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A B S T R A C T   

Background: The exposome drivers are less studied than its consequences but may be crucial in identifying 
population subgroups with unfavourable exposures. 
Objectives: We used three approaches to study the socioeconomic position (SEP) as a driver of the early-life 
exposome in Turin children of the NINFEA cohort (Italy). 
Methods: Forty-two environmental exposures, collected at 18 months of age (N = 1989), were classified in 5 
groups (lifestyle, diet, meteoclimatic, traffic-related, built environment). 
We performed cluster analysis to identify subjects sharing similar exposures, and intra-exposome-group Principal 
Component Analysis (PCA) to reduce the dimensionality. SEP at childbirth was measured through the Equiv
alised Household Income Indicator. 
SEP-exposome association was evaluated using: 1) an Exposome Wide Association Study (ExWAS), a one- 
exposure (SEP) one-outcome (exposome) approach; 2) multinomial regression of cluster membership on SEP; 
3) regressions of each intra-exposome-group PC on SEP. 
Results: In the ExWAS, medium/low SEP children were more exposed to greenness, pet ownership, passive 
smoking, TV screen and sugar; less exposed to NO2, NOX, PM25abs, humidity, built environment, traffic load, 
unhealthy food facilities, fruit, vegetables, eggs, grain products, and childcare than high SEP children. 
Medium/low SEP children were more likely to belong to a cluster with poor diet, less air pollution, and to live in 
the suburbs than high SEP children. 
Medium/low SEP children were more exposed to lifestyle PC1 (unhealthy lifestyle) and diet PC2 (unhealthy 
diet), and less exposed to PC1s of the built environment (urbanization factors), diet (mixed diet), and traffic (air 
pollution) than high SEP children. 
Conclusions: The three approaches provided consistent and complementary results, suggesting that children with 
lower SEP are less exposed to urbanization factors and more exposed to unhealthy lifestyles and diet. The 
simplest method, the ExWAS, conveys most of the information and is more replicable in other populations. 
Clustering and PCA may facilitate results interpretation and communication.   

1. Introduction 

Every individual experiences a multitude of exposures from different 
sources, beginning before birth and accumulating throughout life. The 
human exposome provides a representation of this longstanding expo
sure history (CDC - Exposome and Exposomics - NIOSH). The exposome 

concept considers three broad intertwined and overlaying domains: 1- 
the general external domain, including factors such as urban–rural 
environment, climate factors and societal factors, 2- the specific external 
domain, including diet and lifestyles assessed at the individual level, and 
3- the internal domain, that encompasses metabolic processes, stress 
responses, and ageing (Wild, 2012; Wild, 2005). Several exposome- 
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related research initiatives aim to combine all environmental hazards in 
order to study how they relate with adverse outcomes (Siroux et al., 
2016). Pregnancy and birth cohorts, in particular, offer a unique op
portunity to perform exposome studies in highly susceptible periods of 
life, such as the early infancy. 

In this context, understanding how an unequal distribution of envi
ronmental exposures creates specific population subgroups that share 
similar exposome patterns is crucial. Different factors can have a role in 
creating population subgroups with unfavourable exposures. Better 
insight into such factors, hereafter referred to as “drivers of the expo
some”, could suggest preventive strategies and decrease disease burden. 
The concept of environmental inequality (Brulle and Pellow, 2006) puts 
forward the socioeconomic position (SEP), educational level and area of 
residence as exposome drivers that may create differential exposure to 
environmental risks in the population (Ganzleben and Kazmierczak, 
2020), although the hypothesis that more disadvantaged are more 
exposed to environmental hazards does not always hold (Vrijheid et al., 
2012). Patterns of environmental inequalities are likely to be uneven in 
different communities and geographical areas. In North America, low- 
socioeconomic communities seem to experience higher air pollutants 
concentration, while this association is different elsewhere. In Europe 
(Hajat et al., 2015), it has been found that polluted central areas are 
mostly inhabited by wealthy communities in some cities and by disad
vantaged people in others (Unequal exposure and unequal impacts — 
European Environment Agency). The Human Early Life Exposome 
(HELIX) (Vrijheid et al., 2014) project observed that the social de
terminants of the urban exposome of European pregnant women 
differed in different cities (Robinson et al., 2018). Air pollutants levels 
were higher among pregnant women of low SEP in Bradford, Nancy, and 
Valencia, whereas the opposite was observed in Oslo, Poitiers, and 
Sabadell. Similarly, high levels of chemical contaminants have been 
reported both in low or high socioeconomic groups (Montazeri et al., 
2019). 

Another study on the Spanish population-based birth cohort INMA 
found generally weak and inconsistent associations between social and 
educational classes and environmental pollutants measured in maternal 
serum during pregnancy and in cord blood. Moreover, social class 
explained less than 5% of the variability in pollutants concentrations 
(Vrijheid et al., 2012). A positive association between belonging to a 
higher level of socio-economic position and consumption of fruits, 
vegetables, white meat, fish and eggs was found in children participants 
to the Portuguese National Food, Nutrition and Physical Activity Survey 
(Correia et al., 2020). 

In the general exposome research, studies may include all the three 
exposome domains together (Haddad et al., 2019). Because each specific 
group of components carries a biological fingerprint in relation to a 
health outcome, the integration of all the exposome domains may pro
vide a broader perspective and could help identifying specific groups of 
components that may be under-studied (Haddad et al., 2019). 

In the context of the study of exposome, interest is more focused on 
the association with modifiable factors, with the goal of identifying 
components on which to intervene to reduce exposome disparities. The 
socio-exposome (Senier et al., 2017) concept has been proposed to serve 
as a bridge between eco-social theories (Krieger, 2001) and the concept 
of the exposome (Wild, 2012) and, within this framework, different 
subgroups of the exposome have been analysed, such as air pollutants, 
environmental chemicals or urban environment (Vrijheid et al., 2012; 
Robinson et al., 2018; Montazeri et al., 2019). Recently, Sum and col
leagues (Sum et al., 2022) implemented an exposome approach to in
vestigate the association between 8 SEP indicators and 134 exogenous 
and endogenous exposures measured during pregnancy in a setting with 
no clear SEP geographical segregation. In addition to specific associa
tions (such as the relevant role of paternal variables), their work high
lights how SEP-exposome relationships are complex, non-linear and 
context-specific, and how they may be modified by ethnicity and na
tivity (Sum et al., 2022). 

The joint analysis of components from different exposome domains 
at the same time provides a broad perspective and involves many 
technical challenges (Santos et al., 2020). These include the heteroge
neity of a large number of variables, with some exposome subgroups 
being more homogeneous and correlated (e.g. air pollutants) and others 
including dissimilar, less correlated, variables (e.g. lifestyles), and the 
need to integrate different data sources, implying different measurement 
scales and precision (Santos et al., 2020). To address the high dimen
sionality and to characterise exposome patterns, data-driven dimen
sionality reduction techniques (such as Principal Component Analysis 
(PCA) and factor analysis) and methods for grouping of observation (like 
cluster analysis) have been proposed (Santos et al., 2020; Stafoggia 
et al., 2017). When studied in relation to the drivers of the exposome, 
the patterns derived from the aforementioned techniques can improve 
both data synthesis and interpretation, two limits of traditional Expo
some Wide Association Study (ExWAS), where a separate regression 
model of each exposome variable on the driver is fitted. Although pre
vious SEP-exposome papers utilized some of the approaches, most of 
them focused on PCA, leaving out other possible techniques (Robinson 
et al., 2018; Montazeri et al., 2019). Furthermore, the use of a global 
PCA when the set of variables is high-dimensional and heterogeneous 
may not be advantageous for the interpretation of results. This study 
aims to fill the gap in the SEP-exposome literature by applying and 
comparing three different and complementary approaches to analyse 
the relationship between SEP at birth, measured through a standardised 
indicator of material resources, as a potential driver of the exposome. It 
focuses on the characterization of the exposome, with particular atten
tion to the general and specific external exposome domains, in 18- 
month-old children of the NINFEA birth cohort, living in the city of 
Turin, Italy. 

2. Methods 

2.1. Study population 

The NINFEA study (https://www.progettoninfea.it) is an Italian 
web-based multi-purpose mother–child cohort aimed at exploring the 
relationships between exposures starting in early-life and long-term 
health outcomes (Richiardi et al., 2007). Approximately 7500 preg
nant women participated in the study between 2005 and 2016. Mothers 
were asked to complete the baseline questionnaire during pregnancy 
and invited to respond to other seven follow-up questionnaires, at 6 and 
18 months after delivery, and when their children turn 4, 7, 10, 13, and 
16 years of age. The NINFEA study was approved by Ethical Committee 
of the San Giovanni Battista and CTO/CRF/Maria Adelaide Hospital of 
Turin, and all the participating mothers gave informed consent at 
enrolment and at each follow-up. Details on the cohort have been pub
lished before (Firestone et al., 2015; Blumenberg et al., 2018). 

The current study population included 2289 children living in the 
area of Turin, whose mothers completed the NINFEA 18-month ques
tionnaire. Turin is a metropolitan city in the Piedmont region, in north- 
western Italy. The city’s population is approximately 900,000 residents, 
with the most densely populated area in the city centre (10617 pop/ 
km2), partly surrounded by hills (1853 pop/km2) and partly surrounded 
by suburbs with a relatively high level of industrialization (3667pop/ 
km2). Supp. Fig. 1 shows the distribution of the degree of urbanisation 
(Degree of urbanisation classification) of the territory of Turin munici
pality, with 90% of the surface of the area classified as an urban centre. 

Out of 2289 eligible children, 1989 children with complete infor
mation on the driver (SEP) and on variables potentially influencing 
participation in the NINFEA study (namely maternal age, maternal 
parity and maternal country of birth, as explained below) were included 
in the analyses. 
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2.2. SEP assessment 

SEP at childbirth was measured through the EHII (Equivalised 
Household Income Indicator), a standardised cross-cohort comparable 
indicator of material resources. The EHII measures the total disposable 
monthly household income, standardised for the household size and 
composition (Pizzi et al., 2020). To overcome the difficulties of 
measuring disposable income through a questionnaire, the EHII was 
developed within the LifeCycle project (Jaddoe et al., 2020), using 
external data from the 2011 “pan-European Union Statistics on Income 
and Living Conditions” (EUSILC) survey, and individual data from the 
cohorts (parental age, cohabitation status, educational level, country of 
birth, occupation, house size and type, and family size). For this study, 
the main analyses are based on the tertiles of the distribution of the 
equivalised total disposable household income from the 2011 Italian 
EUSILC population used to derive the EHII (i.e. all households with at 
least one child (16-years old or younger) and his/her mother, and 
excluding households with 8 or more members or with very atypical 
structure, such as two or more family units living together). Participants 
with an EHII in the first two tertiles were classified as having a medium/ 
low SEP, while those with an EHII in the upper tertile as having a high 
SEP (Supp. Fig. 2). Medium and low SEP children were grouped together 
because of the low proportion of children with a low SEP in the cohort 
(3.2%) (Table 2). We performed additional analyses using deciles of the 
internal EHII distribution. 

2.3. Children exposome assessment 

Early life exposome variables were selected a priori and classified in 
five subgroups according to the exposome domains of Wild’s classifi
cation (Wild, 2012). Thus, the 18-month exposome considered here 
consists of lifestyle and diet components for the specific external 
domain, and meteoclimatic, traffic-related, and built environment 
components for the general external domain. 

The lifestyle group includes 4 variables: exposure to passive smok
ing, pet ownership, TV screen time (1h30min per day or more), and 
childcare attendance. All lifestyle variables were binary, and were ob
tained from questionnaires. If a variable was measured at two points in 
time in the first 18 months of age (the first 6 months and from 6 to 18 
months of age), we combined the two measures and defined the variable 
as ever/never in the first 18 months. 

The diet group includes 13 variables derived from questionnaires. 
Two are dichotomous: ever breastfed in the first 18 months of age 
(assessed at 6 and 18 months), and introduction of solid food at 4 
months of age or later (assessed at 6 months). The other 11 variables 
were assessed at 18 months of age only, and included the consumption of 
vegetables, fruit, dairy products, fish, meat, eggs, grain products, po
tatoes, sweet beverages and sugar products, measured in servings per 
day. 

The last three exposome groups, describing various aspects of the 
urban environment, are based on the geo-coded residential address at 
the age of 18 months, and were generated within the Lifecycle project 
(de Castro Pascual et al., 2021). The meteoclimatic group includes 4 
continuous variables: humidity percentage, temperature, UV irradiance 
DNA damaging dose, and land surface temperature. The traffic-related 
group includes 9 continuous variables: NO2, NOX, PM10, PM2.5, 
PMcoarse, PMabsorbance, night noise level (obtained using European road 
traffic noise maps), inverse distance to the nearest road, and traffic load 
of major roads. The built environment group includes 12 continuous 
variables: building density, facility richness (the number of different 
facility types - like restaurants, shops, medical centres, schools, libraries 
-, divided by the maximum potential number of facility types), con
nectivity density (number of intersections that are not dead-ends), 
Shannon index (a quantitative measure of land-use diversity), walk
ability, blue spaces, green spaces, population density, number of facil
ities related to unhealthy food, normalised difference vegetation index 

(NDVI, a measure of greenness), length of public bus lines, and number 
of bus stops. 

Urban time-varying factors, such as exposure to air pollutants and 
meteorological parameters, were available as daily mean and were 
averaged to obtain a unique value for different time intervals, such as 
pregnancy, 1st and 2nd year of life (de Castro Pascual et al., 2021). The 
value for the second year of life was used as a proxy for the exposure at 
18 months of age. 

2.4. Statistical analysis 

Continuous variable transformations (squared root or logarithmic) 
were applied to approach normality (details are shown in Table 1). If 
normality was not achieved, variables were dichotomised using the 
median of their distribution as the cut-off. Continuous exposome vari
ables were first mean centred and scaled by standard deviation (SD). 

All the analyses were adjusted for the following covariates, poten
tially influencing participation in the NINFEA study (Pizzi et al., 2012): 
maternal age at delivery (continuous, years), maternal parity at the 
delivery of the index child (0, 1, 2 + ) and maternal nativity (born in 
Italy vs. born outside Italy). 

A graphical representation of the overall analysis plan, described in 
detail in the following sections, is shown in Fig. 1. 

2.4.1. Exposome characterization 

2.4.1.1. Correlation matrix of variables. We estimated the pairwise 
correlations of the entire exposome dataset, showing the results with a 
heat map. Pearson, polychoric or polyserial correlations were calculated 
between all variable pairs using the hetcor function in the polycor R 
package (Fox, 2021). 

2.4.1.2. Cluster analysis. We performed a cluster analysis to group 
subjects sharing a similar exposome pattern. Spectral clustering (Von 
Luxburg, 2007), which is a graph-based algorithm that can detect 
clusters of arbitrary shapes, such as non-convex clusters, was applied 
using the mspec function in the SpectralClMixed R package that accounts 
for mixed data (continuous and categorical) (Mbuga and Tortora, 2021). 
We imposed a priori a minimum number of three clusters, to avoid 
reducing the complexity and variety of the exposome into a dichoto
mous variable. The within-cluster sum of squares and the between- 
divided by the total within- clusters sum of squares were then used as 
internal validation indexes to estimate the optimal number of clusters. 
All subjects with missing values in at least one exposome variable were 
excluded. 

2.4.1.3. Intra-group principal component analysis. We performed a 
Principal Component Analysis (PCA) to derive a summary indicator 
describing each exposome group (lifestyle, diet, meteoclimatic factors, 
traffic-related characteristics and built environment). We used the 
prcomp function in the stats R package for the PCA in the meteoclimatic 
group to handle continuous variables and the FAMD function in the 
Factoshiny R package to perform a Factor Analysis in families with 
mixed data (Pagès, 2004). We excluded observations with missing 
values within each group before performing the PCA, leading to a 
different number of subjects in each group. We retained the first prin
cipal components (PCs) that explained at least 20% of the variance for 
each exposome group. To illustrate how the original variables contribute 
to different PCs, we estimated the correlation of each exposome group 
with its retained PCs in heat maps, using the hetcor function in the 
polycor R package (Fox, 2021). 

2.4.2. Approaches to analyse the association between SEP and the 
exposome 

Three analytical approaches were used to evaluate the association 
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Table 1 
Descriptive table of the variables included in the analyses that were chosen to represent the children exposome in the NINFEA population under study (N = 1989).  

N ¼
1989 

Exposome 
family 

(N) and total % of 
missing in the 
exposome family 

Applied 
transformation 

Exposome 
variable 

Description N or 
meanb 

% or SDb % of 
Missing 

Assessment method Variable 
type 

Time 
frame 

1 Lifestyle (26) 1.3% – pets Furry pet ownership 664  33.4%  1.3% questionnaire binary 6–18 
months 

2   – smoke Passive smoking 306  15.4%  2.8% questionnaire binary 6–18 
months 

3   – childcare Child attending a day care centre within 
the first 18 months of life 

950  47.8%  7.9% questionnaire binary 6–18 
months 

4   – tv Child’s tv watching duration >
1h30min 

298  15.0%  7.8% questionnaire binary 18 
months 

5 Diet  (13) 0.7% – breastfeeding Child ever breastfed 1811  91.1%  1.3% questionnaire binary 6–18 
months 

6   sqrt vegetables Vegetables without potatoesa 1.12  0.33  7.8% questionnaire continuous 18 
months 

7   sqrt fruit Fruita 1.14  0.38  7.1% questionnaire continuous 18 
months 

8   sqrt dairy Milk and milk productsa 1.44  0.33  6.8% questionnaire continuous 18 
months 

9   sqrt fish Fish and fish productsa 0.51  0.19  7.1% questionnaire continuous 18 
months 

10   sqrt meat Meat and meat productsa 0.91  0.26  7.8% questionnaire continuous 18 
months 

11   sqrt eggs Egg and egg productsa 0.39  0.14  8.0% questionnaire continuous 18 
months 

12   sqrt grain Grains and grain productsa 1.87  0.35  7.3% questionnaire continuous 18 
months 

13   sqrt pulses Legumes, nuts and their productsa 0.53  0.24  8.6% questionnaire continuous 18 
months 

14   sqrt potatoes Potatoesa 0.56  0.25  7.4% questionnaire continuous 18 
months 

15   dic sweet beverages Sugar-sweetened beveragesa 1145  57.6%  7.4% questionnaire binary 18 
months 

16   dic sugar products Sugar, sugar products, chocolate 
products and confectionerya 

873  43.9%  8.0% questionnaire binary 18 
months 

17   dic solid food Solid food introduction ≥ 4 months of 
age 

1673  84.1%  8.1% questionnaire binary 6 months 

18 Meteoclimatic (163) 8.2% – humidity % Humidity 69.46  2.12  8.1% Local meteorologic 
stations 

continuous 2nd year 
of life 

19   – temperature Annual average of daily mean 
temperature, ◦C 

13.0  0.49  8.1% Local meteorologic 
stations 

continuous 2nd year 
of life 

20   – UV Annual average of daily mean UV 
irradiance DNA damaging dose, kJ/m2 

1.04  0.05  8.1% Satellite based 
observation 

continuous 2nd year 
of life 

21   – surface 
temperature 

Annual average of daily mean land 
surface temperature, ◦C 

22.20  1.69  8.4% Satellite based 
observations 

continuous 2nd year 
of life 

22 Traffic (160) 8.0% – NO2 NO2, μg/m3 47.87  9.87  8.1% Escape LUR modelc continuous 2nd year 
of life 

23   log NOx NOX, μg/m3 4.42  0.24  8.1% Escape LUR modelc continuous 2nd year 
of life 

24   – PM10 PM10, μg/m3 40.17  6.55  8.1% Escape LUR modelc continuous 2nd year 
of life 

25   – PM25 PM2.5, μg/m3 23.91  2.95  8.1% Escape LUR modelc continuous 2nd year 
of life 

26   – PMcoarse PM coarse, μg/m3 14.76  3.20  8.1% Escape LUR modelc continuous 2nd year 
of life 

(continued on next page) 
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Table 1 (continued ) 

N ¼
1989 

Exposome 
family 

(N) and total % of 
missing in the 
exposome family 

Applied 
transformation 

Exposome 
variable 

Description N or 
meanb 

% or SDb % of 
Missing 

Assessment method Variable 
type 

Time 
frame 

27   – PM25absorbance PM 25 absorbance, μg/m3 2.81  0.53  8.1% Escape LUR modelc continuous 2nd year 
of life 

28   – night noise Night noise level, dB(A) 55.34  5.39  8.1% EC Directive 2002/49/ 
EC Noise Mapsd 

continuous 2nd year 
of life 

29   log distance road Inverse distance to the nearest road 
(m− 1) 

− 2.42  0.89  8.1% Open StreetMapse continuous 2nd year 
of life 

30   dic traffic major 
load 

Traffic load of major roads within a 
buffer of 100 m, 1000 veh/d m 

917  46.1%  8.1% Local traffic monitroing 
maps 

binary 2nd year 
of life 

31 Built 
environment 

(160) 8.0% – buldings Building density (area of building cover 
(km2) / area of buffer (km2) within 
buffer of 300 m ± SD 

370681.9  109772.3  8.0% European Settlement 
Map 2017f 

continuous 2nd year 
of life 

32   sqrt facilities Number of different facility types 
divided by the maximum potential 
number of facility types within a 300 m 
buffer 

0.35  0.11  8.0% NAVTEQ 2012g continuous 2nd year 
of life 

33   – connectivity Connectivity density (number of 
intersections/ km2) within a buffer of 
300 m ± SD 

176.52  68.21  8.0% NAVTEQ 2012g continuous 2nd year 
of life 

34   – shannon Land use SEI within 300 m buffer ± SD 0.44  0.11  8.0% Urban Atlash continuous 2nd year 
of life 

35   – walkability Walkability within 300 m buffer ± SD 0.38  0.05  8.0% Urban Atlas/ NAVTEQ 
2012g / Global Human 
Settlement 
Mapi 

continuous 2nd year 
of life 

36   – blue spaces Is there blue space > 5,000 m2 within 
300 m buffer? 

226  11.4%  8.0% Urban Atlash continuous 2nd year 
of life 

37   – green spaces Is there green space > 5,000 m2 within 
300 m buffer? 

1446  72.7%  8.0% UrbanAtlash continuous 2nd year 
of life 

38   dic population Population density, Inhabitants/km2 ±

SD 
1237  62.2%  8.3% Global Human 

Settlement 
Mapi 

binary 2nd year 
of life 

39   dic unhealthy food 
facilities 

number of facilities related to unhealthy 
food divided by the area of the 300 m 
buffer 

1109  55.8%  8.0% NAVTEQ 2012g binary 2nd year 
of life 

40   log NDVI NDVI values within a buffer of 300 m ±
SD 

− 1.47  0.30  8.0 % Satellite based 
observations 

continuous 2nd year 
of life 

41   sqrt bus lines Length of public bus lines within 300 m 
buffer ± SD 

77.35  18.21  8.7% Google Transit Feedsl continuous 2nd year 
of life 

42   sqrt bus stops Bus stops within 300 m buffer ± SD 5.50  1.37  8.6%  Google Transit Feedsl continuous 2nd year 
of life 

Abbreviations: PM, particulate matter; NO, nitrogen oxides; UV, ultraviolet; NDVI, normalized difference vegetation index. 
a Servings-per-day. 
b Statistics are evaluated after applied transformations, i.e. squared root or log-transformation, to approach normality. If normality was not achieved, variables were dichotomized using the median of their distribution 

as the cut-off. The 4th column in Table 1 reports the transformation chosen for each variable. 
c Escape LUR model: http://www.escapeproject.eu/manuals/ESCAPE_Exposure-manualv9.pdf. 
d EC Directive 2002/49/EC Noise Maps: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:189:0012:0025:EN:PDF. 
e Open StreetMaps: https://www.openstreetmap.org/. 
f European Settlement Map 2017 https://land.copernicus.eu/pan-european/GHSL/european-settlement-map. 
l Google Transit Feeds https://developers.google.com/transit/gtfs. 
h Urban Atlas https://land.copernicus.eu/local/urban-atlas. 
g NAVTEQ 2012: https://www.gbcnet.net/archive/index.php/t-52135.html. 
i Global Human Settlement Map https://ghsl.jrc.ec.europa.eu/. 
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between SEP and the exposome, in which SEP was always used as the 
independent variable, and the exposome as the outcome. The three 
approaches differed on how the exposome variables were treated: (1) 
separate regression models for each single exposome variable; (2) 
multinomial regression model of the exposome cluster membership; and 
(3) linear regression models of selected intra-exposome-group PCs. For 
all analyses we considered the conventional p-value cut-off of 0.05, and 
for the first approach we included the adjusted p-value after the 
correction for multiple testing using Benjamini and Hochberg false 
discovery rate (FDR).  

(1) Exposome Wide Association Study (ExWAS) 

With a “one exposure – one outcome” approach, we fitted a separate 
regression model of each exposome variable, the outcome, on the SEP 
binary indicator (medium/low vs. high), the independent variable, 
adjusting for confounders. Tipically, the exposome-wide association 
studies (ExWAS (Juarez et al., 2014)) aim at evaluating the association 
between the exposome and a health outcome by considering, one at a 
time, the relationship between an exposure variable and the outcome. In 
the ExWAS approach proposed here, the association goes from the SEP 
(the driver) to the exposome variables (the outcome). Linear regressions 
were fitted for continuous outcomes, and logistic regressions for 
dichotomous outcomes. P-values adjusted for multiple comparisons 
were calculated using the Benjamini and Hochberg false discovery rate 
(FDR). We drew two distinct volcano plots for continuous and dichot
omous variables to visualise the associations. 

As a sensitivity analysis, the ExWAS was also carried out using the 
SEP as a continuous exposure, based on the deciles of the internal 
NINFEA EHII distribution.  

(2) Association between SEP and cluster membership 

Cluster analysis groups subjects that share similar exposome pat
terns. Thus, cluster membership was used as a dependent variable in a 
multinomial logistic regression model to explore the association with 

medium/low SEP group, with the high SEP group as the reference. We 
used the multinom function of the nnet R package (Venables and Ripley, 
2002).  

(3) Association between SEP and intra-group PCs 

To study the association between SEP and the exposome groups 
(lifestyle, diet, meteoclimatic factors, traffic-related characteristics and 
built environment), each PC was regressed on SEP in separate models. 

3. Results 

A total of 1989 children with 42 early life exposome variables at 18 
months of age were included in this study (Table 1 and Table 2). The 
proportion of children with medium/low SEP in the study population 
was 29% (Supp. Fig. 2), mostly consisting of participants with medium 
SEP. Table 2 shows that only 3.2% of participant had a SEP in the lowest 
tertile of the Italian equivalised total household disposable income dis
tribution. Most of the mothers were nulliparous (77%), and only 5% of 
mothers were born outside Italy (Table 2). The distribution of the 
exposome variables is reported in Table 1. 

3.1. Exposome characterization 

3.1.1. Correlation matrix 
Fig. 2 shows the pairwise correlation between the 42 exposome 

variables. Overall, the correlation coefficients were stronger within than 
between exposome groups, particularly within the traffic-related vari
ables. A positive correlation pattern was present in the food consump
tion group, even though none of the correlation coefficients exceeds 
0.35. Air pollutants exhibited positive correlation coefficients with ur
banization factors (0.02 to 0.36), particularly evident for NO2 (0.34 for 
buildings, 0.36 for facilities and 0.28 for connectivity) and PM25absorbance 
(0.27 for buildings, 0.30 for facilities, 0.22 for connectivity), and 
negative correlations with blue (− 0.58 to − 0.09) and green spaces 
(− 0.23 to 0.05), Shannon index (− 0.39 to − 0.04), and NDVI (− 0.34 to 
− 0.10). 

Air pollutants correlated positively with DNA-damage UV (0.16 to 
0.28) and negatively with both humidity (− 0.10 to − 0.34) and tem
perature (− 0.18 to − 0.24). We observed a small positive correlation 
between passive smoking and pet ownership (0.26) and an inverse 
correlation between childcare attendance and TV screen exposure in the 
lifestyle group (− 0.21). 

3.1.2. Cluster analysis 
The cluster analysis was based on the complete case approach 

including 1440 children (72.4% of the study population). The optimal 
sum of squares suggested two as the optimal number of clusters (Supp. 
Fig. 3), less than the minimum number of three clusters that we had 
decided a priori to avoid reducing the exposome to a binary variable. As 
the next best choice was three, three clusters were used in the analysis. 

Fig. 3A and B describe the three different groups of subjects ac
cording to their exposome patterns obtained from the cluster analysis. 
The plot in Fig. 3A compares the mean level in each cluster for contin
uous variables, the normalised mean of the whole study population 
being 0. The plot in Fig. 3B shows the prevalence of binary variables in 
each cluster after subtracting the prevalence in the study population. 

Cluster 2 and, even more so, cluster 1 are characterised by high ur
banization levels (building density, facilities, connectivity), below 
average Shannon and NDVI indexes, above average traffic from major 
roads, bus lines and bus stops, population density and unhealthy food 
facilities, suggesting that, given the characteristics of the city of Turin, 
subjects in cluster 1 and 2 likely live in central, well served areas of the 
city. Air pollution levels were however different: higher than average for 
cluster 2, suggesting a residence close to the city’s main arteries, and 
lower than average for cluster 1, suggesting a residence in a green, 

Table 2 
Descriptive table of the driver (SEP) and the main adjustment covariates used in 
the analyses for the NINFEA population under study (N = 1989).  

N ¼ 1989 Name Description N (%) or 
Mean 
(SD) 

Median 
(IQR) 

Exposure EHII Indicator of log- 
equivalised total 
disposable monthly 
household income 

7.45 
(0.23) 

7.49 
(0.30)  

SEP      
low 64 (3.2%)    
medium 508 

(25.5%)    
high 1417 

(71.2%)  
Adjustment 

covariates 
maternal 
age at 
delivery 

Mean maternal age at 
childbirth, years 

33.5 (4.1)   

maternal 
parity at 
the 
delivery of 
the index 
child 

Maternal parity for the 
index child     

0 1521 
(76.5%)    

1 390 
(19.6%)    

2+ 78 (3.9%)   
maternal 
nativity 

Mother’s born outside 
Italy 

103 
(5.2%)   
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central and service-rich area. Cluster 3 identifies children with lower 
than average levels of air pollutants and urbanisation factors (buildings, 
facilities, connectivity). The urbanization pattern of cluster 3, rich in 
green spaces, less polluted, less urbanised and less populated, with less 
traffic and unhealthy food facilities, suggests a more suburban resi
dential area. This interpretation is supported by the geographical dis
tribution of children’s residential addresses in the three clusters (Fig. 4). 

The differences in diet are smaller than those for the variables rep
resenting urbanisation and pollution. Cluster 1 appears to capture the 
healthiest diet, with above average fruit, vegetables and below average 

dairy products, fish, meat, grain products, potatoes, sugar products and 
sweet beverages. Cluster 2 and 3 are characterised by lower than 
average consumption of vegetables, fruit, pulses, grain products and 
potatoes, higher than average consumption of dairy products, fish, meat, 
eggs and higher consumption of sweet beverages but lower consumption 
of sugar products. 

Regarding lifestyle factors, individuals in cluster 3 were more 
frequently pet owners, more exposed to TV screens, less likely to be 
exposed to passive smoking and less likely to have attended childcare 
before the age of 18 months. Children in cluster 1 were more likely to 

Fig. 1. Workflow of the overall analysis plan.  
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Fig. 2. Heat map showing positive (red) and negative (blue) pairwise correlations (Pearson’s, polychoric or polyserial correlation, depending on the type of the 
variables) between the variables chosen to represent the children exposome. See Table 1 for short names of the exposures. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Description of the three exposome clusters (N = 1440). Clusters are identified by different colors (black, orange, blue). In A, the length of the bar represents 
the mean variable level within the cluster, the overall mean being 0. In B, the length of the bar represents the prevalence of exposed individuals for each exposome 
variable within the cluster, after subtracting the prevalence of exposed individuals in the whole study population. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Map showing the kernel density of geocoded addresses of residence of NINFEA children in the Turin city area, divided in the three clusters (black = cluster 1, 
orange = cluster 2, blue = cluster 3) obtained from the cluster analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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have attended childcare and were more exposed to TV screens, while 
children in cluster 2 watched less TV and were more exposed to passive 
smoking. 

3.1.3. Intra-group PCA 
To explain at least 20% of intra-group variance, we selected the first 

two PCs for the diet group and only the first PC for the other exposome 
groups (Table 4). Fig. 5 and Supp. Table 2 show that the first PC in the 
lifestyle group is highly positively correlated with pet ownership (0.61), 
exposure to passive smoking (0.64), and TV screen exposure time (0.63), 
while it shows an inverse correlation with childcare attendance (− 0.61), 
capturing mostly unhealthy lifestyles. The first PC in the diet group is 
positively correlated with many food items, including healthy (vegeta
bles (0.61) and fruits (0.50)) and unhealthy ones (meat (0.45), sweet 
beverages (0.20)), while the second PC seems to capture mostly 
unhealthier dietary habits, with positive correlation with meat (0.53) 
and inverse correlation with breastfeeding (− 0.47), vegetables (− 0.43) 
and pulses (− 0.44). The first PC in the meteoclimatic group is highly and 
inversely correlated with temperature-related variables (surface tem
perature − 0.81, temperature − 0.87). The first PC in the traffic group 
shows a high positive correlation with particulate matters (from 0.81 to 
0.86), while the first PC of the built environment group seems to 
represent highly urbanised areas, showing a high correlation with fa
cility richness (0.81), building density (0.80), connectivity index (0.63) 
and unhealthy food facilities (0.78) and an inverse correlation with 
Shannon index (− 0.70), green spaces (− 0.63) and NDVI (− 0.78). 

3.2. Association between SEP and exposome  

(1) Exposome Wide Association Study 

The ExWAS analysis results are shown in Fig. 6A and B, and in Supp. 
Table 1. Fig. 6A shows the standard deviation (SD) difference in the 
exposome levels for continuous variables in individuals with a medium/ 
low SEP, compared with those with a high SEP. Odds ratios (OR, me
dium/low SEP vs. high SEP) are shown for dichotomous variables 
(Fig. 6B). 

With respect to those with high SEP, children with medium/low SEP 
were exposed to higher levels of Shannon index (β 0.14, CI 0.03;0.24) 
and NDVI (β 0.12, CI 0.01;0.23), and lower levels of fruit (β − 0.19, CI 
− 0.30; − 0.09), vegetables (β − 0.14, CI − 0.24; − 0.03), eggs (β − 0.17, CI 
− 0.27; − 0.06) and grain products consumption (β − 0.12, CI − 0.23; 
− 0.02), lower levels of NO2 (β − 0.24, CI − 0.35; − 0.14), NOx (β − 0.13, 
CI − 0.24; − 0.03), PM25abs (β − 0.12, CI − 0.22; − 0.01), humidity (β 
− 0.11, CI − 0.21; − 0.00), and built environment (connectivity index (β 
–0.22, CI − 0.33; − 0.12), facilities richness (β − 0.20, CI − 0.31; − 0.10), 
walkability (β − 0.20, CI − 0.30; − 0.09), building density (β − 0.14, CI 
− 0.25; − 0.04)). 

Fig. 6B shows that children with medium/low SEP were more 
frequently pet owners (OR 1.57, CI 1.27;1.94), were more exposed to 
passive smoking (OR 1.62, CI 1.23;2.11), TV screen (OR 1.76, CI 
1.34;2.32) and sugar products (OR 1.32, 1.06;1.65) than children with 
high SEP. Conversely, medium/low SEP was associated with lower 
exposure to unhealthy food facilities (OR 0.69, CI 0.56;0.86) and traffic 

load of major roads (OR 0.68, CI 0.55;0.85), and to a lower probability 
of attending childcare in the first 18 months of age (OR 0.46, CI 
0.37;0.57) than children with high SEP. 

In the sensitivity analysis in which SEP was modelled as a continuous 
variable (Supp. Fig. 4, Supp. Table 3), findings were fully consistent with 
the main analyses (with SEP modelled as a dichotomous variable) in 
terms of the direction of the associations of SEP with all the exposome 
variables. As expected, effect sizes were greater and the precision of 
effect estimates was lower when SEP was treated as a dichotomous than 
a continuous variable. In terms of p-values, the number of outcomes for 
which nominal and FDR adjusted p-values were below 0.05 was larger 
when SEP was treated as a dichotomous than as a continuous variable.  

(2) Association between SEP and cluster membership 

Table 3 shows the results of the association study between SEP and 
cluster membership. Children with medium/low SEP have higher odds 
of belonging to cluster 2 (poor diet, highest levels of air pollution, and 
living in central areas) (OR 1.28; 95%CI 0.94–1.73) and cluster 3 (poor 
diet, lowest levels of pollution, living in sub-urban greener areas) (OR 
1.67; 95%CI 1.22–2.31) compared to children with high SEP. The 
sensitivity analysis treating SEP as a continuous variable in deciles 
(Supp. Table 4) showed consistent results.  

(3) Association between SEP and intra-group PCs 

Table 4 shows the associations of SEP with the six intra-group PCs. 
Compared to those with high SEP, children with medium/low SEP were 
more likely to be exposed to higher level of the lifestyle PC1 (“un
healthy” lifestyle) (β = 0.52; 95%CI 0.40–0.63) and diet PC2 (“un
healthy” diet) (β = 0.16; 95%CI 0.03–0.30), and less likely to be exposed 
to the built environment PC1 (urbanization factors) (β = − 0.43; 95%CI 
− 0.65; − 0.21), diet PC1 (mixed diet) (β = − 0.19; 95%CI − 0.36; − 0.02), 
and traffic PC1 (air pollution) (β = − 0.29; 95%CI − 0.52; 0.07). 
Consistent results were obtained when SEP was modelled as a contin
uous variable in deciles (Supp. Table 5). 

4. Discussion 

In this study, we proposed three different methods to investigate the 
role of a distal driver on the early-life exposome (18 months of age), 
within the Turin participants in the Italian NINFEA birth cohort. We 
explored 42 different environmental and behavioral components of the 
general and specific external exposome domains, grouped as lifestyle, 
diet, meteoclimatic factors, traffic-related characteristics, and built 

Table 3 
Multinomial logistic regression of cluster membership on SEP. Estimates are 
adjusted for maternal nativity (born in Italy vs. born outside Italy), maternal age 
at delivery (years) and maternal parity at the delivery of the index child (0, 1, 2 
+ ).  

Adjusted for maternal nativity, age, parity (n 
= 1440) 

Cluster 2 
vs. Cluster 1 

Cluster 3 
vs. Cluster 1  

OR (95% CI) OR (95% CI) 

Medium/low SEP 
vs high SEP 

1.28 
(0.94;1.73) 

1.67 
(1.22;2.31)  

Table 4 
Association between SEP and the intra-exposome-group Principal Components. 
The first column reports the number of subjects in each group after excluding 
observations with missing values; the second column the intra-group variance 
explained by each component. The third column shows the estimated co
efficients of the linear regression of each PC on SEP (medium/low vs. high) and 
their 95% confidence intervals. Estimates are adjusted for maternal nativity 
(born in Italy vs. born outside Italy), maternal age at delivery (years) and 
maternal parity at the delivery of the index child (0, 1, 2+).  

Exposome family N (% of total 
population) 

% of variance 
explained by the 
PC 

Adjusted Estimates 
Coefficients 
β (95%CI) 

PC1 Lifestyle 1816 (91.3)  30.97 0.52 (0.40;0.63) 
PC1 Diet 1652 (83.1)  16.67 − 0.19 (-0.36;- 

0.02) 
PC2 Diet   10.68 0.16 (0.03;0.30) 
PC1 

Meteoclimatic 
1821 (91.6)  47.93 0.01 (-0.14;0.16) 

PC1 Traffic 1825 (91.8)  51.06 − 0.29 (-0.52;0.07) 
PC1 Built 

environment 
1805 (90.7)  36.15 − 0.43 (-0.65;- 

0.21)  
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Fig. 5. Heat maps illustrating positive (red) or negative (blue) correlations (Pearson’s or polyserial correlations, depending on the type of the variables) between 
each exposome family and its retained PCs (explaining at least 20% of the intra-group variance). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 6. Volcano plots of the Exposome Wide Association Study (ExWAS) analysis between SEP and early life exposome (N = 1989). Y-axis shows the strength of 
evidence against the null hypothesis (− log10 p-value) and x-axis shows the effect size (medium–low SEP children vs. high SEP children). Exposome variables with 
FDR adjusted p-values below 0.05 are highlighted in red. Exposome variables with nominal p-values below 0.05 but FDR adjusted p-values above 0.05 are high
lighted in black. The horizontal dotted blue line represents the nominal p-value threshold of 0.05. Estimates are adjusted for maternal nativity, parity and age at 
delivery. In A (continuous variables), the effect size is expressed as the mean difference measured in standard deviations (SD). In B (dichotomous variables), the effect 
size is expressed as the OR on a logarithmic scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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environment. 
We chose SEP as the distal driver of the exposome because of its 

potential in explaining health inequalities of social origin. SEP is a 
composite construct that encompasses both resource-based measures, 
like income and wealth, and prestige-based measures, like education 
and social status (Krieger, 2022). It has been shown that different SEP 
measures have different relationships with the exposome (Sum et al., 
2022). Family income and wealth are difficult to measure through 
questionnaires. We took advantage of a standardised indicator of ma
terial resources, the EHII, currently used in several birth cohorts 
throughout Europe, which overcomes the limitations of other commonly 
used individual SEP measures, like maternal education (Khalatbari- 
Soltani et al., 2022). 

We applied three different methods to assess the SEP-exposome as
sociation: (1) one exposure – one outcome approach (ExWAS), (2) 
cluster analysis, to create homogeneous groups of subjects with regard 
to the exposome patterns, and (3) PCA as a dimensionality reduction 
technique on a priori defined exposome subgroups. 

The ExWAS approach showed that, in the NINFEA Turin cohort, 
being born in a family with a medium/low SEP increases the probability 
of living in greener areas with a higher diversity index, with less air 
pollution, fewer buildings, facilities, connectivity and walkability with 
respect to children born in a high-SEP family. On the other hand, chil
dren with medium/low SEP are more likely exposed to unhealthy life
styles (passive smoking, TV screen, less childcare attendance) and 
unhealthy diet (higher sugar product consumption, less vegetables and 
fruit). These results on lifestyles and diet are mostly consistent with the 
cluster analysis results (with the exception of passive smoking). Children 
with medium/low SEP have higher odds of belonging to cluster 3 
(overall characterised by poor diet, the lowest levels of air pollution, and 
living in sub-urban greener areas), with respect to cluster 1 (low levels of 
pollution, better diet and living in central areas). Consistently, with the 
intra-group PCA, we found that medium/low SEP children tended to 
have higher levels of unhealthy lifestyles and diet, and lower levels of 
urbanization and traffic-related factors than high SEP children. 

These results are plausible when considering the population distri
bution in the city of Turin, where wealthier people tend to live in central 
areas and more deprived subjects tend to live in the suburbs. The map of 
the kernel density estimation of geocoded residential addresses of chil
dren in the three clusters shows that clusters 1 and 2 are located in the 
central areas of the city. Knowledge of the spatial and social structure of 
Turin indicates that children in cluster 1 live in the richer central areas 
surrounded by parks and blue areas (not visible in the map), while 
children in cluster 2 live in the central areas close to major traffic ar
teries (not visible in the map) and rich in services. Urbanization factors 
in cluster 2 may have both a detrimental effect on children’s develop
ment, due to air pollution, noise, and reduced green spaces and a 
beneficial effect, due to the presence of various facilities and good ser
vices, public transport facilities and connectivity. The simultaneous 
action of factors with opposite effects (harmful and beneficial) on health 
is a common but problematic situation when studying the human 
exposome. This may lead to the paradoxical effect of observing 
implausible associations between adverse exposures and improved 
health outcomes (or vice versa), which should be considered when 
interpreting results for specific outcomes. In our attempt to characterize 
the children exposome, we realised that while several individual 
behavioral disease risk factors are likely to cluster together and to be 
negatively associated with socioeconomic position, the environmental 
exposures related to urbanization, air pollution and other residence- 
related factors may be very specific to the social and contextual fac
tors. Our findings might support the enhancement of urban planning to 
reduce environmental risks and promote supportive strategies to 
decrease behavioral risk factors, tailored to specific characteristics of 
population subgroups. 

In this article, we have selected three approaches to summarise the 
relation between SEP and the complex exposome structure that are 

relatively easy to implement and offer interpretable results. These are 
not exhaustive of all possibilities but represent conceptually different 
options that achieve different goals. We have not proposed a head-to- 
head comparison between these approaches but rather showed their 
specificities in grasping different aspects, and we think that they may 
reach their maximum potential through their integration, always 
bearing in mind that the choice about the most suitable method even
tually depends on the specific research question. In our setting, the three 
methods found consistent results despite their analytical differences. 

The ExWAS approach, although based on the one exposure – one 
outcome paradigm, has substantial advantages, thanks to its outcome- 
wide structure. In the traditional ExWAS approach, independent 
regression models are fitted on potentially correlated exposures, making 
it difficult to know if the estimated effect is due to a specific exposure or 
to another correlated exposure ignored in the analysis. This has re
percussions on the high false discovery proportion (Agier et al., 2016). 
However, in the ExWAS approach proposed here, since we are dealing 
with a distal driver and a set of potentially highly correlated outcomes 
(the exposome variables), we enjoy the advantage that, in principle, we 
can control for confounding between the single exposure (driver) and all 
the outcomes (exposome) simultaneously. This is possible if the set of 
confounders includes all variables temporally preceding the exposure 
that could influence the exposure (VanderWeele, 2017). This overcomes 
the problem of the correlation structure between the different compo
nents of the exposome. 

Although transparent, replicable and useful when we want to spec
ulate on the association between SEP and a specific exposome variable, 
this approach has its limitations when trying to capture the salient 
features of the exposome and somehow summarise its complex 
structure. 

To this aim, techniques to reduce the dimensionality of the exposome 
can be more helpful. 

We applied a dimensionality reduction method (PCA) and a method 
for clustering observations. They provide different solutions to the same 
problem: investigating the variability in the dataset in order to find a 
way to explain it through fewer components. The intra-exposome-group 
PCA aims to compress the exposome variables into fewer components on 
the basis of their correlation, capturing as much as possible variability 
within their specific groups. Thus, the evaluation of the association 
between the SEP and exposome is conceptually similar to the ExWAS but 
using fewer variables (one or two for each exposome group) instead of 
all the exposome variables. It allows us to speculate on the role that the 
SEP has had in driving that exposome-group pattern (e.g., dietary) in our 
population. Applying the PCA within each exposome group allowed us 
to improve the interpretability of the resulting patterns, still retaining 
information on which group of the original variables is driving the as
sociations. This approach, however, did not account for the between- 
group variability and only partially overcame the problem of the small 
proportion of variance explained by the first components (especially in 
not strongly correlated subgroups, like diet). 

Clustering aims to separate the subjects into mutually exclusive 
groups based on individual differences in the exposome variables. The 
association with SEP provides insights into the role that SEP has had in 
driving the grouping of children and it is useful to identify population 
subgroups on whom to plan an intervention. However, it does not tell us 
anything about which variables characterizing the clusters are mostly 
affected by the driver. Thus, investigating the relationship between a 
distal driver and the exposome considered as a multi-outcome context 
gives us the opportunity to investigate two different problems: if the SEP 
is a determinant of the exposome subgroup patterns in a population and 
if there are identifiable population subgroups with a higher risk of 
adverse exposures. 

4.1. Strengths and limitations 

The wide range and diverse nature of the general and specific 
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external exposome components gave us the opportunity to apply 
different strategies to analyse the exposome as a multi-outcome context 
with a holistic approach. The internal exposome domain was not 
considered in our analysis, but the proposed approaches could be 
adopted in a study that also includes this aspect. Moreover, we are aware 
that our selection is not exhaustive and that some components of the 
external exposome have not been included in this analysis. Our objective 
however is substantially methodological and can thus be seen as an 
exploration of methods useful in the study of distal drivers of the multi- 
dimensional early-life exposome. Other works, including all three 
exposome domains and more comprehensive in the exogenous and 
endogenous exposures considered are better suited to unravel the spe
cific challenges of SEP-exposome associations in birth cohort studies 
(Sum et al., 2022; Robinson et al., 2015; Jiang et al., 2018). 

The findings presented here are exploratory in nature and we suggest 
caution in a causal interpretation of the role of SEP as a distal driver of 
the environmental exposome. Although missing data proportions in our 
analyses were less than 10% and hence their impact in terms of selection 
bias is likely to be minimal, the presence of unmeasured confounding 
cannot be ruled out. Moreover, it would be difficult to exclude violations 
of the consistency assumption, which entails that the exposure (here, 
SEP) is defined with enough specificity that different variants of it do not 
have different effects on the outcome (here, the exposome) (Rehkopf 
et al., 2016). 

In addition, SEP can be and has been (Wild, 2012) considered as part 
of the exposome, since a household’s material and intellectual resources 
can justifiably be included among the exposures capable of influencing 
future health status. However, in this study, we attempted to investigate 
if familial SEP at birth may play a role in shaping the general and specific 
external exposome of children at 18 months of age. 

The population included in this study may not be representative of 
the general Turin population because of under-recruitment of low-SEP 
women. This may be an issue from a descriptive point of view but in 
this study we still had enough variability to characterise the exposome 
patterns of participating children and to study the association between 
SEP and the early childhood exposome (Pizzi et al., 2012). Finally, 
another limiting point is that, although several of the considered envi
ronmental exposome components may vary in time, we ignored their 
longitudinal dimension and only included single point measures or av
erages, thus hiding the possible presence of peaks and limiting the 
variance. 

5. Conclusion 

This study shows that, in the city of Turin, SEP is associated with 
many early-life exposome characteristics. In particular, people with 
lower SEP are less exposed to air pollution and more exposed to un
healthy lifestyles and diet than people with higher SEP. Specificities, 
potential, and pros and cons of three different analysis strategies were 
examined. The ExWAS approach conveys most of the information and is 
more replicable in other populations, although the cluster analysis and 
the intra-group PCA may facilitate the interpretation and communica
tion of the results. In the setting analysed here, the results obtained with 
the three approaches were fairly consistent. They provided comple
mentary information for the assessment of the socioeconomic de
terminants of the exposome, an under-explored topic that could lead to 
the identification of population subgroups with higher risk of adverse 
exposures. 
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