phase-space. Since this
is a one-loop problem the evaluation time for the amplitude within the FiniteFlow
setup is quite fast and so functional reconstruction of high degree polynomials is
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Figure 1: Example renormalisation counter-term diagram contributing to tt̄ + 3g

one-loop amplitude.

feasible. Nevertheless, we find that rationalising the phase-space increases the poly-
nomial degree significantly so in addition we apply linear relations and a univariate
partial fractioning to the master integral coefficients before reconstruction as has
been effective in many cases with massless propagators(for example [50]). We apply
the univariate reconstruction method and the algorithm for linear relations described
in Ref. [62]. The first step in this method requires a matching of denominator (and
numerator) factors for which we build an ansatz from a set of spinor products, Gram
determinants and other denominators appearing in the differential equations which
we describe in the next section. We have used the following kinematic structures to
generate our factor ansatz,

{ε, 1− ε, 1− 2ε, 3− 2ε,

〈34〉, [34], 〈3|1|4],

d12, d12 +m2
t , d12 −m2

t , d13,

s12, s13, s34, s12 − s34, s13 − s24,

(p23 · p1)2 −m2
t s23 = ∆3(p23, p1)2,

〈3|p1p12|4〉, [3|p1p12|4], 〈3|p1p2|4〉, [3|p1p2|4], 〈3|p1p2|3〉, [3|p1p2|3],

〈3|p2p5p3p1|4〉+m2
t s35〈34〉, [3|p2p5p3p1|4] +m2

t s35[34],

tr5(3451) = 〈3|p1p5p4|3]− 〈3|p4p5p1|3],

(d13d25 − p3 · p24p4 · p13)〈3|p1p12|4〉+ 2〈34〉d13d24p5 · p34,

(d13d25 − p3 · p24p4 · p13)[3|p1p12|4] + 2[34]d13d24p5 · p34,

|Y5|} , (3.28)

where we have introduced a notation for the 3-mass triangle Gram determinants,
∆3 and the Cayley matrix associated with the pentagon integral with four internal
masses,

(Y5)ij = −p2
i,j−1 +m2

i +m2
j , (3.29)

where pi,j−1 =
∑j−1

k=i pk, and m = {mt, 0,mt,mt,mt}. We note that in spinor-helicity
variables, many of the Gram and Cayley determinants factorise and so we don’t need
to specify all Gram and Cayley determinants explicitly.

To generate an ansatz that matches all denominators this list is permuted over
an (overcomplete) set of six permutations of 3, 4, 5 and two permutations of 1, 2 (12
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in total) and duplicate entries are removed. To match the polynomial factors this
list is evaluated using the rational momenta parametrisations from which a list of
independent polynomials can be extracted.

We summarise our reduction strategy as follows: we apply the rational kine-
matic parametrisation to the processed Feynman graphs for the four different spin
projections. Each of these projected amplitudes are reduced to master integrals and
reconstructed using FiniteFlow. After reconstruction, the projected amplitudes
are used to construct the sub-amplitudes, again with the help of reconstruction over
finite fields, linear relations and univariate partial fractioning.

4 Computation of the Master Integrals

Figure 2: The four distinct one-loop integral topologies appearing in the pp → tt̄j

amplitudes. Black lines denote massless particles while red lines denote massive
particles.

There are four distinct pentagon function topologies appearing in the amplitudes
as shown in Figure 2. To find the minimal set of master integrals (MIs) which
describes each topology we perform Integration-By-Parts (IBPs) reduction [84, 89],
as implemented in the software LiteRed [86, 90] and FiniteFlow [67]. We find
that the topologies T1, T2, T3 and T4 are described, respectively, by 15, 21, 17 and 19
MIs (see figures 3,4,5 and 6). By employing symmetry relations among the different
topologies, and their permutations, we find that the amplitudes can be written in
terms of minimal set of 130 MIs across the four topologies. The evaluation of the
MIs that appear in the amplitudes is discussed in section 5.1.
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We compute the MIs, ~f(x, ε), by means of the differential equations method [91–
93]. Specifically, we work with a system of differential equations in canonical form
[94]:

d~f(~x, ε) = ε dA(~x)~f(~x, ε), (4.1)

where d is the total differential with respect to the kinematic invariants,

~x =
{
d12, d23, d34, d45, d15,m

2
t

}
. (4.2)

The matrix A(~x) is a linear combination of logarithms:

A(~x) =
∑

ci log(αi(~x)), (4.3)

where ci are matrices of rational numbers and αi(~x) are algebraic functions of the
kinematic invariants ~x.

A major feature of the systems of differential equations for the four pentagon
topologies is that they depend on the following set of square roots:

β(a1,m
2) =

√
1− 4m2

a1

,

∆3 (P,Q) =
√

(P ·Q)2 − P 2Q2,

tr5 = tr5(3, 4, 5, 1) =
√

detG(p3, p4, p5, p1), (4.4)

where the argument a1 can be functions of the kinematic invariants, P and Q are
momenta and Gij(~v) = 2vi · vj is the Gram matrix.

We choose to solve the systems of differential equations for the MIs using the
generalized power series expansion method [33], as implemented in the software Dif-
fExp [34]. Although this method furnishes a semi-analytic solution to the MIs, it
has the advantage of allowing a fast and high precision numerical evaluation. More-
over, the analytic continuation of the solution is easier with respect to an analytic
approach. Indeed, while it could be possible to linearize the square roots system4

(4.4) with a transformation of the kinematic invariants, and obtain an analytic solu-
tion in terms of polylogarithmic functions (MPLs) [95, 96], the system of differential
equations will involve polynomials of high degree in the linearized variables. This
feature impacts significantly the computation since the system of differential equa-
tions in the new set of variables is too large to be handled efficiently. In addition, the
determination of the phase-space regions, and therefore the analytic continuation, is
more complicated.

We finish the first part of this section by discussing a few more details of our
computation. Firstly, we would like to stress that we reconstruct the systems of
differential equations for the four pentagon topologies exploiting finite fields methods,

4We checked explicitly that it is possible for topology T1.
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implemented in FiniteFlow, for a basis of master integrals, ~f ′ that does not contain
the square roots (4.4):

d~f ′(~x, ε) = dA′(~x, ε)~f ′(~x, ε). (4.5)

In doing so, we obtain a system of differential equations that is not in a canonical
form, but we also avoid dealing with square roots in the reconstruction procedure.
Then, an ε-factorized form can be achieved by a rotation of the basis of MIs, ~f =

B(~x)~f ′, under which the matrix dA′(~x, ε) transforms as:

dA′(~x, ε)→ B−1(~x)dA′(~x, ε)B(~x)−B−1(~x)dB(~x) = ε dA(~x), (4.6)

where B(~x) is a diagonal matrix whose entries are the square roots (4.4). Obtaining
the matrix A′(~x, ε) can in general be complicated for multi-loop cases but for this
one-loop case it is straightforward. The rotation matrix B(~x) is easily obtained using
information from the maximal cuts of the topologies.

Finally, we comment on the computation of the boundary conditions for the
system (4.1). We compute the boundary conditions, for a minimal subset of the MIs,
by direct integration of their Feynman parameter representation at the kinematic
point:

~x0 := (−2,−2,−2,−2,−2, 1) . (4.7)

This step is performed using the linear-reducibility strategy as implemented in Hy-
perInt [97] with the help of PolyLogTools [98]. High precision numerical bound-
ary values are obtained for the remaining integrals using DiffExp. We detail the
boundary condition computation for each topology in the following subsections.

We include ancillary files containing the systems of differential equations (4.1)
for all the four topologies, the analytic expressions and the numerical values of the
boundary conditions, and a DiffExp template for a standalone evaluation of the
MIs.

4.1 The T1 topology with one massive internal propagator

There are 15 master integrals in the topology T1 as shown in Figure 3. The integrals
are defined as:

IT1,[d]
a1,a2,a3,a4,a5

=

∫
Ddk1

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

, (4.8)

where

D1 = k2
1, D2 = (k1 − p1)2 −m2

t , D3 = (k1 − p1 − p2)2,

D4 = (k1 + p4 + p5)2, D5 = (k1 + p5)2, (4.9)

ai are positive integers, d = d0− 2ε is the space-time dimension, and the integration
measure is defined as

Ddk1 =
ddk1

iπ
d
2

eεγE
(
m2
t

µ2

)ε
. (4.10)
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Figure 3: The 15 master integrals appearing in the T1 topology, denoted by I’s
in (4.11). Red/black lines indicate massive/massless particles respectively. Dotted
internal lines indicate propagators with an additional power in the denominator of the
integral. Each integral is associated with a kinematic normalisation which ensures
the basis leads to a canonical form differential equation.

The basis of canonical MIs is chosen to be:

fT11 = ε3 tr5 IT1,[6−2ε]
1,1,1,1,1 ,

fT12 = ε2 2d23s34 IT1,[4−2ε]
0,1,1,1,1 ,

fT13 = ε2 s34s45 IT1,[4−2ε]
1,0,1,1,1 ,

fT14 = ε2 2d15s45 IT1,[4−2ε]
1,1,0,1,1 ,
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fT15 = ε2 2d15s12 IT1,[4−2ε]
1,1,1,0,1 ,

fT16 = ε2 2d23s12 IT1,[4−2ε]
1,1,1,1,0 ,

fT17 = ε2 ∆3(p23, p1) IT1,[4−2ε]
1,1,0,1,0 ,

fT18 = ε2 ∆3(p15, p2) IT1,[4−2ε]
0,1,1,0,1 ,

fT19 = ε2 β(s12,m
2
t ) I

T1,[4−2ε]
1,1,1,0,0 ,

fT110 = ε s12 IT1,[4−2ε]
2,0,1,0,0 ,

fT111 = ε s23 IT1,[4−2ε]
0,2,0,1,0 ,

fT112 = ε s34 IT1,[4−2ε]
0,0,2,0,1 ,

fT113 = ε s45 IT1,[4−2ε]
2,0,0,1,0 ,

fT114 = ε s15 IT1,[4−2ε]
0,2,0,0,1 ,

fT115 = ε m2
tI

T1,[4−2ε]
1,2,0,0,0 . (4.11)

We compute analytically the boundary conditions for all the MIs in this topology,
for which we obtain expressions in terms of MPL functions. Then we use GiNaC
to evaluate them numerically with high precision (100 digits). The integral fT115 is
equivalent to a tadpole, and therefore we can write its boundary value exactly:

fT115 |x0 =
1

2
eεγEΓ(1 + ε) =

1

2
+
π2

24
ε2 − ζ3

6
ε3 +

π4

320
ε4 +O(ε5). (4.12)

4.2 The T2 topology with 4 massive internal propagators

Topology T2 is described by 21 master integrals as shown in Figure 4. The integrals
are defined as:

IT2,[d]
a1,a2,a3,a4,a5

=

∫
Ddk1

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

, (4.13)

where

D1 = k2
1 −m2

t , D2 = (k1 − p1)2, D3 = (k1 − p1 − p2)2 −m2
t ,

D4 = (k1 + p4 + p5)2 −m2
t , D5 = (k1 + p5)2 −m2

t . (4.14)

The canonical basis for the topology T2 is chosen to be:

fT21 = ε3 tr5 IT2,[6−2ε]
1,1,1,1,1 ,

fT22 = ε2 4d34d23β

(
2d23d34

d23 − d15

,m2
t

)
IT2,[4−2ε]

0,1,1,1,1 ,

fT23 = ε2 4d34d45β

(
−2d45d34

d35

,m2
t

)
IT2,[4−2ε]

1,0,1,1,1 ,

fT24 = ε2 4d15d45β

(
2d15d45

d15 − d23

,m2
t

)
IT2,[4−2ε]

1,1,0,1,1 ,
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Figure 4: The 21 master integrals appearing in the T2 topology, denoted by I’s
in (4.15). Red/black lines indicate massive/massless particles respectively. Dotted
internal lines indicate propagators with an additional power in the denominator of the
integral. Each integral is associated with a kinematic normalisation which ensures
the basis leads to a canonical form differential equation.
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fT25 = ε2 2d15s12β
(
s12,m

2
t

)
IT2,[4−2ε]

1,1,1,0,1 ,

fT26 = ε2 2d23s12β
(
s12,m

2
t

)
IT2,[4−2ε]

1,1,1,1,0 ,

fT27 = ε2 2d34 IT2,[4−2ε]
0,0,1,1,1 ,

fT28 = ε2 2d45 IT2,[4−2ε]
1,0,0,1,1 ,

fT29 = ε2 2d23 IT2,[4−2ε]
0,1,1,1,0 ,

fT210 = ε2 2d15 IT2,[4−2ε]
1,1,0,0,1 ,

fT211 = ε2 ∆3 (p23, p1) IT2,[4−2ε]
1,1,0,1,0 ,

fT212 = ε2 ∆3 (p15, p2) IT2,[4−2ε]
0,1,1,0,1 ,

fT213 = ε2 2(d12 − d45 +m2
t ) I

T2,[4−2ε]
1,0,1,1,0 ,

fT214 = ε2 2(d12 − d34 +m2
t ) I

T2,[4−2ε]
1,0,1,0,1 ,

fT215 = ε2 2(d15 − d23)IT2,[4−2ε]
0,1,0,1,1 ,

fT216 = ε s12β
(
s12,m

2
t

)
IT2,[4−2ε]

1,0,2,0,0 ,

fT217 = ε s45β
(
s45,m

2
t

)
IT2,[4−2ε]

2,0,0,1,0 ,

fT218 = ε s34β
(
s34,m

2
t

)
IT2,[4−2ε]

0,0,1,0,2 ,

fT219 = ε s23IT2,[4−2ε]
0,1,0,2,0 ,

fT220 = ε s15IT2,[4−2ε]
0,1,0,0,2 ,

fT221 = ε m2
tI

T2,[4−2ε]
2,1,0,0,0 . (4.15)

As for topology T1, we compute analytically the boundary conditions for all the MIs
in topology T2 but for the pentagon fT21 , for which we obtain an expression in terms
of one-parameter integrals. Moreover, since

fT221 = fT115 , f
T2
20 = fT114 , f

T2
19 = fT111 , (4.16)

we do not have to perform any new computation for these integrals.

4.3 The T3 topology with 2 massive internal propagators

Topology T3 is described by 17 master integrals as shown in Figure 5. The integrals
are defined as:

IT3,[d]
a1,a2,a3,a4,a5

=

∫
Ddk1

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

, (4.17)

where

D1 = k2
1, D2 = (k1 − p1)2 −m2

t , D3 = (k1 − p1 − p3)2 −m2
t ,

D4 = (k1 + p4 + p5)2, D5 = (k1 + p5)2. (4.18)

The canonical basis for the topology T3 is chosen to be:

fT31 = ε3 tr5 IT3,[6−2ε]
1,1,1,1,1 ,
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Figure 5: The 17 master integrals appearing in topology T3, denoted by I’s in (4.19).
Red/black lines indicate massive/massless particles respectively. Dotted internal
lines indicate propagators with an additional power in the denominator of the inte-
gral. Each integral is associated with a kinematic normalisation which ensures the
basis leads to a canonical form differential equation.

fT32 = ε2 4d24d23 IT3,[4−2ε]
0,1,1,1,1 ,

fT33 = ε2 4d24d45 IT3,[4−2ε]
1,0,1,1,1 ,

fT34 = ε2 4d15d45 IT3,[4−2ε]
1,1,0,1,1 ,

fT35 = ε2 4d15d13 IT3,[4−2ε]
1,1,1,0,1 ,

fT36 = ε2 4d23d13β

(
−2d13d23

d45

,m2
t

)
IT3,[4−2ε]

1,1,1,1,0 ,
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fT37 = ε2 ∆3 (p13, p2) IT3,[4−2ε]
1,0,1,1,0 ,

fT38 = ε2 ∆3 (p15, p2) IT3,[4−2ε]
1,1,0,1,0 ,

fT39 = ε2 2d23 IT3,[4−2ε]
0,1,1,1,0 ,

fT310 = ε2 2d13 IT3,[4−2ε]
1,1,1,0,0 ,

fT311 = ε2 2(d15 − d24) IT3,[4−2ε]
0,1,1,0,1 ,

fT312 = ε s13 IT3,[4−2ε]
1,0,2,0,0 ,

fT313 = ε s23 IT3,[4−2ε]
0,2,0,1,0 ,

fT314 = ε s24 IT3,[4−2ε]
0,0,2,0,1 ,

fT315 = ε s45IT3,[4−2ε]
2,0,0,1,0 ,

fT316 = ε s15IT3,[4−2ε]
0,2,0,0,1 ,

fT317 = ε m2
tI

T2,[4−2ε]
1,2,0,0,0 . (4.19)

The boundary conditions for the bubble integrals fT317 , f
T3
16 , f

T3
15 , f

T3
13 are known from

topology T1, while the values for the integrals fT314 , f
T3
12 can be obtained numerically

using DiffExp. For example, the boundary condition for fT314 can be obtained from
fT313 by evolving, using DiffExp, its value at ~x0 to a point ~xσ0 , whose value is deter-
mined by an appropriate permutation of the external momenta. Indeed, fT314 is the
same integral as fT313 just in a different channel, as it can be seen from Figure 5. We
also exploit this strategy for other integrals in T3 and T4.

In T3, only the boundary values for the integrals fT31 , fT32 , fT36 and fT39 need to
be computed explicitly through direct integration. All other boundary values have
already been computed in previous topologies or through numerical evaluation using
DiffExp. In particular, the integrals fT38 and fT34 appear already in other topologies,

fT38 = fT17 , fT34 = fT14 , (4.20)

and the boundary values for the remaining MIs are evaluated with DiffExp in the
following way:

• the boundary value for fT311 is obtained from fT215 ;

• the boundary value for fT310 is obtained from fT29 ;

• the boundary value for fT37 is obtained from fT18 ;

• the boundary value for fT35 is obtained from fT32 ;

• the boundary value for fT33 is obtained from fT14 .
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Figure 6: The 19 master integrals appearing in topology T4, denoted by I’s in (4.23).
Red/black lines indicate massive/massless particles respectively. Dotted internal
lines indicate propagators with an additional power in the denominator of the inte-
gral. Each integral is associated with a kinematic normalisation which ensures the
basis leads to a canonical form differential equation.
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4.4 The T4 topology with 3 massive internal propagators

Topology T4 is described by 19 master integrals as shown in Figure 6. The integrals
are defined as:

IT3,[d]
a1,a2,a3,a4,a5

=

∫
Ddk1

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5

, (4.21)

where

D1 = k2
1 −m2

t , D2 = (k1 − p1)2, D3 = (k1 − p1 − p3)2,

D4 = (k1 + p4 + p5)2 −m2
t , D5 = (k1 + p5)2 −m2

t . (4.22)

The canonical basis for the topology T4 is chosen to be:

fT41 = ε3 tr5 IT4,[6−2ε]
1,1,1,1,1 ,

fT42 = ε2 4d24d45β

(
2d24d45

d24 − d13

,m2
t

)
IT4,[4−2ε]

1,0,1,1,1 ,

fT43 = ε2 4d15d45β

(
2d23d45

d23 − d15

,m2
t

)
IT4,[4−2ε]

1,1,0,1,1 ,

fT44 = ε2 4d15d13 IT4,[4−2ε]
1,1,1,0,1 ,

fT45 = ε2 4d23d13 IT4,[4−2ε]
1,1,1,1,0 ,

fT46 = ε2 4d24d23 IT4,[4−2ε]
0,1,1,1,1 ,

fT47 = ε2 ∆3 (p13, p2) IT4,[4−2ε]
1,0,1,1,0 ,

fT48 = ε2 ∆3 (d23, p1) IT4,[4−2ε]
1,1,0,1,0 ,

fT49 = ε2 2(d23 − d15) IT4,[4−2ε]
0,1,0,1,1 ,

fT410 = ε2 2d15 IT4,[4−2ε]
1,1,0,0,1 ,

fT411 = ε2 2d45 IT4,[4−2ε]
1,0,0,1,1 ,

fT412 = ε2 2d24 IT4,[4−2ε]
0,0,1,1,1 ,

fT413 = ε2 2(d13 − d24) IT4,[4−2ε]
1,0,1,0,1 ,

fT414 = ε s45β
(
s45,m

2
t

)
IT4,[4−2ε]

1,0,0,2,0 ,

fT415 = ε s13IT4,[4−2ε]
2,0,1,0,0 ,

fT416 = ε s24IT4,[4−2ε]
0,0,1,0,2 ,

fT417 = ε s15IT4,[4−2ε]
0,1,0,0,2 ,

fT418 = ε s23IT4,[4−2ε]
0,1,0,2,0 ,

fT419 = ε m2
tI

T2,[4−2ε]
2,1,0,0,0 . (4.23)

The boundary conditions for all the bubble and the triangle integrals, and most of
the box integrals too, have already been considered in the previous topologies. The
only new MIs for which we compute the boundary values by direct integration are
fT41 and fT45 .
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5 Results

5.1 Numerical results for the master integrals

In this section we discuss our results for the numerical evaluation of the MIs per-
formed with DiffExp. The amplitudes depend on 130 independent MIs across all
the four pentagon topologies, and their permutations. Instead of evaluating the whole
system of 130 MIs at once we evaluate each topology separately. Since the number
of MIs inside each topology is at most 21, this approach allows us a faster numerical
evaluation, as we can evaluate in parallel all the topologies and their permutations.
The timing to get numerical values for all the topologies and permutations is within
a range of ∼ 30 minutes to ∼ 1 hour for phase-space point, on a laptop, requiring
an accuracy of 16 digits. We stress that for phenomenological applications the per-
formances can be improved by building a precomputed grid of points as boundary
values [35, 36].

Given a point ~xa, we can evaluate all the MIs, and hence the amplitude, at
that point as follows. The standard ordering of the external momenta for topologies
T1 and T2 is (1, 2, 3, 4, 5), while for topologies T3 and T4 it is (1, 3, 2, 4, 5). The
permutations of these topologies are given by all the possible permutations of the
momenta (3, 4, 5). Therefore, evaluating the MIs that belong to the permutations of
T1,T2,T3 and T4 is equivalent to evaluating the MIs that describe the topologies in
the standard orderings (1, 2, 3, 4, 5) and (1, 3, 2, 4, 5) at a kinematic point, ~xσa , which
is given by the corresponding permutations of the kinematic invariants.

In order to clarify this procedure we discuss the following example. We consider
the permutation (1, 2, 4, 3, 5) for the topology T1. The permutation of the external
momenta:

p3 → p4, p4 → p3 (5.1)

implies the following transformation for the kinematics invariants:{
d12 → d12, d23 → d15 − d23 − d34,

d34 → d34, d45 → d12 − d34 − d45 +m2
t , d15 → d15

}
. (5.2)

This means that evaluating the permutation (1, 2, 4, 3, 5) of T1 at the point:

~xa =
{
d12 → −11

7
, d23 → −7

5
, d34 → − 5

27
, d45 → −17

5
, d15 → −11

17
,m2

t → 1
}

(5.3)

is equivalent to evaluating T1, in the standard ordering (1, 2, 3, 4, 5), at the point:

~xσa =
{
d12 → −11

7
, d23 → 2153

2295
, d34 → − 5

27
, d45 → 2848

945
, d15 → −11

17
,m2

t → 1
}
. (5.4)

This procedure allows us to evaluate all the permutations of a given topology starting
from the system of differential equations for the topology in the standard ordering.
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Moreover, this strategy has also been used to compute the boundary conditions for
some MIs as discussed in the previous section.

In order to verify the correctness of our computation we performed different
checks comparing our results against numerical values for the MIs obtained by means
of sector decomposition techniques, as implemented in the software PySecDec [99].

5.2 Amplitude results

The explicit analytic forms for the partial helicity amplitudes, broken into subam-
plitudes according to Eq. (3.2), are provided in the ancillary files. Due to the large
overall size we do not attempt to provide any typeset expressions in the paper. The
coefficients appearing in the subamplitudes have been collected and linear relations
between them determined. To provide a relatively compact format common factors
in the linearly indpendent rational coefficients are identified and presented as a set
of replacement rules.

The univariate partial fractioning in the variable x5123 was quite effective in re-
ducing the total number of sample points required in the reconstruction. The maxi-
mum total degree appearing in the most complicated sub-leading colour amplitudes
was O(100) before partial fractioning and linear relations. This reduced to O(20)

in the final expressions. Nevertheless, the appearance of high degree polynomials
does indicate that extensions to higher loops will be challenging since the fast eval-
uation of the one-loop input enables to handle such expressions without restrictions
on computational resources.

The ancilary files also provide two example scripts demonstrating the evaluation
of the amplitudes using the numerical results for the master integrals and validation of
the universal pole structure. All evaluations have been performed in Mathematica
where we can obtain O(100) accurate digits without issues. Since the main use case
of the new O(ε) and O(ε2) terms will be in the subtraction of divergences in two-
loop amplitudes, we have not attempted to provide an efficient evaluation of the
amplitudes for use at NLO.

6 Conclusions

In this article we have presented a computation of all one-loop helicity amplitudes
of the process pp → tt̄j evaluated to O(ε2). The expansion to higher order in ε

allows us to look at the complexity of the NNLO terms for the first time. Applying
finite field reconstruction techniques demonstrates that the algebraic complexity of
this problem may be within reach. The analytic complexity coming from the loop
integrals was easily overcome using the combination of canonical form differential
equations and subsequent evaluation using generalised series expansions in DiffExp.
The boundary terms are provided in analytic form up to weight four using MPLs
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except for the pentagon master integral with four internal masses which is presented
as a one-paramater integral.

It will be interesting to see how automated approaches to loop integral eval-
uation using the numerical evaluation of the differential equations develop. Since
mathematical bottlenecks in the understanding of elliptic structures and the difficul-
ties of dealing with long and complicated alphabets may be sidestepped, the method
has substantial advantages over fully analytic approaches. Nevertheless this comes
at the cost of numerical performance and the determination of the boundary values
will still be a major issue. Recent attempts to automate the evaluation of boundary
terms using sector decomposition have been successful [100] although the numerical
accuracy is probably not yet sufficient for the full phase space.

There are clearly important issues that should be addressed in order to over-
come challenges at two-loops. Amplitudes in d = 4−2ε dimensions are substantially
more complicated than their four-dimensional limits. The identification of an an-
alytic function basis such that expansion in ε can be taken and the subtraction of
poles can be performed is likely to be an essential ingredient. We also observe a high
degree of algebraic complexity stemming from the global choice of rational kine-
matic parametrisation. This is particularly evident in the sub-leading colour partial
amplitudes in which many permutations of the master integral topologies appear.

Despite significant challenges ahead, the work presented here motivates further
investigation into analytic or semi-analytic approaches to high precision pp → tt̄j

amplitudes and cross-sections.
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A Generalized series expansion method: A brief review

For the reader’s convenience, we start this section with a short review of the method
of generalized power series [33, 35], implemented in [34], which has been exploited
to evaluate the MIs numerically.

The generalized series expansion method allows us to evaluate the solution to
the system (4.1), at a point ~xa, from the knowledge of the solution at some boundary
point ~x0. This is done is the following three steps:

– 24 –



• Step 1: We split the integration path into segments;

• Step 2: We find a solution inside each segment by expanding in series the
system of differential equations;

• Step 3: We evaluate the solution in the point ~xa connecting the local solutions
of the path γ(t).

The solution to the canonical system (4.1) can be written as a series expansion in ε:

~f(t, ε) =
∞∑
k=0

εk ~f (k)(t), (A.1)

where:

~f (k)(t) =
k∑
j=1

∫ 1

0

dt1A(t1)

∫ t1

0

dt2A(t2) · · ·
∫ tj−1

0

dtjA(tj)~f
(k−j)(~x0) + ~f (k)(~x0), (A.2)

and we assume that the solution is described by some variable t which parametrizes
the path, γ(t), which connects the points ~x0 and ~xa:

γ(t) : t 7→ ~x(t), t ∈ [0, 1] , γ(0) = ~x0 , γ(1) = ~xa. (A.3)

As already mentioned, the first step consists in splitting the path γ(t) into segments
Si ≡ [ti − ri, ti + ri), where {ti} is the set of points in which we are going to expand
the system of differential equations, and ri is the radius of convergence of the series
inside each segment. The segments Si can be chosen from the knowledge of the
singular points of the differential equations. In particular we can have both real:

R ≡ {τi | i = 1, · · · , Nr} , (A.4)

and complex-valued singular points:

C ≡
{
λrei + iλimi | i = 1, · · · , Nc

}
. (A.5)

Therefore, we can choose the expansion points to belong to the set R∪Cr, where Cr
is a set of regular points:

Cr ≡ ∪Nci=1

{
λrei ± λimi

}
(A.6)

and the radius of convergence, ri, can be defined as the distance of ti to the closest
element tp, with p 6= i.

In the second step of the method we determine local solutions to the differential
equations inside each segment Si. This is done by expanding the system of differential
equations around the point ti:

A(t) =
∞∑
l=0

Al (t− ti)wl , wl ∈ Q, (A.7)
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where Al are constant matrices. Then, exploiting the general expression (A.2) for
the k-weight of the solution, we obtain:

~f
(k)
i (t) =

k∑
j=1

∞∑
l1=0

· · ·
∞∑
lj=0

Al1 · · ·Alj
∫ t

0

dt1 (t1 − ti)wl1 · · ·
∫ tj−1

0

dtj (tj − ti)wlj ~f (k−j)
i (~x0)

+ ~f
(k)
i (~x0). (A.8)

for the local solution, ~f (k)
i (t), inside the segment Si.

We point out that working with a system of differential equations in canonical
form implies that the integrals that appear in (A.8) are of the form:∫ t0

0

dt (t− ti)w log (t− ti)m , w ∈ Q, m ∈ N. (A.9)

Consequently, (A.8) is given by the expression:

~f
(k)
i (t) =

∞∑
l1=0

Ni,k∑
l2=0

c
(i,l1,l2)
k (t− ti)

l1
2 log(t− ti)l2 , (A.10)

where the matrices c(i,l1,l2)
k depend on the boundary conditions for the system and

on the constant matrices Al in (A.7).
Finally, as last step of the procedure, the global solution on the path γ(t) can

then be approximated as:

~f(t, ε) =
∞∑
k=0

εk
N−1∑
i=0

ρi(t)~f
(k)
i (t), ρ(t) =

{
1, t ∈ [ti − ri, ti + ri)

0, t /∈ [ti − ri, ti + ri)
, (A.11)

where N is the total number of segments, and ~f
(k)
i (t) is the k-weight of the local

solution, inside the segment Si, written as a truncated series expansion, around
some point ti, with radius of convergence ri.

A.1 Analytic continuation

In this part we briefly discuss the analytic continuation within the framework of the
generalized series expansion method and, in particular, in its DiffExp implementa-
tion.

Analytic continuation has to be performed when a singularity of the differential
equations matrix, dA(~x), is crossed along the integration from the boundary point,
~x0, to the evaluation point ~xa. We encounter two kinds of singularities:

• Case I: Logarithmic singularities, this type of singularities arise from simple
poles in the system of differential equations;
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• Case II: Square roots singularities, this type of singularities appear as the
canonical basis of MIs involves square roots of the kinematic invariants.

In order to determine all possible logarithmic singularities, we consider the system
of differential equations for a basis of MIs without square roots normalization in-
volved, then we perform a multivariate partial fraction on the system exploiting the
Mathematica package MultivariateApart [101]. In doing so, we obtain a set of
irreducible polynomials in the kinematic invariants, P(~x), which describes the simple
poles structure of the system (A.7). Instead, the square roots singularities, S(~x), are
given by set of square roots (4.4) that define the canonical basis of MIs. There-
fore, the full set of singularities for the analytic continuation is given by the set of
polynomials P(~x) ∪ S(~x).

Once the full set of singularities is known we perform the analytic continuation
as follows. We assign a small imaginary part to the kinematic invariants and the top
mass:

dij → dij ± iδ, m2
t → m2

t ± iδ, (A.12)

then we substitute (A.12) into the polynomials P(~x)∪S(~x), we expand with respect
to δ and we keep just the linear term. As an example of this procedure we consider
the logarithmic singularity

d12 − d34 − d45 +m2
t (A.13)

which appears in Topology 1. The kinematic invariants and top mass carry the
imaginary parts{

d12 + iδ, d23 + iδ, d34 + iδ, d45 + iδ, d15 + iδ,m2
t − iδ

}
. (A.14)

As a consequence, once we substitute (A.14) into (A.13), we obtain that the singu-
larity (A.13) is analytic continued as:

d12 − d34 − d45 +m2
t − iδ. (A.15)

B Explicit form of the infrared poles for the partial ampli-
tudes

In this appendix we give the explict form for the Catani-Dittmaier-Trocsanyi formula
Eq. (2.14) for the partial colour amplitudes. We use the following short hand for the
logarithms that appear,

Lij = log

(
µ2
R

−2dij

)
(B.1)

Lm,ij =
1

2
log

(
µ2
R

−2dij

)
+

1

2
log

(
m2
t

−2dij

)
(B.2)
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Lβ =
2d12

s12β
log

(
−1− β

1 + β

)
(B.3)

The poles are list to order ε:

AL,dsx = P (L,ds)
x +O(ε0). (B.4)

All forumlae are also available in comupter readable forms in the ancillary files.
Firstly for 0→ tt̄ggg process,

P
(1,0)
1;1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
− 3
ε2
− 1

ε
(Lm,23 + Lm,15 + L34 + L45)

)
(B.5)

P
(1,1)
1;1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
4ε

)
(B.6)

P
(1,0)
1;−1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
ε
Lβ
)

(B.7)

P
(1,1)
1;−1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
− 1

4ε

)
(B.8)

P
(1,0)
2;0 (1, 2, 3, 4, 5) = −A(0)

1;0(1, 2, 3, 5, 4)
(

1
ε

(Lm,13 − Lm,15 − L34 + L45)
)

− A(0)
1;0(1, 2, 4, 5, 3)

(
1
ε

(Lm,23 − Lm,25 − L34 + L45)
)

− A(0)
1;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,13 − Lm,14 − L35 + L45)
)

− A(0)
1;0(1, 2, 5, 4, 3)

(
1
ε

(Lm,23 − Lm,24 − L35 + L45)
)

(B.9)

P
(1,1)
2;0 (1, 2, 3, 4, 5) = 0 (B.10)

P
(1,0)
3;0 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 4, 5, 3)

(
1
ε

(Lm,14 + Lm,23 − L34 − Lβ)
)

+ A
(0)
1;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,13 + Lm,25 − L35 − Lβ)
)

+ A
(0)
1;0(1, 2, 5, 3, 4)

(
1
ε

(Lm,15 + Lm,24 − L45 − Lβ)
)

(B.11)

P
(1,1)
3;0 (1, 2, 3, 4, 5) = 0 (B.12)

Closed fermion loops are finite in the tt̄ggg channel. For 0 → tt̄qq̄g process we
have:

P
(1,0)
1;1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
− 2
ε2
− 1

ε
(Lm,14 + Lm,25 + L35 − 2)

)
(B.13)

P
(1,1)
1;1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
3ε

)
(B.14)
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P
(1,0)
1;−1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
ε2

+ 1
ε

(Lm,14 + Lm,23 − Lm,13 − Lm,24 + L34 + Lβ + 2)
)

+ A
(0)
3;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,15 − Lm,14 + Lm,24 − Lm,25)
)

+ A
(0)
4;0(1, 2, 3, 4, 5)

(
1
ε

(L45 − L35 + Lm,13 − Lm,14)
)

(B.15)

P
(1,1)
1;−1 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
− 1

2ε

)
(B.16)

P
(1,0)
2;1 (1, 2, 3, 4, 5) = A

(0)
2;0(1, 2, 3, 4, 5)

(
− 2
ε2
− 1

ε
(Lm,15 + Lm,23 + L45 − 2)

)
(B.17)

P
(1,1)
2;1 (1, 2, 3, 4, 5) = A

(0)
2;0(1, 2, 3, 4, 5)

(
1
3ε

)
(B.18)

P
(1,0)
2;−1 (1, 2, 3, 4, 5) = A

(0)
2;0(1, 2, 3, 4, 5)

(
1
ε2

+ 1
ε

(Lm,14 + Lm,23 − Lm,13 − Lm,24 + L34 + Lβ + 2)
)

+ A
(0)
3;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,13 − Lm,15 + Lm,25 − Lm,23)
)

+ A
(0)
4;0(1, 2, 3, 4, 5)

(
1
ε

(L35 − L45 + Lm,24 − Lm,23)
)

(B.19)

P
(1,1)
2;−1 (1, 2, 3, 4, 5) = A

(0)
2;0(1, 2, 3, 4, 5)

(
− 1

2ε

)
(B.20)

P
(1,0)
3;0 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,15 + Lm,24 − L45 − Lβ)
)

+ A
(0)
2;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,13 + Lm,25 − L35 − Lβ)
)

+ A
(0)
3;0(1, 2, 3, 4, 5)

(
− 2
ε2

+ 1
ε

(L45 − L35 − Lβ + 2)
)

(B.21)

P
(1,1)
3;0 (1, 2, 3, 4, 5) = A

(0)
3;0(1, 2, 3, 4, 5)

(
1
3ε

)
(B.22)

P
(1,0)
3;−2 (1, 2, 3, 4, 5) = A

(0)
3;0(1, 2, 3, 4, 5)

(
1
ε2

+ 1
ε

(
Lm,14 + Lm,23 − Lm,13 − Lm,24 + L34 + Lβ + 2

))
(B.23)

P
(1,1)
3;0 (1, 2, 3, 4, 5) = A

(0)
3;0(1, 2, 3, 4, 5)

(
1
3ε

)
(B.24)

P
(1,0)
4;0 (1, 2, 3, 4, 5) = A

(0)
1;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,13 − Lm,15 + L45 − L34)
)

+ A
(0)
2;0(1, 2, 3, 4, 5)

(
1
ε

(Lm,24 − Lm,25 + L35 − L34)
)

+ A
(0)
4;0(1, 2, 3, 4, 5)

(
− 2
ε2

+ 1
ε

(−L34 − Lm,15 − Lm,25 + 2)
)

(B.25)
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P
(1,1)
4;0 (1, 2, 3, 4, 5) = A

(0)
4;0(1, 2, 3, 4, 5)

(
1
3ε

)
(B.26)

P
(1,0)
4;−2 (1, 2, 3, 4, 5) = A

(0)
4;0(1, 2, 3, 4, 5)

(
1
ε2

+ 1
ε

(
Lm,14 + Lm,23 − Lm,13 − Lm,24 + L34 + Lβ + 2

))
(B.27)

P
(1,1)
4;0 (1, 2, 3, 4, 5) = A

(0)
4;0(1, 2, 3, 4, 5)

(
− 1

2ε

)
(B.28)

The closed fermion loops are non-zero but very simple and are given by,

P
(1,0),N
I;−1 (1, 2, 3, 4, 5) = A

(0)
I;0(1, 2, 3, 4, 5)

(
− 2

3ε

)
(B.29)
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