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A B S T R A C T   

The introduction of Automated Milking Systems (AMSs), or milking robots, represented a significant advance
ment in dairy farming techniques. AMSs enable real-time monitoring of udder health and milk quality during 
each milking episode, which provides a wealth of data that can be utilized to optimize herd management 
practices. ML algorithms are well-suited for handling large and multi-dimensional datasets, making them a 
valuable tool for analyzing the vast amount of data generated by AMSs. This study introduces a novel approach 
to characterize the milk productivity of Holstein Friesians cows milked by AMSs during individual lactation 
periods and evaluate their stability over time. Four unsupervised ML clustering algorithms were employed to 
cluster the cows within each lactation period, and a merging index was proposed to combine the clustering 
results. The dairy cows were grouped into clusters based on their productivity, and the stability of these Pro
ductivity Groups (PGs) over time was analyzed. The PGs were found to be weakly stable over time, indicating 
that selecting cows for insemination based solely on their present or past lactation productivity may not be the 
most effective strategy. In addition, the results revealed that the High Productivity Group exhibited lower levels 
of protein, fat, and lactose content in the milk. The proposed methodology was demonstrated using data from one 
farm with dairy cows that exclusively uses the AMS, however, it can be applied to any context and dataset in 
which a multi-algorithm clustering analysis is suitable, including data from conventional milking parlors. Un
derstanding milk productivity and its factors in future lactation periods is essential for effective herd manage
ment. A comprehensive long-term analysis is of significant importance for the zootechnical sector as it could 
assists farmers in selecting cows for insemination and making decisions on which ones to retain for future 
lactation periods.   

1. Introduction 

The introduction of Automated Milking Systems (AMSs), or milking 
robots, in the early 1990s represented one of the major headways in 
dairy farming techniques. The main advantages of AMS rely on its po
tential to decrease labor, increase milk production and animal welfare, 
and improve herd management (Lyons et al. 2022). During each milking 
session, automatic sensors enable real-time monitoring of the udder’s 
health and milk quality by providing detailed information about each 
cow. Such a level of information was not easily obtainable with previous 
conventional systems (Jacobs & Siegford, 2012). The extensive collec
tion of information through AMSs has led to an exponentially growing 
amount of data. This can be used to optimize herd management, but, on 
the other hand, the sheer volume of data represents a challenge in terms 

of its processing and analysis. Machine Learning (ML) algorithms are 
well-suited for analyzing datasets of this nature, as they are designed to 
effectively handle multi-dimensional, heterogeneous, and large datasets 
(Dulhare, 2020). Indeed, the quality of the ML model’s outcome tends to 
improve with an increasing amount of data, given that the data is of high 
quality and relevance to the specific problem being modeled (Brownlee, 
2021). Hence, ML models have emerged as promising tools for effec
tively modeling AMS data, with the goal of improving herd management 
practices. There are two main approaches to ML techniques: supervised 
and unsupervised learning (Jo, 2021). In the supervised approach, the 
model is trained using annotated data, aiming to optimize the accuracy 
of label predictions. On the other hand, in the unsupervised approach 
the model is trained on unannotated data, with the objective of identi
fying patterns that capture the underlying structure of the data. 
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Cluster Analysis (CA) is an unsupervised ML method that aims to 
identify instances of similar types and group them into respective cat
egories or clusters (Frades & Matthiesen, 2010). In CA algorithms, the 
concept of similarity encompasses two key properties: homogeneity 
among objects within the same cluster and heterogeneity among objects 
from different clusters (Everitt et al., 2011). When the data structure is 
linear and well-defined, various clustering algorithms generally produce 
consistent results. However, as the complexity of the data increases, 
different clustering algorithms are more likely to emphasize different 
characteristics of the data, leading to divergent outcomes. In such cases, 
determining the optimal combination of hyperparameters and models 
for data clustering becomes challenging. 

The primary objective of this study is to examine the long-term 
patterns of milk productivity in cows milked by robotic milking sys
tems. While existing literature predominantly focuses on predicting 
daily milk yield for the current lactation period (Masía et al., 2020; 
Fuentes et al., 2020; Piwczynski et al., 2020; Klis et al., 2021; Ji et al., 
2022) our research aims to explore patterns extending beyond the cur
rent period. Developing a deeper understanding of milk productivity and 
its associated factors in future lactation periods is crucial for effective 
herd management. Making informed decisions about which cows should 
be retained for production requires anticipating their performance in 
advance. This aspect is of significant importance for the zootechnical 
sector, as a comprehensive long-term analysis can assist farmers in 
selecting cows for insemination and deciding which ones to keep for 
future lactation periods. Traditionally, this answer is given by consid
ering only the current lactation productivity. Considering this demand, 
the first research question addressed in this study was whether the 
clustering of the data within each lactation period could effectively 
capture differences in cow productivity. The second research question 
investigated in this study was if these clusters, and more specifically 
these Productivity Groups (PGs)PGs formed by the clusters, are stable 
over time. Specifically, we first investigated if clusters formed inside 
each lactation period can support the grouping of the cows in terms of 
levels of productivity, and, secondly, if so, if these PPGs remain 
consistent across multiple lactation periods. To find the PGs, a CA with 
four clustering algorithms was performed with the data of each lactation 
period. Different clustering algorithms have the potential of capturing 
different aspects of the data, and it is not always clear which is the 
univocal best solution. The design presented in this study utilized mul
tiple clustering algorithms to provide a more robust methodology that 
can identify a representative structure of the data. In this scenario, the 
merging step is extremely important, as its outcome is more reliable and 
less dependent on each single decision in the modeling workflow. Thus, 
the four outcomes were combined into a unique result with a proposed 
merging index. The merged clusters were classified into Low and High 
PGs, according to their values of Milk Production by Day (MPD). Finally, 
the stability of the PGs over the lactation periods was analyzed. The 
results show that the proposed methodology is useful for characterizing 
the cows according to their levels of productivity over lactation periods, 
which is a valuable information for herd management. This can help in 
deciding to inseminate a cow, based on the decision if the cow should be 
kept in production in future lactation periods. Data from one farm with 
240 Holstein cows equipped with AMS was used to demonstrate the 
methodology. 

2. Materials and methods 

2.1. Dataset 

The data utilized in this study was collected from August 2018 to 
January 2022 on a farm located in the northern part of Italy by four 
milking robots (Astronaut robot, Lely®, The Netherlands). The farm’s 
herd is composed of Holstein Friesian cows. Raw data was extracted 
from the milking robot’s management software (T4C “Time-for-Cows” 
InHerd, Lely, Maassluis, The Netherlands) through reports (i) of 

aggregated data by lactation, (ii) aggregated data by day and (iii) of 
single milking events. The choice of using only data available through 
the milking robot’s system, i.e. not integrating external data, was made 
to ensure that the proposed methodology can be easily applied by any 
farm utilizing AMS without requiring additional data sources. The 
definition of the data features used in the analysis is presented in Table 1 
and their statistical description is presented in Table 2. 

The productivity of the cows was determined by dividing the total 
milk production (kg) by the total number of days in the corresponding 
lactation period. To ensure that the dataset only comprised complete 
day records, we excluded the first and last days of each lactation period. 
Additionally, 7 instances with outlier values were removed (High CDT/ 
100 milkings > 5, DIM < 249 and Separated milk by colostrum > 64). 
Four daily registers of Rumination time by day that were below 300 
were replaced by the mean of the Rumination time by day of the cor
responding lactation period. Most of the clustering methods are not 
robust to differences in the scale of the features, thus, each variable was 
scaled with a Z-score Normalization (Singh and Singh, 2020). 

Even though there were some instances from the fifth to the eighth 
lactation periods, only data up to the fourth lactation were used because 
for the higher periods there were too few instances to be analyzed by the 
clustering algorithms. The number of instances in each lactation period 
is presented in Table 3. 

2.2. Data analysis 

Fig. 1 presents the workflow of the analysis. After extracting, pre- 
processing and splitting the data by lactation, the clustering analysis 
was made separately for each lactation period. The MPD of the clusters 
was used to define the groups of productivity. As the different clustering 
algorithms could outcome a different PG for the same cow, the four 
productivity results were merged by the merging index defined in Sec
tion 2.3.5. Finally, the continuity of the PGs was analyzed graphically. 
All analyses were done using the R Core Team (2021) with random seed 
1111. 

Table 1 
Description of the dataset features used to demonstrate the proposed method
ology. Each instance corresponds to aggregated data for an entire lactation 
period of a cow. The dataset was obtained from the T4C ’Time-for-Cows’ InHerd 
system by Lely, Maassluis, The Netherlands.  

Feature Definition 

Lactation The lactation period 
Milk production by day Average milk production (kg) by day 
Milking frequency Average number of times that the cow went to be milked 

by day 
Refusals by milking Average number of refusals (the robot refuses to milk the 

cow because the cow has gone too frequently to the robot) 
Milking Robot Rate Average quantity of milk (kg) by minute of use of the 

milking robot. 
Milking Rate Average quantity of milk (kg) by total time (sum of all 

quarter’s times) in minutes milking 
Errors every 100 

milkings 
Number of unsuccessful milkings (for example, if the cow 
moves too much) at each 100 milkings 

High CDT every 100 
milkings 

Number of events of high conductivity in the milk at each 
100 milkings 

Watery milk every 100 
milkings 

Number of events of watery milk at each 100 milkings 

Separated milk by 
colostrum 

Total (kg) milk separated due to colostrum 

Days in lactation Duration of the lactation period in days 
Dry days Duration of the dry period in days before the lactation 

cycle starts 
Protein Average percent of protein in milk 
Fat Average percent of fat in milk 
Lactose Average percent of lactose in milk 
Rumination time by day Average minutes of rumination by day  
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2.3. Clustering analysis 

2.3.1. Clustering criteria 
The results of the clustering algorithms were assessed by two 

clustering internal criteria. This kind of criteria measures how much the 
clusters reflect the patterns of the data without using any external in
formation. The two internal criteria used in the present work were the 
Silhouette and the Dunn indexes. 

The Silhouette index (Eq. (1) (Rousseeuw, 1987) is measured for 
each individual observation, it ranges from − 1 to 1, and it assesses the 
pairwise difference of within and intra-cluster distances. Its average 
maximization can be used to define the optimal number of clusters (Liu 
et al. 2010). It can be interpreted as a measure of cluster consistency: the 
closer to 1, the more similar the observation is to its own cluster and the 
more different it is from the other clusters. 

S(x) =
∑

x∈CI

b(x) − a(x)
max|b(x), a(x)|

(1)  

where x is the observation, CI is the cluster to which x belongs, and a(x)
and b(x) are defined below: 

a(x) =
1

NI − 1
∑

i∈CI

d(x, xi) (2)  

b(x) = min
J∕=I

(
1

NJ

∑

j∈CJ

d(x, xj)

)

(3)  

where NI is the number of instances in the cluster CI and d(x, xi) is the 
distance between x and xi, CJ are the clusters to which x do not belong 
and d(x, xj) is the distance between x and xj. 

The Dunn index (Eq. (4) (Dunn, 1974) ranges from zero to infinity 
and it is calculated by the ratio between the smallest inter-cluster and 
the largest intra-cluster distances: 

D =
min1≤I<J≤Mδ(CI,CJ)

maxm∈MΔ(Cm)
(4) 

Table 2 
Summary statistics of the features of the dataset used to demonstrate the pro
posed methodology.  

Feature Min Median Max Mean Std 

Lactation 2 2 8   
Milk production by day 15.36 39.47 59.72  39.50  6.71 
Milking frequency 2.01 2.94 5.02  2.96  0.55 
Refusals by milking 0.00 0.19 1.52  0.25  0.24 
Milking Robot Rate 0.95 2.80 5.53  2.83  0.85 
Milking Rate 0.29 0.86 1.62  0.87  0.26 
Errors every 100 milkings 0.00 0.81 36.38  1.79  3.52 
High CDT every 100 milkings 0.00 0.00 17.07  0.32  1.68 
Watery milk every 100 

milkings 
0.00 0.00 6.35  0.09  0.52 

Separated milk by colostrum 0.00 5.90 82.50  11.73  15.32 
Days in lactation 249 313 478  326.12  42.72 
Dry days 22 66 112  65.29  9.48 
Protein 2.69 3.35 3.68  3.33  0.15 
Fat 2.36 3.68 5.18  3.72  0.55 
Lactose 4.71 4.89 5.06  4.89  0.06 
Rumination time by day 420.33 538.45 638.55  531.62  47.84  

Table 3 
Number of instances in each lactation period in the dataset used to demonstrate 
the proposed methodology.   

Lactation  

1 2 3 4 5 6 7 8 

Number of instances 147 89 43 25 12 5 2 1  

Fig. 1. Diagram of the steps of the analysis.  
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where M is the number of clusters, δ(CI,CJ) is the distance between 
clusters CI and CJ and Δ(Cm) is the diameter of the cluster Cm. More 
homogeneous, or compact, clusters and more well-separated clusters 
have a higher value of the Dunn index. However, it can be biased in a 
situation in which the clusters are not homogeneous, as it is assessed by 
the extreme values of the intra-cluster and inter-cluster distances. 

2.3.2. Clustering algorithms 
In the present work, four clustering algorithms were used, namely 

Agglomerative Hierarchical Clustering (HC), Partitioning Clustering, 
Self-Organized Maps (SOM) Clustering and Fuzzy Clustering. Each of 
them uses a different strategy to form the clusters. In HC, the clusters are 
formed by grouping together the closest clusters, one by one. Initially, 
the clusters are each single data observation. The method that calculates 
the closeness between clusters is a hyperparameter of the model and in 
the present work the Ward with squared dissimilarities (Ward D2) 
(Murtagh and Legendre 2014) was used. In Partitioning Clustering, the 
clusters are formed by instances that are closer to the center of the 
clusters. In K-means (Lloyd, 1957; MacQueen1967), this center is the 
mean of all the instances in the cluster. In Partitioning Around Medoids 
(PAM) (Kaufman and Rousseeuw, 1987), this center is the most centrally 
located observation of the cluster. In the present work, the Silhouette 
and Dunn indexes were used to choose between K-means and PAM in 
each lactation period. SOM (Kohonen, 1982) clustering is a two-steps 
clustering method. First, the SOM is generated. The SOM is an unsu
pervised neural network in which each node is iteratively approximated 
to the closest data observation and to its neighboring nodes. The number 
of iterations, the grid size of the network and neighborhood radius are 
hyperparameters of this method. Once the SOM is defined, its nodes are 
then clustered with a clustering algorithm. In the present work the K- 
means was used to cluster the nodes of the SOM. In Fuzzy clustering, the 
instances can belong to more than one cluster, with different member
ship degrees. For each observation, the membership degrees should sum 
up 1. The Fuzzy K-means algorithm used in the present work was the 
Kaufman and Rousseeuw (1990). It consists in minimizing the following 
sum: 

Σk
v=1 =

ΣN
i,j=1ur

i,vur
j,vd(i, j)

2 × ΣN
j=1ur

j,v
(5)  

where N is the number of instances, k is the number of clusters, ui,v is the 
membership of the object i in cluster v, r is the membership exponent 
and d(i, j) is the dissimilarity between instances i and j. Thus, the 
membership exponent, r, is an extra hyperparameter of this algorithm 
that affects the convergence rate of the algorithm. Table 4 presents the 
values of the specific hyperparameters used for each clustering 
algorithm. 

2.3.3. Choice of the number of clusters 
The Silhouette and Dunn indexes were used to support the choice of 

the number of clusters of each clustering algorithm. First, both indexes 
were used to define the most promising solutions. As an example of this 
first step of the analysis, Fig. 2 displays the plots of these indexes for the 
data from the first lactation period using the HC algorithm. The left plot 
shows the value of the mean of the Silhouette index of all instances for 
different numbers of clusters (k), from 2 to 11. The right plot shows the 
Dunn index values for the same number of clusters. The vertical dotted 
lines indicate the solutions with higher values of the respective index. 

After that, the individual Silhouette indexes of all data points of the 
best solutions found in step 1 were graphically analyzed. As an example 
of this second step of the analysis, Fig. 3 presents the plots of the indi
vidual Silhouette index values for the solutions with 2, 3, 7, 8, and 11 
clusters, specifically for the data from the first lactation period using the 
HC algorithm. In these plots, the vertical bars represent the Silhouette 
index of each observation, and the colors represent the clusters. Notice 

that the y-axis is centered in zero, which makes it easy to have an idea of 
the scale of the positive and negative Silhouette indexes. A good solution 
will not have a cluster in which most of the solutions have negative 
Silhouette indexes, and it will also not have solutions with very negative 
values of this index. In this example, the solution with k = 3 was chosen. 
Besides these properties, solutions in which the size of the clusters was 
not exceedingly irregular were preferred. The plots of these two first 
steps of the analysis for the other algorithms and lactation periods are 
available in the Supplementary Material. 

2.3.4. Productivity groups 
The significance of the differences in MPD among the clusters was 

assessed with a Kruskall-Wallis test (Kruskal & Wallis, 1952) with a level 
of significance of 0.05. The cows belonging to the clusters with the 
smaller MPD were assigned to the Low Productivity Group and the cows 
belonging to the clusters with higher MPD were assigned to the High 
Productivity Group. Notice that the definition of the clusters refers to 
each lactation and each clustering method. Therefore, a cow could 
belong to the Low and to the High productivity groups in the same 
lactation period, if considering different clustering methods. 

2.3.5. Merging index 
In order to assign cows to a unique productivity group, a merging 

index (Eq. (6) is proposed. To the best of our knowledge, although very 
useful, there is no such index for combining the results of different 
clustering algorithms in literature. 

mMPDg
i =

∑
ca
[
dca

N ×
silca

i +1
2

]

nCA
(6)  

where i is the ith cow, MPDg = {low,medium,high}are the MPD groups, 
ca = {hierarchical, partitioning, SOM, fuzzy}are the clustering algo
rithms, dca

N is the normalized Dunn index of the cluster to which the cow I 
was assigned using the algorithm ca, silcai is the individual Silhouette 
index of the cow I using the algorithm ca and nCAis the number of 
clustering algorithms that were used. This index is an average of the 
results of the different clustering algorithms, weighted by the quality of 
the solution, which is assessed by the Dunn index of the whole clustering 
solution and the Silhouette index of the individual instances. The index 
gives the degree of membership of each cow to each PG. The higher the 
index, the more the cow belongs to that group. The final PG of a cow was 
determined by the group with the highest merging index. 

Table 4 
Hyperparameters used in the clustering algorithms.  

Clustering 
algorithm 

R function Hyperparameter Lactation Value 

HC stats::hclust() – – – 
Partitioning ClusterR:: 

KMeans_rcpp() for K- 
means 
ClusterR:: 
Cluster_Medoids() 
for PAM 

Algorithm All K- 
means 

SOM kohonen::supersom 
() 

Iterations All 1000   

Neighborhood 
radius 

1 2.34   
2 2.02   
3 2.00   
4 1.99   

Map units 1 and 2 8 × 8   
3 and 4 4 × 4 

Fuzzy Cluster::fanny() Iterations All 1000   
Membership 
exponent 

All 1.2  
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3. Results and discussion 

3.1. Number of clusters 

Table 5 shows the number of clusters used in each lactation period 
for all clustering algorithms. Fuzzy Clustering was the most different 
among the four algorithms compared. The HC, Partitioning and SOM 
Clustering used the same number of clusters for the second lactation 
period, indicating that the pattern that they found in the data of this 
lactation period was very strong. Interestingly, the SOM algorithm uses 
the Partitioning K-means clustering at its second step, but it did not 
contribute to a higher similarity between the solutions of these two 
algorithms. 
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Fig. 2. Mean of Silhouette index values (left) and Dunn index values (right) for the Hierarchical Clustering solutions with the data from the first lactation period 
using from 2 to 11 clusters. 
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Fig. 3. Individual Silhouette index values for the best solutions found in the previous step of the analysis for the Hierarchical Clustering with data from the first 
lactation period. 

Table 5 
Number of clusters for each lactation period with the four clustering algorithms 
used in the analysis.   

Clustering Algorithms 

Lactation Hierarchical Partitioning SOM Fuzzy 

First 3 2 3 2 
Second 4 4 4 2 
Third 3 5 7 4 
Fourth 4 4 5 3  
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For the first lactation, the best solutions of the HC were found with k 
= 2 and k = 3. The k = 3 was chosen based on two criteria. First, the 
third cluster had only instances with positive values of the individual 
Silhouette index. Second, the absolute value of the negative values of the 
Silhouette index decreased when using three clusters in comparison to 
the solution using two clusters. The best solution of the Partition Clus
tering algorithms was the one using k = 2 and the K-means algorithm. In 
this solution, almost all instances had positive values of the Silhouette 
index and the negative values were all very small. For the SOM Clus
tering algorithm, the best solution was found with k = 3. This solution 
had a good Silhouette mean and none of the instances presented a very 
negative Silhouette index. For the Fuzzy Clustering, solutions using k =
2 and k = 3 were good in terms of the individual Silhouette indexes. The 
solution with k = 2 was chosen because its Silhouette mean and Dunn 
indexes were higher. 

For the second lactation, the optimal solution for the HC, Partition
ing and SOM Clustering algorithms was achieved with k = 4. This choice 
was driven by the low values of the negative Silhouette index observed 
for individual instances. Furthermore, the distribution of individual 
Silhouette index values exhibited remarkable similarity among these 
solutions. In fact, there was a significant 67% correspondence observed 
among the three clustering approaches. and it was chosen because of the 
small values of the negative Silhouette index values of individual in
stances. The distribution of the individual Silhouette index values was 
also very similar among these solutions, that had 67% of correspon
dence. However, the mean Silhouette index for the HC was smaller, 0.10 
vs. 0.12 for Partitioning and SOM Clustering algorithms. The K-means 
was used in the Partitioning clustering. For the Fuzzy Clustering algo
rithm, the best solution was also chosen because of the small values of 
the negative Silhouette index of individual instances, but it used k = 2. 

For the third lactation, the best solutions of the HC were found with 
k = 2 and k = 3. The k = 3 was chosen because most of the instances of 
the third cluster had positive values for the Silhouette index. For the 
Partitioning Clustering the solution with k = 5 was chosen because its 
mean Silhouette did not decrease in comparison to the solutions with k 
= 6 and k = 7 and it splits the data better than the solutions with k = 2. 
The best solution of the SOM Clustering was found using k = 7. It had 
just one observation with a negative Silhouette index and a higher mean 
Silhouette index than the solutions with k = 8 and k = 9. For the Fuzzy 
Clustering algorithm, the solution with k = 4 was chosen because it had 
higher mean Silhouette and Dunn indexes. There were other solutions 
with more clusters and fewer instances with negative individual 
Silhouette index values, however, they had instances forming a single 
cluster, which is not useful for the analysis. 

For the fourth lactation, the solution with k = 4 was chosen for the 
HC and Partitioning Clustering algorithms, both because the negative 
values of the individual Silhouette index were smaller using this number 
of clusters. Both solutions had two clusters with one single observation, 
with cows ID 505 and 581, indicating that the solutions were very 
similar. For the SOM Clustering, the best solution used k = 5. It has one 
observation with a very negative value of the individual Silhouette 
index. However, this caused a decrease of just 0.01 in the mean of the 
Silhouette index, in comparison to the solution with k = 4. This indicates 
that, even though the solution was worse for this specific observation, it 
was better overall. The solution of the Fuzzy Clustering using k = 3 was 
chosen because it had fewer negative individual Silhouette index values. 

3.2. Productivity groups within lactation periods 

3.2.1. Clustering algorithm solutions 
The first research question addressed by this study was whether the 

clustering of the data within each lactation period could effectively 
capture differences in cow productivity. A positive answer to this 
question helps in characterizing the cows according to their productivity 
levels. The PGs of each algorithm for the first, second and third lactation 
periods are presented next. Two PGs, Low and High PG, were defined in 

each lactation, separately for each clustering algorithm, and, lastly, for 
the Merged solution. The PGs of the fourth lactation period could not be 
defined because the number of instances was not enough for finding any 
difference statistically significant in the MPD among the clusters of this 
lactation period. 

3.2.1.1. First lactation. Fig. 4 shows the distribution of the MPD of each 
cluster, the size of the clusters and the PG of the clusters in the first 
lactation. Cluster 1 of the HC, Partitioning and Fuzzy algorithms formed 
the Low PG. The other clusters formed the High PG. For the HC solution, 
clusters 2 and 3 were combined into the High PG because they were not 
statistically different, indicating that other features than the MPD were 
important for the definition of these clusters. In other words, the split of 
the cluster 2 of the k = 2 solution into clusters 2 and 3 of the k = 3 
solution did not improve the characterization of the clusters in terms of 
milk productivity. Clusters of the SOM algorithm could not be classified 
in terms of their productivity because the MPD of its clusters was not 
statistically different. 

The correspondence between the PGs of the Partitioning and Fuzzy 
Clustering algorithms was 95.92%, with only 6 of 147 instances clus
tered in a different group. The correspondence of the PGs of these two 
clustering algorithms with the PGs of the HC was 82.31%. The corre
spondence between the PGs of the HC with the Partitioning and Fuzzy 
PGs was the same because of the 6 instances that were not corresponding 
in these two groups, 3 were classified by the HC solution in the same PG 
as the Partitioning solution, and the other 3, in the same PG as the Fuzzy 
solution. It is worth mentioning that even though the HC split the in
stances into three clusters, the PGs were highly correspondent to the 
other algorithms. These results show that the MPD was among the fea
tures that mostly contributed to the definition of the clusters, except for 
the SOM algorithm. 

Table 6 shows the mean and standard deviation of MPD of the PGs of 
the first lactation period. The differences between the means and the 
standard deviation of the groups were very similar, indicating that the 
separation of the PGs among the clustering algorithms was equivalent. 

3.2.1.2. Second lactation. Fig. 5 shows the distribution of the MPD of 
each clusters, the size of the clusters and the PG of the clusters in the 
second lactation. Cluster 3 of the HC, cluster 2 of the Partitioning and 
SOM, and cluster 1 of the Fuzzy algorithm formed the High PG. The 
other clusters formed the Low PG. For the HC solution, clusters 1, 2 and 
4 were combined into the High PG, and for the Partitioning and SOM 
solution, clusters 1, 3 and 4 were combined into the High PG because 
they were not statistically different. Thus, in this lactation period, the 
Fuzzy clustering was more efficient, as its optimal split of the data into 
clusters already reflected the PGs. 

The highest correspondence between PGs was seen among the 
groups of the Partitioning and SOM Clustering algorithms, 93.26%. The 
lowest correspondence was seen among the groups of HC and Fuzzy 
Clustering, 84.27%. All other correspondences were 86.51%. Overall, 
the groups had high correspondence. This can be seen in Fig. 5 by the 
number of instances in the High and Low PGs. 

In addition, in these plots it is possible to notice that the clusters of 
the Partitioning, SOM and Fuzzy solutions were better separated in 
terms of the MPD than the clusters of the HC solution. Table 7 shows the 
mean and standard deviation of MPD of the PGs, which confirm this 
observation. This is also indicated by the minimum MPD of the High PG, 
38.80 for the HC, 40.98 for Partitioning and SOM, and 39.13 for the 
Fuzzy solution. Notice that the minimum MPD of the Fuzzy High PG is 
greater, even though this PG of the Fuzzy solution has more instances 
than the High PG of the HC solution. In other words, it was observed that 
although the High PG of the Fuzzy clustering solution had a larger 
number of instances, it exhibited higher cohesiveness compared to the 
High PG of the HC solution. 
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3.2.1.3. Third lactation. Fig. 6 shows the distribution of the MPD of 
each cluster, the size of the clusters and the PG of the clusters in the third 
lactation. In this lactation period, the instances were split into more 
clusters, except for the HC solution. Consequently, most of the clusters 
were not significantly different in terms of MPD. 

For the HC solution, only clusters 2 and 3 had statistically different 
MPD. Cluster 1 was not statistically different from none of the other 
clusters because it had just 5 instances. It was joined to cluster 2 to form 
the Low PG. For the Partitioning solution, only clusters 2 and 5 were 
statistically different between them. Clusters 3 and 4 were joined to 
cluster 2 to form the Low PG, and cluster 1 was joined to cluster 5 to 
form the High PG. For the SOM solution, only clusters 3 and 4 were 
statistically different between them. Clusters 1, 6, and 7 were joined to 
cluster 3 to form the Low PG, and clusters 2 and 5 were joined to cluster 
4 to form the High PG. For the Fuzzy solution, only clusters 2 and 4 were 
statistically different between them. Clusters 1 and 3 were joined to 
cluster 2 to form the Low PG. This recombination of the clusters pro
duced PGs statistically different for all clustering algorithms. The p- 
values of the Kruskall-Wallis tests between the Low and High PGs of the 
third lactation are presented in Table 8. The need for this recombination 
indicates that the number of instances in this lactation period was close 
to the minimum limit for the proposed methodology. 

As for the second lactation, the higher correspondence between the 
PGs was seen among the groups of the Partitioning and SOM Clustering 
algorithms, 93.02%. The correspondence between the groups of HC and 
Fuzzy was 88.37%. The correspondence between the groups of Parti
tioning and HC and Fuzzy was 69.77%. Finally, the correspondence 
between the groups of SOM and HC and Fuzzy was 67.44%. Overall, the 
correspondence among the groups was smaller for the third lactation 
period than the correspondence seen in the first two lactation periods. 

In addition, the differences among the MPD of the PGs were smaller 
than those observed in the second lactation period, mostly due to a 
higher mean of the Low PGs, as can be seen in Table 9. 

In general, the clusters formed in the first and second lactation pe
riods have shown to be effective for creating the groups of productivity 
of cows, except for the SOM solution in the first lactation period. The 
PGs of the different clustering algorithms in these two first lactations 
were also compatible, indicating that the individual solutions were 
consistent enough. The only solution that was clearly better than the 
others was the Fuzzy solution of the second lactation period. For the 
third lactation, none of the algorithms generated a solution that could be 
directly used to form the PGs. Additionally, the correspondence among 
the solutions obtained from different clustering algorithms was lower 
compared to the other lactation periods. This was probably due to the 
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Fig. 4. Distribution of Milk Production by Day (MPD) of the clusters of Hierarchical, Partitioning, SOM and Fuzzy Clustering algorithms for the first lactation period. 
Clusters of the SOM Clustering solution were not statistically significant in terms of MPD. At the bottom of the plots, there is the number of instances in each cluster. 

Table 6 
Comparison of Productivity (Milk Production by Day) between High and Low 
Productivity Groups in the first lactation period. The values represent the means, 
and the values in parentheses indicate the respective standard deviations. The 
“Mean difference” row displays the numerical difference between the mean 
values of the High and Low Productivity Groups.  

Productivity Group HC Partitioning SOM Fuzzy 

High 38.08 (4.31) 37.84 (4.20) – 37.90 (4.02) 
Low 33.31 (4.14) 33.03 (4.18) – 32.85 (4.21) 
Mean difference 4.77 4.81 – 5.05  
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Fig. 5. Distribution of Milk Production by Day (MPD) of the clusters of Hierarchical, Partitioning, SOM and Fuzzy Clustering algorithms for the second lactation 
period. At the bottom of the plots, there is the number of instances in each cluster. 

Table 7 
Comparison of Productivity (Milk Production by Day) between High and Low 
Productivity Groups in the second lactation period. The values represent the 
means, and the values in parentheses indicate the respective standard de
viations. The “Mean difference” row displays the numerical difference between 
the mean values of the High and Low Productivity Groups.  

Productivity Group HC Partitioning SOM Fuzzy 

High 46.93 (4.96) 48.46 (4.26) 48.00 (4.25) 47.31 (4.66) 
Low 40.32 (5.10) 40.49 (4.87) 40.16 (4.86) 39.45 (4.42) 
Mean difference 6.61 7.97 7.84 7.86  
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smaller number of instances for this lactation, and this reinforces the 
usefulness of a merged solution, which will give a more robust final 
solution even if there are fewer data or if the structure of the data is more 
complex. The subsequent section presents the results derived from the 
merged solution. 

3.2.2. Merged solution 
Fig. 7 shows the distribution of the MPD of each PG and the size of 

the groups of the Merged solution for the first, second and third lactation 
periods. As observed in the results of the clustering algorithms, the 
bigger difference between the MPD of the Low and High PG of the 
Merged solution was found in the second lactation, then in the third, and 
lastly in the first lactation period. In the Merged solution, for the first 

lactation, the number of instances is balanced between the Low and 
High PG. However, for the second and third lactation periods, there are 
more instances in the Low PG. It is important to keep in mind that this 
does not mean that the productivity in the second and third lactation 
was smaller. In fact, it can also be seen in these plots that the MPD of the 
second and third lactation was higher. The bigger Low PG means, 
though, that a smaller number of cows achieved a higher productivity in 
comparison to all selected cows in the respective lactation period. 

Table 10 shows the p-values of the statistical tests for the differences 
between the Low and High PGs of the Merged solution on the values of 
all features of the dataset. As indicated in Section 2.3.4, the significance 
level used in the statistical tests was α = 0.05, which with the Bonferroni 
correction for multiple comparisons became α = 0.0013, in this case. In 
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period. At the bottom of the plots, there is the number of instances in each cluster. 

Table 8 
Significance (p-value) of the Kruskal-Wallis test comparing the Milk Production 
by Day between Low and High Productivity Groups of the third lactation period.   

HC Partitioning SOM Fuzzy 

P-value  0.00730  0.00075  0.00065  0.00068  

Table 9 
Comparison of Productivity (Milk Production by Day) between High and Low 
Productivity Groups in the third lactation period. The values represent the 
means, and the values in parentheses indicate the respective standard de
viations. The “Mean difference” row displays the numerical difference between 
the mean values of the High and Low Productivity Groups.  

Productivity Group HC Partitioning SOM Fuzzy 

High 48.45 (4.67) 46.86 (4.47) 46.83 (4.78) 48.37 (4.12) 
Low 42.67 (5.31) 41.28 (5.22) 41.06 (4.89) 42.16 (5.18) 
Mean difference 5.78 5.58 5.77 6.21  
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Fig. 7. Distribution of Milk Production by Day (MPD) of the Productivity Groups of the solution that merges the solutions of the Hierarchical, Partitioning, SOM and 
Fuzzy solutions in each lactation period. 

Table 10 
Significance (p-value) of the differences of the feature values in the Low and 
High Productivity Groups of the Merged solution. In bold, are the p-values that 
are below the critical value (α = 0.05) after the Bonferroni correction.   

Lactation  

First Second Third 

Delivery age 0.0974  0.2680  0.3240 
Days in milking 0.1210  0.4370  0.8740 
Dry days –  0.0327  0.0763 
Milking frequency ≪0.001  ≪0.001  0.1660 
Milking robot rate ≪0.001  0.3290  0.3860 
Milking rate ≪0.001  0.4810  0.8100 
Refusals by milking ≪0.001  0.0163  0.419 
Errors every 100 milkings 0.0349  0.6760  0.4460 
Separated colostrum 0.2620  0.9790  0.4610 
Rumination time by day 0.1450  0.0101  0.0513 
Protein percent ≪0.001  ≪0.001  0.0016 
Fat percent 0.0015  ≪0.001  0.0011 
Lactose percent ≪0.001  ≪0.001  0.0022  
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the first lactation, Milking frequency, Milking robot rate, Milking rate, 
Refusals by milking, percentage of protein and percentage of lactose 
were significantly different. In the second lactation, Milking frequency, 
percentage of protein, percentage of fat and percentage of Lactose were 
significantly different. In the third lactation, only the percentage of fat 
was significantly different. Overall, the features with the smallest p- 
value were the percentage of protein, fat, and lactose. Even though the p- 
value of these features was not significant in all cases, it was always close 
to its critical value. 

Fig. 8 shows the distribution of the features in which the differences 
between the Low and the High PGs were statistically significant in each 
lactation period. The percentage of protein, fat, and lactose are shown 
for all three lactation periods because even if their p-values were not 
below the significance level, they were all close to the critical value, as 
previously observed. The Milking frequency is higher in the High PG 
both in the first and second lactation periods. This result is in accordance 
with the study conducted by Lyons et al. 2013, in which they found that 
higher Milking frequency was associated with higher MPD for cows in all 
stages of lactation in a pasture-based AMS. In the present study, the non- 
significative difference in the third lactation can be due to the small 
number of instances in this lactation period. The Refusals by milking was 
also higher in the High PG in the first lactation, which can be explained 
by the greater Milking frequency during this period. The Milking robot 
rate and Milking rate were lower in the High PG of the first lactation. 
Both rates are associated, and this result indicates that it can be difficult 
to find cows that optimize the use of the milking robots in terms of Milk 
Harvest per Robot (MHR). In literature, this key performance indicator 
is evaluated by combining the Milking interval (the inverse of Milking 
frequency) and the number of cows per robot in the barn (Molfino, 
2018). If cows belonging to High PG have a low Milking rate and vice- 
versa, it implies that high-productivity cows occupy the milking ro
bots for a relatively longer duration compared to low-productivity cows. 
Consequently, the Milking rate should be considered as an additional 
factor when analyzing the efficiency of milking robot utilization. The 
High PG had lower values for all three features related to milk compo
sition, suggesting that cows in this group may have a higher water 
content in their milk. It is well known that cows kept indoors tend to 
drink more water in response to high temperatures during summer 
months, resulting in higher milk content of water. Thus, this could have 
been a confounding factor in this result. It was verified using the 

differences in the month of the year in which the lactation cycle started, 
as the environmental data was not available. According to Masía et al. 
(2020), milk production is the highest in the first third of the lactation 
period. Thus, the weather in this initial phase can have a higher impact 
in the total production of the lactation cycle. The p-values of the sta
tistical test in the difference on the initial month of the lactation period 
for the first, second and third lactation periods were 0.2137, 0.2957 and 
0.0033. Thus, period this could be the case only in the third lactation 
period. Therefore, this still does not explain the observed result in the 
first and second lactation periods in terms of the differences between the 
High and Low PGs on the features related to milk contents, and further 
investigation is needed. 

3.3. Continuity of the productivity groups 

Once the clusters within each lactation period were defined and 
characterized by the PGs, the second research question investigated in 
this study was if these clusters, and more specifically these PGs, are 
stable over time. Fig. 9 shows the Sankey network of the flow of the cows 
belonging to the PGs in consecutive lactation periods. It is worth 
mentioning that only cows that reached the next lactation period are 
represented in the corresponding previous period. The blue and red 
vertical bars represent the High and Low PGs, respectively. The empty 
space to the right side of the vertical bars of the second lactation 
represent the number of cows that did not continue in production from 
the second to the third lactation. The width of the grey bars is propor
tional to the flow of the cows between the PGs, and the numbers into 
circles also show this information. Importantly, in this plot, the less grey 
bars split and cross, the more stable the PGs are. 

In general, the PGs were unstable in both transitions analyzed, from 
the first to the second and from the second to the third lactation periods. 
The Low PG was less unstable than the High PG. For the Low PG, 93.10% 
of the cows remained in this group in the transition between the first and 
second lactation periods, and 79.17% remained in the transition be
tween the second and third lactation periods. For the High PG, 73.53% 
of the cows remained in this group in the transition between the first and 
second lactation periods, and 62.50% remained in the transition be
tween the second and third lactation periods. Therefore, proportionally, 
more cows moved from the High to the Low PG in both transition pe
riods, from the first to the second and from the second to the third 
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lactation. However, this does not necessarily imply a decrease in their 
productivity. Since the PGs were defined within each lactation period, 
they reflect the productivity of a cow in relation to the productivity of all 
other cows in the same lactation period. Three situations can make a cow 
switch from the High to the Low PG: (i) if the productivity of that cow 
was kept stable, the productivity of the other cows increased; (ii) if the 
productivity of that cow decreased, and either the productivity of the 
other cows increased, were kept stable or decreased at a lower rate; (iii) 
if the productivity of that cow increased, and the productivity of the 
other cows increased at a higher rate. To better understand which is the 
case in the analyzed data, the overall productivity in terms of MPD in 
each lactation is presented in Table 11. 

The overall mean of the MPD increased from the first to the second 
lactation period. Hence, the greater number of cows switching from the 
High to the Low PG indicates that 26.47% of the cows did not keep up 
with the overall increase in productivity from the first to the second 
lactation period. On the other hand, the two cows that switched from the 
Low to the High PG had their productivity increased at a greater rate. In 
the transition between the second and third lactation period, the overall 
mean did not change. Thus, the three cows that switched from the High 
to the Low PG had their productivity decreased, and the five cows that 
switched from the Low to the High PG had their productivity increased. 

Both PGs, Low and High, were more stable in the transition between 
the first and second lactation than in the transition between the second 
and third lactation periods. It is known from literature that the first 
lactation is different from the subsequent ones for several reasons. 
Firstly, it is the period in which the cow undergoes the greatest physi
ological changes, such as the transition from non-lactating to lactating 
state. Moreover, the mammary gland of the cow is still developing 
during the first lactation, which may affect the milk yield and compo
sition (Gorewit, 1988). Thus, the result of the present study showed that 
the productivity pattern of the cows tended to change evenly from the 
first to the second lactation periods, with few exceptions. In contrast, no 
significant overall trend was observed in cow productivity from the 
second to the third lactation period. This can be explained by the 

differences in MPD between the PGs, presented in Section 3.2. The larger 
differences in terms of MPD were seen between the PGs of the second 
lactation, for all clustering algorithms, while in the third lactation, this 
difference decreased. With a smaller difference between the High and 
Low PG, the probability of a cow switching from one group to another is 
higher. Interestingly, from the 10 cows in the High PG of the third 
lactation period, 5 of them were in the Low PG and 5 were in the High 
PG in the second lactation period. Six of them were not in the data in the 
first lactation, and from the 4 remaining, 2 were in the Low PG and 2 
were in the High PG in the first lactation period. This reinforces the 
conclusion that the PGs are not stable over lactation periods. Therefore, 
our results showed a weak relationship between the cow’s productivity 
in past lactation periods and its potential productivity in future periods. 
Other factors, such as the cow’s health, genetics, and environmental 
conditions, could significantly influence its future productivity. 

4. Conclusions 

This study presents a novel approach for characterizing Productivity 
Groups (PGs) of milking cows within each lactation period, and for 
assessing their stability over time through the use of clustering algo
rithms. Four algorithms were used to define the clusters in each lactation 
period, namely Agglomerative Hierarchical Clustering (HC), Partition
ing Clustering, Self-Organised Maps (SOM) Clustering and Fuzzy Clus
tering. To combine the four outcomes into a univocal result, a merging 
index was proposed. This merging index is an average of the results of 
different clustering algorithms, weighted by the quality of the solution, 
which was assessed by two internal clustering criteria (i.e., Dunn and 
Silhouette indices). The proposed merging index provides a measure of 
the extent to which each cow belongs to each productivity group, with 
higher values indicating a stronger affiliation with that group. The 
clusters were categorized into High and Low PGs based on the Milk 
Production by Day feature values. 

The final PG of a cow was determined by the group with the highest 
merging index. To demonstrate the methodology, data from first lacta
tion periods from one farm with Holstein Friesians cows that exclusively 
uses the Automatic Milking System (AMS) was used. To ensure the 
applicability of the proposed methodology to other farms that use 
similar milking robots, only data available through the AMSs was uti
lized. However, it is important to note that the proposed methodology 
can be applied to other datasets as well, including those obtained from 
traditional milking systems or for addressing other scientific inquiries. 

To address the scientific question regarding the stability of PGs over 

Fig. 9. Flow of the cows belonging to the Low and High Productivity Groups in each lactation period. Numbers into circles show the number of cows in the respective 
connection between the Productivity Groups of two consecutive lactation periods. 

Table 11 
Mean and standard deviation of the Milk Production by Day (MPD) in each of the 
first three lactation periods.   

First Second Third 

Mean  35.35  43.07  43.75 
Standard deviation  4.82  5.99  5.60  
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time, data from the first, second, and third lactation periods were 
considered. The findings indicate that the PGs exhibited a relatively 
weak level of stability across lactation periods. Specifically, the Low PG 
displayed less variability during the transitions from the first to the 
second lactation period and from the second to the third lactation 
period. Furthermore, it was observed that the Low PG exhibited a larger 
size in both the second and third lactation periods. These findings 
indicate that the future productivity of a cow in subsequent lactation 
periods is not strongly correlated with its past productivity. Therefore, 
relying solely on the present or past lactation productivity of cows for 
the purpose of selecting them for insemination may not be the most 
effective strategy. The results found in this analysis are farm-dependent, 
and they may be subject to a selection bias, as not all cows were kept 
from the beginning to the end of the data collection. Instead, only those 
selected by the herd management were kept in production. A more 
informative study would involve examining the same cows across all 
lactation periods, without selectively choosing which cows to keep in 
production. This approach would provide a better understanding of the 
defining factors and dynamics of the PGs. 
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