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Abstract
Phosphorus (P) cycling in paddy soil is closely related to iron (Fe) redox wheel; its availability to rice has thus generally been 
ascribed to Fe minerals reductive dissolution. However, the literature aimed to identify the best method for predicting rice 
available P does not uniformly point to Fe reductants. Rice plants can indeed solubilize and absorb P through many strategies 
as a function of P supply, modifying the chemical environment. Therefore, this study aims to estimate P availability in paddy 
soils coupling the redox mechanisms driving P cycling with concurrent plant responses. Soil available P was estimated in 
three groups of paddy soils with low, medium, or high P content assessing easily desorbable pools (0.01 M calcium chloride, 
Olsen, Mehlich-III, anion exchanging resins) and Fe-bound P pools (EDTA, citrate-ascorbate, and oxalate). Rice P uptake 
and responses to P availability were assessed by a mesocosm cultivation trial. Although P released in porewater positively 
correlated with dissolved Fe(II), it did not with plant P uptake, and readily desorbable P pools were better availability predic-
tors than Fe-bound pools, mainly because of the asynchrony observed between Fe reduction and plant P demand. Moreover, 
in low P soils, plants showed higher Fe(II) oxidation, enhanced root growth, and up-regulation of P root transporter encoding 
genes, plant responses being related with changes in P pools. These results indicate the generally assumed direct link between 
Fe reduction and rice P nutrition in paddy soils as an oversimplification, with rice P nutrition appearing as the result of a 
complex trade-off between soil redox dynamics, P content, and plant responses.
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Abbreviations
Pplant	� Total P content in plant tissues
Pi	� Inorganic P
Po	� Organic P
MRP	� Molybdate reactive phosphate
MUP	� Molybdate unreactive phosphate
PCaCl2	� P extracted with 0.01 M calcium chloride
POlsen	� P extracted with the Olsen method
PMehlich	� P extracted with the Mehlich-III method
Presins	� P extracted with anion exchanging resins
PEDTA	� P extracted with 0.025 M EDTA
Pcitrate	� P extracted with citrate-ascorbate
Poxalate	� P extracted with oxalate

Introduction

Phosphorus (P) is an essential nutrient for plants, and its 
availability impacts both rice quality and yields (Seck et al. 
2012). The fluctuating redox conditions occurring in paddy 
soils affect the solubility and availability of Fe-bound P 
(Scalenghe et al. 2002; Marschner 2021). Under reducing 
conditions, P concentration in the soil solution increases 
as a result of the microbial reductive dissolution of poorly 
crystalline Fe (hydr)oxides (Willett and Higgins 1978; Wei 
et al. 2019). However, if flooding conditions are protracted 
in time or oxic conditions are re-established by mid-season 
field draining, dissolved P can be re-adsorbed or co-precipi-
tated (de Mello et al. 1998; Zhang et al. 2003; Santoro et al. 
2019), likely reducing P availability for crops more than 
supposed until now. On the other hand, the alerting depletion 
of phosphate rock resources expected over the next 50 years 
and the constantly rising prices of mineral fertilizers have 
caused a three-fold decrease in the use of phosphate fertiliz-
ers in the European rice-intensive agroecosystems over the 
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last years (Van Vuuren et al. 2010), potentially compromis-
ing rice productivity especially in P-poor soils. Thus, a cor-
rect assessment of the P-supplying capacity of paddy soils is 
essential to optimize fertilization management and increase 
P-use efficiency without negatively affecting crop yields.

A number of methods are being used for estimating P 
availability to paddy rice in different pedoclimatic envi-
ronments (Pierzynski 2000), and previous studies have 
been devoted to identify the best methods, achieving dif-
ferent results. The acknowledged relationship between the 
reductive dissolution of Fe (hydr)oxides and P mobilization 
would well explain the results of those papers that identi-
fied extractants targeting Fe pools (e.g., citrate-ascorbate, 
(de Mello et al. 1998); oxalate, (Rabeharisoa et al. 2012); 
citric acid, (Hernández et al. 2013); EDTA, (Simonete et al. 
2015)) as good predictors of P availability to rice, while 
a number of other works point to methods related to P 
desorption (e.g., Olsen, (Olsen et al. 1954; Maftoun et al. 
2003); anion extracting resins, (Teo et al. 1995); diffusive 
gradients in thin films (DGT), (Six et al. 2013)). However, 
most of these studies focused mainly on tropical soils; thus, 
their results are poorly adaptable to temperate paddy sys-
tems because of the differences in soil parent materials and 
soil-forming processes that affect P release for plant uptake 
(Kögel-Knabner et al. 2010; Moody et al. 2013). In subtropi-
cal and tropical regions where soils are highly weathered, 
the porewater P concentration could be very low compared 
to the plant P demand, due to the high content of stable Fe 
and aluminum oxides (Hinsinger 2001) and to their lower 
reducibility. As P availability in paddy soils is known to 
be associated with the dissolution of the most reactive Fe 
(hydr)oxide forms (de Mello et al. 1998; Wang et al. 2022a, 
b), redox-driven changes in Fe mineralogy could strongly 
impact P availability for rice plants. This is the reason why 
acid oxalate-extractable P, i.e., P associated with poorly 
crystalline oxides, is reported to correlate with P availability 
(Shahandeh et al. 1995), although there is evidence that this 
pool includes some P forms associated with crystalline Fe 
phases, potentially overestimating the amount of plant avail-
able P. Reyes and Torrent (1997) thus proposed the citrate-
ascorbate extraction as a more specific method to extract 
poorly crystalline Fe (hydr)oxides. Similarly, the extraction 
with EDTA at neutral pH was also proposed to release P 
from less labile pools by promoting the chelation of cations 
including Fe (McDowell et al. 2008).

Moreover, the abovementioned methods do not con-
sider the potentially important contribution of soil organic 
P (Po) to available pools. Although plants take up almost 
exclusively inorganic P (Pi), this pool can be replenished 
by Po mineralization over time, further confounding the 
relationship between soil Pi contents and P availability 
for plants (McDowell et al. 2008). Plants can access Po 
resources through the root exudation of organic acids and/

or by producing phosphatase and phytase enzymes, but the 
hydrolysis of Po is not the only strategy adopted by plants 
to increase soil P availability (McDowell et al. 2008; Rose 
et al. 2013; Wu et al. 2021). Because of the low mobility of 
P in soils, rice plants could respond to P-limiting conditions 
by increasing soil exploration with roots, uptake efficiency 
through up-regulation of the expression of P-transporter 
encoding genes, and promoting radial oxygen loss (Kirk and 
Van Du 1997; Rose et al. 2013; Fu et al. 2014). In particu-
lar, rice phosphate root transporters actively take up inor-
ganic phosphate (Pi) from the soil solution and translocate 
it within the plant (Jia et al. 2011). Under flooded soil condi-
tions, because of the reduced tortuosity of diffusion paths, 
the uptake of P across the root membrane may become the 
rate-limiting step for P acquisition, rather than the speed of 
replenishment of the soil solution P (Rose et al. 2013). Thus, 
the activation of phosphate root transporters, in association 
with other above-mentioned strategies, may play a crucial 
role in regulating P uptake by rice plants.

The interaction between plant P acquisition strategies and 
soil redox dynamics could drive changes in the different soil 
P forms and their availability, thus justifying the large vari-
ability of mechanisms proposed to explain rice P nutrition 
in paddies and the involved P pools (Shahandeh et al. 1995; 
Maftoun et al. 2003; Madurapperuma and Kumaragamage 
2008; Hernández et al. 2013; Six et al. 2013). In addition, 
the type and extent of plant-soil interactions evolve during 
crop growth, hence, the P supplying capacity of paddy soils 
may be related also with the temporal changes in P availabil-
ity during rice cultivation that are driven by management-
dependent fluctuations in soil redox conditions and plant 
development. However, the effects of these temporal dynam-
ics on P availability for rice plants are still unclear so far and 
thus need a better understanding.

Based on these considerations, we hypothesized that the 
chemical methods used to estimate Fe forms could better 
represent P availability to rice than the methods commonly 
used in aerobic crops. In addition, the plant responses to 
flooding and soil P supply could profoundly change the 
rhizosphere dynamics regulating P release into solution, 
further complicating the correct assessment of available P 
pool. Therefore, the current study aims to assess the involve-
ment of different P pool(s) in rice P nutrition, as a function 
of soil P content, while combining the changes in Fe and 
P dynamics with the response of rice plants to P supply. 
We hypothesized that P bound to reducible Fe pools could 
play a major role in paddy soils from temperate regions, 
as recently reported for tropical soils (Wang et al. 2022a, 
b), and that plant adaptation mechanisms could enhance P 
uptake under P deficiency by acquiring P from less avail-
able pools, including organic P. We tested our hypotheses 
by assessing soil P availability with seven different chemical 
methods in 12 paddy soils, selected from an initial set of 
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100 soils typical of temperate rice cropping systems (NW 
Italy) and representative of a large range of total P contents. 
The estimated P availability was compared to the effective 
P uptake by rice plants cultivated in mesocosms under con-
tinuous flooding and related to plant responses.

Materials and methods

Assessing the soil P pools most involved in plant 
uptake

Study sites, soil sampling, and chemical analyses

In the first phase of the current study, a set of 100 paddy 
topsoils was randomly collected from different sites to rep-
resent all the rice cropping areas of Lombardy (NW Italy, 
Fig. S1), one of the main rice-producing regions of Italy. 
These sampling sites were located in the plains of the river 
Po, characterized by the presence of bumps of Holocene 
fluvial dynamics, modified by anthropogenic soil levelling 
due to the more recent agricultural processes. Most soils 
fell in the orders of Alfisols and Inceptisols, according to 
USDA classification (Soil Survey Staff 2022). The climate is 
temperate, characterized by hot summers and two main rainy 
periods in spring and autumn. The mean annual precipitation 
for the last 20 years was 704 mm, while the mean annual 
temperature was 17.7 °C (Miniotti et al. 2016).

The soils were sampled at 0–20  cm, air-dried, and 
sieved < 2 mm. The pH was determined potentiometrically 
in a 1:2.5 soil:H2O suspension. Total carbon (C) and nitro-
gen (N) contents were determined by dry combustion (UNI-
CUBE, Elementar Analyses System GmbH, Langensbold, 

Germany). When present, the CaCO3 content was calculated 
from the difference between total and organic C determined 
by dry combustion after fumigation with 0.1 M HCl. Total 
P (Ptot) was determined after sulfuric-perchloric diges-
tion (Olsen and Sommers 1982), and the concentration of 
molybdate-reactive P (MRP) in the extracts was determined 
according to Ohno and Zibilske (1991). Bicarbonate extract-
able P (POlsen) was determined on air-dried soils according 
to Olsen et al. (1954). Iron (Fe) and aluminum (Al) were 
extracted with ammonium oxalate (Schwertmann 1964), 
and the total Fe and Al concentration in the extracts was 
determined by atomic absorption spectroscopy (AAS, Perki-
nElmer AAnalyst 400, Norwalk, CT, USA). Particle-size 
distribution was assessed by the pipette method after sam-
ple dispersion with Na-hexametaphosphate (Gee and Bauder 
1986). The soil cation exchange capacity was determined 
in 10% BaCl2 (Bascomb 1964), and the concentration of 
exchangeable cations in the extracts was determined by 
AAS.

Soil P availability assessment

The soils were subsequently grouped into 12 groups based 
on their total P content (Ptot), pH, and particle size distribu-
tion (Table S1). One soil per group, totally 12 representative 
soils were further selected as the most representative and 
grouped based on total P content as high P, medium P, and 
low P. The GIS coordinates and USDA soil classification 
(Soil Survey Staff 2022) of the 12 representative soils are 
reported in Table S2. These soils were analyzed for P availa-
bility using seven extraction methods according to the target 
P pool, as listed in Table 1. The selected extraction methods 
were divided into the following: (i) methods assessing easily 

Table 1   Short description of the extraction methods used in this study and related mechanisms of P release from soil

Abbreviation Extractant Process Extraction procedure References

PCaCl2 CaCl2 Soil solution 1 g of soil with 20 mL of 0.01 M 
CaCl2; 1 h

Soltanpour et al. 1974

POlsen Olsen Exchange 1 g of soil with 20 mL of 0.5 M 
NaHCO3, pH 8.5; 30 min

Olsen 1954

Pmelich Mehlich III Exchange 1 g of soil with 20 mL of 0.2 M 
CH3COOH, 0.25 M NH4NO3, 
0.015 M NH4F, 0.013 M HNO3, 
0.001 M EDTA; 5 min

Mehlich 1984

Presins Anion exchange resins Infinite sink 2 g of soil with 0.5 g of DOWEX resins 
in 40 mL H2O; overnight

Saggar et al.1990

PEDTA EDTA Fe (hydr)oxide complexation 1 g of soil with 40 mL of 0.025 M 
EDTA, pH 4.5; 16 h

Bowman and Moir 
1993

Pcitrate Citrate ascorbate Fe (hydr)oxide complexation and 
reduction

1 g of soil with 40 mL of 0.2 M Na-
citrate, 0.05 M ascorbate, pH 6.0; 
16 h

Reyes and Tor-
rent 1997

Poxalate Acid NH4 oxalate Fe (hydr)oxide complexation and dis-
solution

0.5 g of soil with 20 mL of 0.2 M 
(NH4)2C2O4, pH 3.0; 2 h

Schwertmann 1964
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desorbable pools, including the extraction in CaCl2 (Soltan-
pour et al. 1974), NaHCO3 (Olsen et al. 1954), Mehlich III 
(Mehlich 1984), and anionic resins (Saggar et al. 1990), and 
(ii) methods targeting Fe-bound P pools, as EDTA (Bowman 
and Moir 1993), citrate-ascorbate (Reyes and Torrent 1997), 
and oxalate (Schwertmann 1964). The molybdate-reactive 
phosphate (MRP) in the extracts was determined colori-
metrically according to Murphy and Riley (1962) using 
excess molybdate when necessary (Weaver 1974). Aliquots 
of the extracts were dried in the oven at 105 °C and digested 
with sulfuric-perchloric acid mixture (Martin et al. 1999). 
The concentration of molybdate-unreactive P (MUP) was 
determined as the difference between P concentration in the 
digested and undigested sample. As stated by Cade-Menun 
and Liu (2014), the MUP includes organic P along with 
some inorganic forms that do not react with molybdate. In 
relation to the scope of this study, we assumed that the MUP 
pool corresponded mainly to organic P forms. Therefore, we 
will hereafter refer to it as organic P in the extract.

Evaluation of plant responses to different soil P 
supply

Mesocosm experiment setup

Rice cultivation was performed in the 12 selected soils for 
60 days under continuous flooding. 2.5 kg of fresh soil was 
used and carefully put in each mesocosm by reproducing 
the original bulk density. The soils were then flooded by 
maintaining 5 cm of water above the soil surface and the 
Eh measured potentiometrically and monitored to confirm 
the establishment of soil-reducing conditions (7 days after 
flooding, DAF). The experiment was carried out with four 
replicates. Seeds of the rice cultivar Selenio were pre-ger-
minated for 3 days at 25 °C in the dark and transferred to 
the mesocosms at 5 DAF. The mesocosms were then trans-
ferred inside a climatic chamber at a constant temperature 
of 20 °C and 12 h light per day, with a light intensity of 
600 µmol m−2 s−1. At 20 DAF, plants were fertilized with 
40 kg N ha−1, considering a mesocosm volume of 0.02 m3.

In each mesocosm, one Rhizon sampler (Rhizon MOM 
19.21.21F, Rhizosphere, Wageningen, The Netherlands) was 
installed vertically in the proximity of the root system, and 
the soil solution was collected weekly and analyzed for MRP 
and MUP, Fe(II), and dissolved organic C (DOC). Molyb-
date unreactive P and MRP in the soil solution were quan-
tified as previously described for soil extracts. Dissolved 
Fe(II) concentration was measured colorimetrically imme-
diately after porewater sampling, using the 1,10-orthophen-
anthroline method (Loeppert and Inskeep 1996). Dissolved 
organic C was determined using Pt-catalyzed, high-temper-
ature combustion (850 °C) followed by infrared detection 
of CO2 (VarioTOC, Elementar, Hanau, Germany), after 

removing inorganic C by acidifying to pH 2 and purging 
with CO2-free synthetic air.

Additionally, for each soil P level, unplanted soil meso-
cosms were also set up, and soil solution was weekly col-
lected and analyzed for Fe(II) concentration. The difference 
in porewater Fe(II) concentration between non-planted and 
planted samples was used as a proxy to monitor radial O2 
loss (ROL) from plant roots. Indeed, the extent of Fe mineral 
reduction could be used as an indicator of the ability of rice 
plants to control rhizospheric soil redox conditions under 
flooding (Doran et al. 2006).

Plant sampling and elemental analysis

Plant shoots and roots were harvested separately at 60 DAF, 
when plants had the maximum number of detectable till-
ers, that is at the end of the vegetative stage, and the con-
centration of P in plants mainly depends on plant uptake 
rather than internal redistribution (Wissuwa 2003). Roots 
were carefully washed with deionized water, and a subsam-
ple (200 mg) was rapidly frozen with liquid N2 and stored 
at − 80 °C for enzymatic and gene expression analyses. The 
remaining root and shoot material was dried at + 40 °C for 
determining dry biomass and elemental composition. Total 
C, N, and P content (Pplant) was determined according to the 
methods previously described for soil samples. Phosphorus-
acquisition efficiency (PAE) was calculated as the ratio of 
P accumulated in tissues to soil total P, P-utilization effi-
ciency (PUE) was calculated as the ratio of dry biomass to 
P concentration in the plant tissues (Neto et al. 2016), and 
P-translocation efficiency (PTE) was calculated as the ratio 
of P concentration in the shoot to the P concentration in the 
root (Santoro et al. 2021).

Phosphate transporters gene transcript quantification

Aliquots (100 mg) of the frozen roots were ground using a 
Qiagen TissueLyzer II (Retsch MM300, Germany). Total 
RNA was extracted using the Trizol Reagent (Thermo-
Scientific) according to the manufacturing instructions 
and treated with DNase I (ThermoScientific) at 37 °C for 
30 min to remove residual genomic DNA. First-strand cDNA 
was synthesized from 500 ng of purified total RNA using 
SuperScript® IV Reverse Transcriptase (ThermoScientific) 
according to the manufacturer’s instructions. For transcript 
quantification of target genes, the quantitative reverse-
transcriptase PCR (qRT-PCR) reactions were carried out 
by Chromo4™ Real-Time PCR Detection System (Bio-Rad 
Laboratories) using the SYBR Green (Applied Biosystems) 
methods. Thermal conditions were 95 °C for 3 min as the 
first denaturing step, followed by 95 °C for 10 s and 55 °C 
for 30 s for 39 cycles. The CT values were analyzed with the 
Q-gene software by averaging three independently calculated 
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normalized expression values for each sample. Expression 
values are given as the mean of the normalized expression 
values of the triplicates, calculated according to Eq. 2 of the 
Q-gene software (Muller et al. 2002). Three independent 
biological replicates (= 3 plants) were analyzed per soil, and 
each qRT-PCR reaction was run in technical duplicates. A 
list of primers used in this study is shown in Table S3.

Enzyme activity in root tissues

Root enzymatic activity was assayed following the method 
of Hayes et al. (1999). Briefly, the root material (0.5 g) was 
ground in 15 mM 2-(N-morpholino)ethanesulfonic acid 
(MES) buffer (pH 5.5) containing 0.5 mM CaCl2 and 1 mM 
EDTA. After centrifugation, the extract was subjected to 
gel filtration on Sephadex G-25 columns. The activity of 
acid phosphatase and phytase enzymes was measured on 
the same root extracts using the substrates 10 mM p-nitro-
phenyl phosphate (pNPP) and 2 mM potassium myo-inositol 
hexaphosphate (myoInsP6), respectively. Assays were con-
ducted for 60 min, and the reactions were stopped by the 
addition of ice-cold 10% trichloroacetic acid (TCA). Solu-
tions were subsequently centrifuged (2000 × g) to remove 
precipitated material, and p-nitrophenol and phosphate con-
centrations were determined by measuring the absorbance 
against standard solutions, at 412 nm and 600 nm, respec-
tively (Helios Gamma Spectrophotometer, Thermo Electron, 
Waltham, MA).

Statistical analyses

The statistical analyses were performed using the R version 
4.1.1. Normality and data homoscedasticity were checked 
with the Shapiro–Wilk and Levene tests, respectively. When 

necessary, data were transformed according to the data dis-
tribution. All the variables were tested for the analysis of 
variance (two-way ANOVA), followed by pair-wise post hoc 
analyses (the Student–Newman–Keuls test) to determine the 
differences among the mean value at p < 0.05. Correlation 
analyses were used to relate P content in the plant tissues 
(Pplant) to the amount of P extracted by the different extract-
ants in order to determine the best method to estimate P 
availability in flooded paddy soils. The R package corrplot 
was used to compute the correlation matrices, and the native 
“R cor.test function” was implemented to test the signifi-
cance of correlation. The ggplot2 package was used to plot 
all the figures.

Results

Potential availability of soil P pools

Soil chemical and physical properties

The majority of the 100 analyzed soils had a sandy loam 
texture, and the pH was close to neutrality on average. The 
total P content ranged from 200 to 1000 mg P kg−1, and 
POlsen from 5 to 65 mg P kg−1 (mean value 31 mg P kg−1). 
Over 70% of the samples had POlsen values higher than 
20 mg P kg−1, thus indicative of a relatively high P avail-
ability. Fig. S2 reports the average characteristics of the 100 
collected soils, while Table 2 details the properties of the 
12 representative soils selected for the mesocosm experi-
ment. In the representative 12 soils, total P values were 
over 800 mg kg−1 in high P soils, around 500–550 mg kg−1 
in medium P soils, and below 420 mg kg−1 in low P soils 
(Table S1). Conversely, the 12 representative soils showed 

Table 2   Selected 
physicochemical properties 
of the 12 soils used to assess 
P availability to rice plants, 
divided into three groups based 
on their P content

Soil ID Total P (mg 
kg−1)

pH Sand (g kg−1) Organic C (g 
kg−1)

CEC (cmol(+) 
kg−1)

Feox (g kg−1)

High P
  HP a 893 6.1 770 13 5.2 1.47
  HP b 899 5.8 250 20 22 6.53
  HP c 877 5.7 780 9 5.6 0.62
  HP d 810 5.9 570 10 7.4 4.7

Medium P
  MP a 549 6.4 840 10 7.6 0.74
  MP b 512 6.9 420 10 11 3.34
  MP c 541 7.9 290 10 15 3.41
  MP d 534 6.6 620 6 5.4 0.53

Low P
  LP a 420 6.5 440 12 9.4 5.63
  LP b 414 6.5 550 14 14 3.33
  LP c 377 5.6 330 12 5.2 4.1
  LP d 287 5.7 510 10 6 2.06
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a low and comparable value of total organic C, being on 
average 11.3 ± 0.98 g kg−1. The average value of Feox was 
3.04 ± 0.58 g kg−1, with the lower values associated with 
higher sand content.

Assessment of soil available P pools

Soil extractable MRP (Pi) and MUP (assumed to be 
mainly Po) obtained with the different chemical methods 
were grouped and averaged based on the three total P lev-
els (Fig. 1a). As expected, the amount of MRP and MUP 
extracted by the different methods was related to the total 
soil P, although differences between high and medium P 
soils were much higher than between medium and low P 
soils and largely varied according to the extraction strength 
of each chemical method. On average, CaCl2 (0.01 M) 
extracted the lowest amount (1.81 ± 2.56 mg kg−1), fol-
lowed by Olsen (29.5 ± 19.2  mg  kg−1), Mehlich-III 
(44.8 ± 31.6 mg kg−1, data not shown), and anion exchang-
ing resins (45.3 ± 38.2 mg kg−1). The methods commonly 
used to determine Fe-associated P forms extracted the 

highest amounts of MRP: EDTA (202 ± 150 mg  kg−1), 
citrate-ascorbate (222 ± 132  mg  kg−1), and oxalate 
(331 ± 167  mg  kg−1). The extracted MUP displayed a 
similar trend, despite lower values for all extractants: 
CaCl2 (0.26 ± 0.25 mg kg−1), Olsen (2.14 ± 1.88 mg kg−1), 
anion exchanging resins (7.39 ± 9.60  mg  kg−1), 
EDTA (43.6 ± 52.2  mg  kg−1),  citrate-ascorbate 
(73.4 ± 61.9 mg kg−1), and oxalate (34.9 ± 18.9 mg kg−1). 
The amounts of MRP extracted in CaCl2 (0.01 M) and 
Olsen were not significantly different between soil groups 
with medium and low P levels, while the amounts of P 
extracted in EDTA, citrate-ascorbate, and oxalate (p < 0.05) 
well discriminated among the three groups. Across all 
methods, MRP represented the greatest proportion of 
extractable P (on average 83.1 ± 16.8%; Fig. 1b), while 
the proportion of MUP appeared to be higher in low P 
than in medium and high P soils, despite the differences 
were not statically significant (Fig. 1b). Such effect was 
most pronounced in 0.01 M CaCl2 extracts, where MUP 
was negligible in high P soils, while in low P soils, it rep-
resented over 50%.

Fig. 1   Average concentration 
of inorganic P (MRP) and 
organic P (MUP) extracted 
with calcium chloride, Olsen, 
anion exchanging resins, EDTA, 
citrate-ascorbate, and acid NH4 
oxalate for each of the three soil 
P levels (a). Percentage of MRP 
and MUP obtained in the same 
extracts (b). Different letters 
above bars represent significant 
differences among the three soil 
P levels within each chemical 
method (p < 0.05). Note the 
different values on the y-axis 
for each extractant. The data 
obtained using Mehlich III  
are not shown. For the sake of 
graph readability, SEs are not 
reported in Fig. 1b
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Plant responses to soil P supply

Temporal variation of Fe(II), MRP, MUP, and DOC 
in porewater during plant growth

In the soil-rice mesocosms, after the beginning of the 
submersion, soil redox potential passed from values well 
above + 300 mV to nearly zero mV within 1 week, indicat-
ing the instauration of reducing conditions. The temporal 
trends in porewater Fe(II), DOC, and MRP concentrations 
were similar, but at different extents, for the three soil P 
levels over the plant growing period (Fig. 2) and signifi-
cantly correlated (Fig. S3). Three major phases could be 
identified: (i) a Fe(II) and DOC increase to the maximum 
values during the first 14 days, (ii) a decreasing phase 
within the subsequent 10 days, and (iii) a last time span 
characterized by a steady increase of both parameters. The 
porewater MRP concentration during rice growth was first 
related to soil total P with higher mean values in high P 
soils with respect to medium and low P soils. Although 
the pattern during plant growth reflected those of Fe(II) 
and DOC, the MRP fluctuations were temporarily asyn-
chronous with an initial peak anticipated at 10 DAS (high 
P soils 1.34 ± 1.27 mg L−1, medium P soils 0.47 ± 0.34 mg 

L−1, and low P soils 0.13 ± 0.06 mg L−1), a minimum con-
centration reached in the subsequent 20 days (high P soils 
0.94 ± 1.26 mg L−1, medium P soils 0.38 ± 0.45 mg L−1, 
and low P soils 0.10 ± 0.08 mg L−1), followed by a slight 
increase until a final concentration of 1.75 ± 0.77 mg L−1 in 
high P, 0.40 ± 0.39 mg L−1 in medium P and 0.12 ± 0.08 mg 
L−1 in low P soils. Conversely, the MUP porewater con-
centrations started from relatively high values and differed 
according to soil P levels, with the highest values in high P 
soils than medium and low P soils and then progressively 
decreased reaching the lowest values after only 15 DAF.

When plant had reached a significant root development 
(20 DAF), the release of Fe(II) in the soil solution was dif-
ferent in mesocosms with plants compared to those without 
plants (Fig. 3). In all cases, the Fe(II) porewater concentra-
tions were lower in planted mesocosms. Although in high-P 
soils, the differences between planted and unplanted meso-
cosms were not significant, and in medium and low P soil, 
the Fe(II) porewater concentration was significantly higher 
in mesocosms without rice plants (p < 0.05). Particularly, in 
medium and low P soils, the Fe(II) porewater concentration 
was two and three times higher in unplanted than in planted 
mesocosms, respectively.

Fig. 2   Average concentration 
of Fe(II) (a), dissolved organic 
carbon (DOC) (b), molybdate 
unreactive phosphate (MUP) 
(c), and molybdate reactive 
phosphate (MRP) (d) in the 
porewater of the twelve soils 
in planted mesocosms. For the 
sake of graph readability, SEs 
are not reported. Each value 
represents the average of four 
independent replicates
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Plant biomass and elemental composition

Notwithstanding the similar total (shoot plus root) dry bio-
mass of rice plants grown in soils with different P avail-
ability, significantly larger root biomass was observed in 
plants grown in low P soils (p < 0.01). All plants showed 
no significant differences in total C and N concentrations, 
whereas P concentrations in total biomass decreased in 
the order high P > medium P > low P (Table 3), with a 

stronger effect in the roots than in the shoots. Plants grown 
in high P soils accumulated indeed two times more P than 
those grown in low P soils. However, plant P use efficiency 
(PUE) was twofold higher for plants grown in low P than 
in high P soils. Similarly, P acquisition efficiency (PAE) 
and translocation efficiency (PTE) were greater in low 
P plants than in medium and high P plants (Fig. 4). For 
all parameters, no significant differences were evidenced 
between medium and high P soils.

Fig. 3   Average concentration of 
Fe(II) in the porewater with or 
without plants growth in high 
P (a), medium P (b), and low P 
(c) soils

Table 3   Dry biomass, total 
carbon (C), phosphorus (P), 
and nitrogen (N) in total plant 
biomass, shoots, and roots at 
60 days after flooding (DAF). 
Each value represents the 
mean of four replicates (± SD). 
Different letters indicate 
significant differences among 
the three soil levels (p < 0.01)

Treatment Dry biomass (g) Total C (mg g−1) Total N (mg g−1) Total P (mg g−1) P content (mg)

Total
  High P 1.7 ± 0.5 366.8 ± 22.3 10.2 ± 1.8 3.29 ± 0.76 a 5.59 ± 0.38 a
  Medium 1.7 ± 0.6 370.5 ± 19.9 9.2 ± 1.3 2.75 ± 0.38 ab 4.66 ± 0.23 ab
  Low P 1.7 ± 0.6 349.2 ± 64.8 9.8 ± 2.6 2.32 ± 0.31 b 3.94 ± 0.19 b

Shoot
  High P 0.9 ± 0.3 378.8 ± 15.3 11.5 ± 2.6 3.42 ± 0.41 a 3.08 ± 0.12 a
  Medium 1.1 ± 0.6 738.5 ± 15.3 10.2 ± 1.5 1.92 ± 1.85 b 2.11 ± 1.11 b
  Low P 1.0 ± 0.3 387.5 ± 11.9 12.5 ± 2.8 2.22 ± 0.34 b 2.22 ± 0.10 b

Root
  High P 0.6 ± 0.3 b 353.9 ± 45.2 8.2 ± 1.0 3.04 ± 1.35 a 1.82 ± 0.41 b
  Medium 0.8 ± 0.3 b 361.7 ± 34.3 7.6 ± 1.2 1.99 ± 0.92 b 1.59 ± 0.28 b
  Low P 1.9 ± 0.5 a 335.7 ± 52.2 7.6 ± 1.2 1.23 ± 0.22 c 2.34 ± 0.11 a

Fig. 4   Average phosphorus use 
efficiency (PUE), phosphorus 
acquisition efficiency (PAE), 
and phosphorus translocation 
efficiency (PTE) for each of the 
three soil P levels. Different 
letters above bars represent 
significant differences among 
the soil P levels (p < 0.01)
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Phosphate transporter gene expression and activity 
of P‑enzymes in roots

The genes encoding the root high affinity P transporters OsPt1 
and OsPt8 were more expressed in plants grown in low than 
high P soils. The transcript abundance of the low-affinity P 
transporters OsPt2 and OsPt6 was generally lower compared 
to OsPt1 and OsPt8, but an increase in gene expression of 
OsPt2 was observed in roots of plants grown in low P soils 
(Fig. 5). Within each class of affinity for phosphate (high and 
low), the transcripts positively correlated. In addition, OsPT8 
and OsPT2 showed a positive correlation (Fig. 7).

The activity of acid phosphatase was generally higher 
than that of phytase (Fig. S4), and, in the former, no sig-
nificant differences were observed among plants grown at 
different soil P levels.

Correlations between soil P forms and plant responses

All inorganic P forms obtained with the tested extraction 
methods positively correlated with Pplant (Fig. 6a); however, 
the best performances were obtained with anion exchanging 
resins (r = 0.915, p < 0.001), CaCl2 (r = 0.861, p < 0.01), and 
Olsen (r = 0.848, p < 0.001). Only the correlation between 
Mehlich-III and Pplant was very weak and not significant 
(r = 0.197, p > 0.05). Conversely, the organic P fraction in 
the extracts was only weakly correlated to plant uptake, with 
only MUP extracted in EDTA, citrate, oxalate, and anion 
exchanging resins being positively correlated with Pplant 
(Fig. 6b). When discriminating between the three groups 

of soils, the correlation among Pplant and the MRP extracted 
by the different methods were different in low P soil com-
pared to high and medium P. In the latter, the correlation 
patterns were similar to the general correlation reported in 
Fig. 6 a and b, while in the former, the correlations were 
weaker, except for Olsen P (Fig. 6c), whereas all methods 
showed a positive, though weak, correlation between MUP 
and Pplant in low P soils (Fig. 6d). Moreover, OsPT1, OsPT2, 
and OsPT8 positively correlated with the root biomass, PUE, 
PAE, and PTE, while OsPT6 showed positive correlation 
only with PUE. Other positive correlations were found 
between the root biomass and PUE, whereas negative cor-
relations existed between root biomass and Pplant and PResins 
(Fig. 7). Low P plants showed a slight increase in phytase 
activity, and a positive correlation was observed between 
phytase and Pplant (Fig. 7).

Discussion

Desorbable P is the best‑related pool with rice 
uptake

Despite the effect of reductive dissolution on the release 
of the Fe-bound P into paddy soil porewaters is widely 
acknowledged (Ponnamperuma 1972; Shahandeh et  al. 
1995; Ajmone-Marsan et al. 2006), the relationship between 
redox transformations of Fe (hydr)oxides and P availability 
for rice plants is still debated. Extraction methods involv-
ing the release of P from Fe minerals with EDTA, citrate-
ascorbate, or oxalate have been proposed as alternative and 
more appropriate approaches for estimating the P supply 
capacity of paddy soils than 0.01 M CaCl2, Olsen, and 
anion exchanging resins. The reason is because the former 
methods mimic, to a different extent, the effect of reductive 
dissolution of Fe mineral pools on P release in submerged 
paddies, particularly in highly weathered environments 
(Shahandeh et al. 1995; de Mello et al. 1998; McDowell 
et al. 2008), whereas the latter methods estimate P release 
into soil solution based exclusively on adsorption–desorp-
tion mechanisms (Moody et al. 2013). In our study, desorp-
tion methods solubilized lower amounts of P, as expected, 
but the differentiation among the three soil P groups was 
poorly underlined (Fig. 1a). In contrast, the methods based 
on P release from Fe minerals extracted higher amounts of P 
with a clear differentiation between the three soil P groups. 
This was further confirmed by the positive correlation 
between P and Fe(II) concentrations in the soil porewaters 
during the rice growth experiment under continuous soil 
flooding, which, however, did not correspond to a parallel P 
uptake by plants (Fig. 6a). This was attributed to a tempo-
ral decoupling of P release during the reductive dissolution 
of Fe (hydr)oxides and plant P requirements. The temporal 

Fig. 5   Average normalized gene expression values for high-affinity P 
root transporters OsPT1, OsPT8, and low-affinity P root transporters 
OsPT62 and OsPT6. Different letters above bars indicate significant 
differences among the three soil P levels (p < 0.05)
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changes in porewater composition over time (Fig. 2) evi-
denced increasing concentrations of Fe(II), MRP, and DOC 
(Fig. 2) during the initial phase of plant growth (0–20 DAF) 
related to the rapid reductive dissolution of the Fe minerals 
with the onset of anoxic conditions, driven by anaerobic Fe-
reducing microorganisms that use DOC as prompt source of 
C for their metabolism (Ponnamperuma 1972; Zhang et al. 
2003; Wei et al. 2019). Consequently, inorganic phosphate 
was readily released increasing the available pool up to val-
ues as high as 1.4 mg P L−1 in those soils rich in oxalate-
extractable Fe, organic C, and total P. However, already after 
10–20 DAF, the concentration of both porewater Fe(II) and 
MRP decreased, possibly for the (co)precipitation and P 
re-adsorption onto less reducible or newly formed mineral 
active surfaces (Santoro et al. 2019). These processes have 
been related to an increase in soil P sorption capacity after 
soil flooding (Zhang et al. 2003; Refait et al. 2007; Heiberg 
et al. 2010), and the re-adsorption of the P released during 
the first phase would explain the decrease in plant available 

P during the second, higher nutrient-demanding phase. 
Although we have no direct evidence of the formation of 
these Fe–P associations, their occurrence could explain both 
the time course of P and Fe(II) in solution and the weak esti-
mate of available P offered by EDTA, citrate-ascorbate, or 
oxalate. The increasing demand for available P by the plants 
after the depletion of seed reserves at about 20 DAS (Wis-
suwa 2003) could have indeed coincided with the decrease 
in porewater-P at later stages of plant development. Thus, 
the initial Pi release from Fe minerals under anoxic con-
ditions could be temporally decoupled from the increasing 
plant P demand, suggesting that other interacting mecha-
nisms could be involved in driving rice P nutrition in paddy 
soils, possibly with even greater importance. Besides the 
progressive slowing down of P uptake in the final stages of 
the plant growing cycle, the late steady-increasing phase of 
porewater MRP could be enhanced by the boosting effect of 
C compounds released in the first phase (0–20 DAF), which 
likely act as electron donors to Fe-reducing microorganisms 

Fig. 6   Correlation heatmap of 
MRP (a) and MUP (b) extracted 
by the chemical methods used 
to assess soil P availability 
and P concentration in plant 
tissues (Pplant) for the three soil 
P levels; MRP (c) and MUP 
(d) extracted by the chemical 
methods used to assess soil P 
availability and P concentration 
in plant tissues (Pplant) grown 
in low P soils. Stars repre-
sent significant correlation at 
p-value < 0.05 (*), < 0.01 (**), 
and < 0.001 (***)
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(Scalenghe et al. 2002) and as competitors for the same sorp-
tion sites of P, thus replenishing the soil solution after P 
depletion (McDowell et al. 2008; Moody et al. 2013). This 
may further explain the more effective estimation of P avail-
ability offered by anion exchanging resins, which act as a 
P-sink.

The particular environment characterizing rice soils can 
affect the available organic P pool (Po) as well. In this case, 
Pplant better correlated with the methods targeting Fe forms 
than with those based on desorption; actually, the organic 
P desorbed in CaCl2 and, to a lesser extent, Olsen P was 
inversely related to plant P concentration (Fig. 6b). Organic 
P forms are not readily available to plants, and, after desorp-
tion, enzymatic hydrolysis is required for the release of inor-
ganic phosphate into the solution suggesting a less immedi-
ate P supply efficiency to plants. In addition, organic P forms 
can be adsorbed/coprecipitated following Fe(II) oxidation at 
a larger extent and more rapidly compared to Pi (Celi et al. 
2020; Santoro et al. 2021), limiting their extraction by meth-
ods exclusively based on desorption mechanisms. Thus, the 
methods targeting Fe forms can access more strongly bound 
Po pools, especially the citrate-ascorbate, which extracted 
the largest Po pools through a combined Fe reduction/com-
plexation mechanism. Notwithstanding the larger fraction 
extracted by Fe dissolution methods, no discrimination 
among the three soil groups was observed, probably due to 

the large heterogeneity of organic P compounds. Indeed, the 
rate of Po mineralization depends on organic matter amount 
and quality, including its C/P ratio (Wu et al. 2021) or the 
relative abundance of easily hydrolyzable compounds, such 
as nucleic acids, that could represent an important P source 
in soils that experienced waterlogging (De Sena et al. 2022). 
The microbial soil biomass, involved in organic matter turn-
over, can also represent a potential sink of immobilized P 
(Peng et al. 2021), increasing the complexity of Po dynamics.

During rice growth, the initial high presence of Po in the 
porewater was followed by a progressive decrease during the 
first 20 DAF, to constant concentrations until 40 DAF, for 
slightly increasing in the last period, resulting in a temporal 
asynchrony between porewater Po and Pi concentration, more 
emphasized in the high P soils with respect to medium and 
low soils. The larger supply of organic compounds present 
in the high P soils might activate microbial community and 
the relative microbially driven Fe-reducing and organic-
P hydrolytic processes (Peng et al. 2021; Wu et al. 2021; 
Wang et al. 2022b), alternating to the release and consequent 
hydrolysis of organic P compounds, phases of P re-adsorp-
tion on the newly formed surfaces that retain more Po than 
Pi (Santoro et al. 2019). This could reduce the availability 
of this important P reservoir, more than supposed by the 
contemporaneous high Fe(II) concentration levels, although 
further investigation should be devoted to better understand 
the Po forms involved.

Plant responses to soil P availability

The correlation patterns between estimated soil P availability 
and Pplant were different in the three soils P groups. Particularly, 
the correlations of both Pi and Po with Pplant were weaker at low 
soil P availability compared to medium and high P soils (Fig. 6 
c and d), indicating that the mechanisms underpinning P release 
into solution and subsequent plant P uptake likely differ as a 
function of soil P content, since rice plants may adopt specific 
strategies to cope with P limitation by accessing less readily 
available pools. The first evident effect was the manipulation of 
rhizosphere redox conditions. Indeed, although no significant 
differences were observed among the soil P groups in terms of 
poorly crystalline Fe content (Feox), the low P soils showed a 
slightly lower Fe(II) concentration in porewater during the last 
phases of plant development (Fig. 2a). Furthermore, the sig-
nificantly lower porewater Fe(II) concentration observed with 
plants than without (Fig. 3) suggests a higher degree of Fe oxi-
dation driven by plants, particularly in low P soils and attributed 
to a larger radial oxygen loss (ROL). This process has been 
reported to be more expressed under low P availability (Kirk 
and Van Du 1997; Fu et al. 2014) and involves a higher oxi-
dation potential in the rhizosphere compared to the anaerobic 
bulk soil (Colmer 2003; Zhang et al. 2004), likely shaping the 
redox gradient governing P dynamics in the root surrounding. 

Fig. 7   Correlation heatmap of the plant strategies to overcome P star-
vation represented by OsPT1, OsPT2, OsPT6, and OsPT8 expression, 
enzymatic activity (phytase and phosphatase), root biomass develop-
ment (Root biomass), P concentration in total plant tissues (Pplant), P 
extracted by anion exchanging resins (Pre), and P use (PUE), acquisi-
tion (PAE) and translocation (PTE) efficiency indexes
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Rhizosphere oxygenation may contribute to counteract the for-
mation of green rust-like Fe–P associations that can limit P 
availability under persisting anaerobic conditions (Zhang et al. 
2004). It has been demonstrated that anaerobic conditions may 
limit the rate of P release from green rust-P complexes because 
the high Fe(II)/Fe(III) ratio which characterizes these minerals 
retards their transformation to Fe(III) (hydr)oxides with lower 
P retention capacity (Huang et al. 2022). Conversely, under oxi-
dative conditions, the evolution of green rust-P complexes to 
Fe(III) (hydr)oxides prompts the release of P (Fang et al. 2021; 
Huang et al. 2022), thus possibly offering a further explanation 
for the increase in Pi and Po porewater concentration occurred in 
the last plant development stage (40–60 DAS). The observation 
that P release from the Fe (hydr)oxides newly formed under 
oxidative conditions after the transformation of green rust-like 
materials is governed by anion-exchange mechanisms (Huang 
et al. 2022) could further corroborate the effectiveness of anion 
exchanging resins in predicting P availability to rice plants.

Other observed differences involved P uptake and translo-
cation capacity. In our study, P concentration in rice shoots 
was comparable between medium and low P soils (Table 3), 
possibly due to the higher PTE of plants grown in these soils, 
especially in low P compared to high P soils (Fig. 4). In sup-
port of this, the gene encoding OsPT8, which has a major 
role in P translocation, was up-regulated in plants of low and 
medium P soils. Furthermore, the total biomass produced by 
rice plants was similar across different soils groups, but plants 
grown in low P soils had a higher root-to-shoot ratio as a 
consequence of the larger root biomass, which indicated a 
differential allocation of C resources to this organ to promote 
its growth and mining activity. The trend of PTE was the same 
as that of PUE; this latter was primarily dictated by the regula-
tion of genes encoding P root transporters. We found that the 
lower the PCaCl2, the higher the induction of P transporters 
that aim to increase Pplant. More specifically, the high-affinity 
P transporter principally involved in the primary P uptake, 
OsPT1 (Rose et al. 2013), was most expressed in the roots of 
plants grown in low P soils. In the same plants, the transcrip-
tion of OsPT2 was also increased. OsPT2 is a root low-affinity 
Pi transporter that mediates the translocation of the stored 
P in the plant, therefore playing a critical role in the initial 
stage of plant development for P acquisition (Rose et al. 2013; 
Julia et al. 2018). The parallel increase of OsPT1, OsPT2, and 
OsPT8 transcription suggests a coordination in the response 
of rice plants to P limitation in terms of acquisition, usage, 
and translocation. The transporter OsPT6, which is reported 
to have a role in P translocation as OsPT8 (Julia et al. 2018), 
was however substantially less expressed in plants, regardless 
of P available in soil. Thus, a minor role in P translocation for 
OsPT6 can be hypothesized in rice plants under the experi-
mental conditions used in this study.

The positive correlation between Pplant and the Po extracted 
by 0.01 M CaCl2, suggests the importance of the labile form 

of Po to plant P uptake (Fig. 6d). Nevertheless, no significant 
differences were observed among soil P levels in terms of 
enzymatic activity. Such an effect underlined that the complex 
soil–plant dynamics governing the availability of the organic 
P forms are still to clarify.

Conclusions

The results obtained in this work indicate that combined 
multifaceted effects contribute to rice P nutrition besides 
P release from Fe minerals, which might not be the only 
nor the most relevant mechanism, probably because of the 
asynchrony between Pi and Po release into soil solution and 
plant requirements. Additionally, in moderately weathered 
soils, where the dominance of Fe minerals on soil chemical 
properties is not so much expressed as in highly weathered 
tropical environments, plant responses to P limitations can 
effectively enhance P uptake. In particular, ROL could boost 
the release of P after its temporary solubility decline. The 
different P utilization efficiency measured in low P compared 
to high P soils further confirmed the interplay between plant 
strategies and soil P pools. The increased root development 
and up-regulation of phosphate root transporters encoding 
genes contribute to P uptake in the complex environment of 
rice paddies. The relationship between plant strategies and 
changes of soil P pools suggests an important role of organic 
P in rice nutrition under conditions of P deficiency, with 
the labile organic pools likely contributing in replenishing 
available ones progressively taken up by plants. However, the 
mechanisms underpinning the transformations of organic P 
forms in rice paddies still deserve further research.
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