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1 Introduction

Four-dimensional quantum field theories such as Yang-Mills, massless quantum electrody-
namics or quantum chromodynamics, Yukawa and φ4 theory have conformal symmetry at
the level of the Lagrangian. To date, the consequences of this powerful symmetry have
been widely studied and exploited for off-shell correlation functions, and mostly in position
space [1–4]. Motivated by problems in cosmology, several groups have studied conformal
symmetry for off-shell momentum-space correlation functions [5–8]. However, surprisingly
little is known about the implications of conformal symmetry for on-shell scattering ampli-
tudes. The latter are fundamental ingredients for theoretical predictions at particle colliders.
The goal of the present paper is to contribute to our understanding of the implications of
this powerful symmetry for such objects.

At tree level, scattering amplitudes are annihilated by the conformal generators, as
was discussed in [9] for gluon scattering amplitudes. The resulting differential equations
are second-order in momentum space. Very interestingly, the tree-level gluon amplitudes
possess a bigger symmetry group when they are embedded into the supermultiplet of N = 4
super Yang-Mills. It was shown that the conformal symmetry, together with enhanced
symmetries of N = 4 super Yang-Mills, is enough to uniquely fix the form of the tree-level
scattering amplitudes [10, 11].

At loop level, to our knowledge, conformal symmetry predictions are mostly restricted
to certain finite objects in scattering amplitudes (see however [11, 12] for interesting work
in the context of maximally supersymmetric Yang-Mills theory). Firstly, it is known that
certain coefficients of transcendental functions at loop level, such as for example the leading
singularities [13], are conformally invariant. The reason is that the latter are obtained
via generalised unitarity [14] from tree-level amplitudes in a way that preserves conformal
symmetry. For example, conformally-invariant expressions have been found to play an
important role in all-plus scattering amplitudes [15–17], but they also appear in more
general helicity configurations. Secondly, it was shown that conformal symmetry constrains
infrared- and ultraviolet-finite loop integrals [18]. The authors found anomalous conformal
Ward identities for an L-loop integral, where the anomaly term is expressed as an integral
over the collinear region of a simpler, (L− 1)-loop integral. This insight can therefore be
useful for practical calculations, as was demonstrated in references [19–21].

A key difficulty in generalizing these results to full scattering amplitudes (in classically
conformally-invariant theories) are divergences, which naïvely break the symmetry. In this
paper we wish to generalise the results of [18] to ultraviolet-divergent (but infrared-finite)
scattering amplitudes, which makes dimensional regularisation necessary. We study the
amplitudes at a conformal fixed point where the β function vanishes [22].

Although our ultimate aim is to apply conformal methods to Yang-Mills scattering
amplitudes at loop level, we find it convenient for this first study to use a φ3 toy model in
d = 6− 2ε dimensions, where ε is the dimensional regularisation parameter [23]. For our
purposes we find it insightful to have a further parameter, and therefore we take the scalar
field to be matrix-valued, in the fundamental representation of su(n).

We show that on-shell renormalised amplitudes satisfy anomalous conformal Ward
identities (CWIs) at the conformal fixed point. The anomaly has a local nature, with each
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external on-shell leg giving a separate additive contribution made of two terms. The first
term is proportional to the anomalous dimension of the elementary field. The second term
is given by the convolution of a universal collinear function with lower-loop amplitudes. The
anomaly for an `-loop amplitude is therefore determined by (`− 1) information. Because of
this, our result is not only interesting from a theoretical point of view, but also useful for
computing amplitudes perturbatively. The amplitude away from the fixed point can then
be recovered from the conformal result by supplying lower-loop information, which makes
our anomalous CWIs a new valuable tool for computing amplitudes in perturbation theory.

The starting point of our derivation are the conformal properties of the off-shell
correlators, which we review in section 2. After setting the notation in section 2.1, in
section 2.2 we recall that the UV-renormalised correlators satisfy conformal Ward identities
with an anomaly term which is proportional to the β function. At the conformal fixed
point, thus, the renormalised correlators are conformally invariant. From a perturbative
point of view, this is an all-order statement which requires a very intricate conspiracy
among infinitely many Feynman diagrams. We elaborate on this in section 2.3. Section 3
is devoted to the on-shell amplitudes. We define them in section 3.1 by applying the
Lehmann-Symanzik-Zimmermann (LSZ) reduction procedure to the off-shell correlators.
The non-commutativity of the generator of conformal boosts with the on-shell limit in the
LSZ reduction generates an anomaly in the CWIs for the on-shell amplitudes. We pinpoint
the origin of the anomaly to certain terms of the asymptotic expansion of the amputated
correlators in the on-shell limit. We discuss this thoroughly in section 3.2 for the three-point
correlator with one leg put on-shell, and then generalise to the n-particle case in section 3.3.
The anomaly receives contributions of two types. One is proportional to the elementary field
anomalous dimensions, and thus needs to be computed at a lower loop order. In section 3.4
we show that the second type of contribution to the conformal anomaly can be expressed
as the convolution of a universal function with lower-loop amplitudes, so that the whole
anomaly is entirely determined by lower-loop information. In section 3.5 we present the
calculation of the conformal anomaly in a few examples. We conclude in section 4 with a
discussion of our results, and an outlook on the future studies.

We provide useful technical details in several appendices. In appendix A we review the
proof of the Ward identities for the renormalised correlation functions. In appendix B we
show how the knowledge of a correlator/amplitude at the conformal fixed point constrains
it away from the fixed point. In appendix C we prove that the generator of conformal
boosts commutes with the momentum-conservation delta function. Appendix D is devoted
to an instructive comparison between the perturbative results and the expression fixed by
conformal symmetry for the three-point correlator. The latter is well known and very simple
in position space. Its Fourier transform to momentum space is given by a one-loop triangle
Feynman integral with non-integer powers of the propagators. We show in appendix E how
to efficiently use the differential equations method in this novel setting.

2 Correlation functions at the conformal fixed point

In this section we study the conformal properties of off-shell correlators in momentum space
as a preparatory step before considering on-shell amplitudes. We define the su(n)-matrix
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φ3 theory and recall its conformal properties at tree level in section 2.1. In section 2.2 we
review that the renormalised correlators satisfy CWIs with an anomalous term proportional
to the β function. At the conformal fixed point the β function vanishes, and the correlators
are annihilated by the conformal generators. We discuss this explicitly in section 2.3 for
the three-point correlator. The latter gives a spectacular example of the constraining power
of conformal symmetry, and is the perfect toy example for the derivation of our anomalous
CWIs for on-shell amplitudes in section 3.

2.1 Conformal invariance at the classical level

In this section we review the conformal invariance of the su(n)-matrix φ3 theory at the tree
level. The bare action in d = 6 dimensions is given by

S0 =
∫

ddx
[1

2(∂φa0)2 + g0
6 d

abcφa0φ
b
0φ

c
0

]
, (2.1)

where φ0 = ∑
a φ

a
0t
a, the matrices ta are the su(n) generators in the fundamental represen-

tation normalised as tr tatb = δab/2, dabc = 2 tr ta{tb, tc} with the curly brackets denoting
anti-commutation, i.e. {A,B} := AB + BA, and a, b, c = 1, . . . ,n2 − 1. The 0 subscript
denotes bare quantities.

The action in eq. (2.1) is invariant under conformal transformations. On top of the
usual Poincaré group, in fact, it is invariant also under the following infinitesimal variation
of the fields,

φa0(x)→ φa0(x) + iωD∆0 φ
a
0(x) + i εµKµ

∆0
φa0(x) , (2.2)

where ω and εµ are infinitesimal parameters. Here, D∆ is the generator of infinitesimal
dilatations,

D∆ = −i (xµ∂µ + ∆) , (2.3)

which are a rescaling of the spacetime coordinates,

xµ → eω xµ . (2.4)

∆ is the conformal weight (or scaling dimension) of the field φ0, and its canonical value —
namely the value for which the action in eq. (2.1) is invariant with d = 6 — is ∆0 = 2. Kµ

∆ in
eq. (2.2) is instead the generator of conformal boosts (or special conformal transformations),

Kµ
∆ = i

(
x2∂µ − 2xµxν∂ν − 2∆xµ

)
, (2.5)

which at the level of the spacetime coordinates corresponds to

xµ → xµ − εµx2

1− 2ε · x+ ε2x2 . (2.6)

The latter can be more intuitively viewed as the composition of an inversion (xµ → xµ/x2),
followed by a translation xµ → xµ − εµ, and finally another inversion.
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The conformal invariance of the bare action implies that the correlation functions are
conformally invariant at tree level, namely that the tree-level correlators of n fields are
annihilated by the generators of conformal symmetry,1

Kµ
∆0
〈φ0(x1) . . . φ0(xn)〉

∣∣∣∣
tree

= 0 , (2.7)

and similarly for the other generators.
The representation of the generators acting on a function of the scalar field φ0 at n

points xi in position space is obtained by summing over all points the single-point generators
in eqs. (2.3) and (2.5),

D∆ = −i
n∑
j=1

(
xµj

∂

∂xµj
+ ∆

)
, (2.8)

Kµ
∆ = i

n∑
j=1

(
x2
j

∂

∂xj µ
− 2xµj xνj

∂

∂xνj
− 2∆xµj

)
. (2.9)

For example, it is straightforward to show that the two- and three-point tree-level correlators
are annihilated by the generators of dilatations and conformal boosts,

〈φa0(x1)φb0(x2)〉
∣∣∣∣
tree

= 1
4π3

δab(
x2

12
)2 , (2.10)

〈φa0(x1)φb0(x2)φc0(x3)〉
∣∣∣∣
tree

= − g

(2π)6
dabc

x2
12x

2
23x

2
31
, (2.11)

where xij = xi − xj .
We are interested in the implications of conformal symmetry for scattering amplitudes,

which are defined in on-shell momentum space. We work in Minkowski spacetime to describe
light-like momenta. The (off-shell) momentum-space realisation of the conformal generators
can be obtained by Fourier transforming the position-space one, obtaining2

D∆ = i
n∑
j=1

(
pµj

∂

∂pµj
+ d−∆

)
, (2.12)

and

Kµ
∆ =

n∑
j=1

(
−pµj

∂

∂pj ν

∂

∂pνj
+ 2pνj

∂

∂pνj

∂

∂pj µ
+ 2(d−∆) ∂

∂pj µ

)
. (2.13)

While in position space all conformal generators are first-order differential operators, the
conformal boost generator is realised in momentum space by a second-order operator.
This is one of the reasons why studying conformal symmetry in momentum space is more

1We consider only correlators of elementary fields of the theory with action (2.1), which are (renormalised)
n-point Green functions. We always tacitly imply the time ordering in the notation 〈. . .〉.

2To avoid the proliferation of symbols, we denote with the same symbol the conformal boost generator in
both momentum and position spaces.
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challenging than in position space. Indeed, in section D we will review how conformal
symmetry allows us to draw sweeping, all-order conclusions about the correlation functions
in position space, whereas the corresponding results in momentum space are substantially
more involved beyond the tree level.

The Fourier transform of the tree-level two- and three-point functions (2.10) and (2.11)
gives the following momentum-space correlators,

〈φa0(p1)φb0(p2)〉
∣∣∣∣
tree

= iδab
p2

1
(2π)6δ(6)(p1 + p2) , (2.14)

〈φa0(p1)φb0(p2)φc0(p3)〉
∣∣∣∣
tree

= g dabc

p2
1p

2
2p

2
3
(2π)6δ(6)(p1 + p2 + p3) . (2.15)

One can show that the conformal generators (2.12) and (2.13) annihilate these expressions.
The dilatation and Lorentz symmetry generators are first-order in momentum space,

and hence their constraints on the correlators are easy to take into account. For this reason
we will focus in this paper on the conformal boost generator.

In addition to this technical complication, two conceptual issues need to be addressed:
the appearance of divergences in the correlators beyond the tree level, and the definition of
an on-shell scattering amplitude starting from the off-shell correlator. We tackle the latter
problem in section 3, and devote the next section to the former.

2.2 Conformal invariance for renormalised correlation functions

Beyond tree level the theory is ultraviolet divergent and needs to be renormalised. This
obscures the conformal properties of the correlators. In this section we review that the
renormalised correlators satisfy CWIs with a different conformal weight and an anomalous
term proportional to the β function.

We work in dimensional regularisation, namely we analytically continue the spacetime
dimension to d = 6− 2ε with ε > 0. The canonical conformal weight of φ in d dimensions is

∆0 = d

2 − 1 . (2.16)

The theory is multiplicatively renormalisable. The renormalised field φ and coupling g are
defined as

φ0 = Z
1
2
1 φ , g0 = µεZg g , (2.17)

introducing the renormalisation scale µ. The renormalisation factors Z1, Zg are calculated
in perturbation theory as series in the coupling

u = g2

(4π)3 . (2.18)

Their two-loop expressions, given in ref. [24], are reproduced in appendix A. The β function
and the anomalous dimension γ of the elementary field are

β = du

d logµ = −2εu− n2 − 20
2n u

2 − 5360− 496n2 + 5n4

72n2 u
3 +O(u4) , (2.19)
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γ = 1
2
d logZ1
d logµ = u

n2 − 4
12n

(
1 + u

n2 − 100
36n

)
+O(u3) . (2.20)

The four-loop approximation of β and γ can be found in [25].
Renormalisation introduces the scale running of the coupling. As a result, conformal

symmetry is obscured, but not entirely lost. The renormalised correlators in fact satisfy
CWIs with the conformal dimension shifted by the anomalous dimension γ,

∆φ = ∆0 + γ(u) . (2.21)

The dilatation generator acts on the renormalised correlation function as follows,

D∆φ
〈φ(x1) . . . φ(xn)〉 = −β(u)

2u

∫
ddx 〈φ(x1) . . . φ(xn)O(x)〉 , (2.22)

where O(x) := gµε
[
dabcφaφbφc

]
R

(x)/6 is the renormalised local operator which is the UV-
finite counterpart of the theory interaction, and we recall that φ denotes the renormalised
field. The dilatation Ward identity is equivalent to the renormalisation group Callan-
Symanzik equation for the correlation function, which describes the evolution of the
correlator with the scale µ. The conformal boost Ward identity has an analogous form,

Kµ
∆φ
〈φ(x1) . . . φ(xn)〉 = −β(u)

u

∫
ddxxµ 〈φ(x1) . . . φ(xn)O(x)〉 . (2.23)

The CWIs for multi-point renormalised correlation functions are well-known and date back
to the early days of the conformal symmetry, see e.g. [26]. They were also studied in
non-abelian gauge theories, see [4] for a review. For the convenience of the readers, we
outline the derivation of the CWIs (2.21) and (2.23) in appendix A.

The invariance of the action (2.1) under conformal transformations generates currents
which are conserved at classical level. Beyond the classical approximation dilatations and
conformal boosts are not exact symmetries, and the conservation of the corresponding
currents becomes anomalous. The right-hand sides of eqs. (2.22) and (2.23) provide the
quantum anomalies of the dilatation and conformal boost currents. In section 3 we consider
conformal anomalies of the on-shell amplitudes, which are not to be confused with the
quantum anomalies of the currents originating from the running of the coupling.

The fact that the right-hand sides of eqs. (2.22) and (2.23) are proportional to the
β function suggests to use the notion of conformal fixed point (alias Wilson-Fisher fixed
point [22]), i.e. a special value of the coupling constant u∗ such that the β function vanishes,

β (u∗) = 0 . (2.24)

The coupling at the conformal point is a function of the dimensional regulator ε. Up to
order ε2 it is given by

u
∗ = 4nε

20− n2 + 4nε2

9
5n4 − 496n2 + 5360

(20− n2)3 +O(ε3) . (2.25)
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Note that the real-valuedness of the coupling g implies that u > 0 and, since ε > 0, this is
possible only for sufficiently small values of the rank n.3 The renormalised correlators are
therefore conformally invariant at the conformal fixed point,

Kµ
∆0+γ 〈φ(x1) . . . φ(xn)〉

∣∣∣∣
u=u∗

= 0 , (2.26)

though with a conformal dimension shifted by the anomalous dimension γ. This is the
starting point for the derivation of our anomalous CWIs for the on-shell amplitudes, which
we discuss in section 3. It is important to stress that the CWIs (2.26) give very strong
constraints on the form of the renormalised correlators also away from the conformal fixed
point. Indeed, in appendix B we show that the finite part of a renormalised correlator at a
given loop order is entirely determined by its expression at the conformal fixed point and
lower loop information.

2.3 A toy example: the three-point correlator

Seen from the point of view of a perturbative computation, having exact conformal invariance
at the conformal fixed point implies a remarkable conspiracy of infinitely many Feynman
diagrams at all orders. It is instructive to illustrate this for the three-point correlator, which
will be a useful toy example for deriving the anomalous Ward identities for the on-shell
amplitudes in section 3. We give here only the salient points, and refer to appendix D for a
thorough discussion.

It is well known that conformal symmetry fixes the three-point correlators up to an
overall constant (see e.g. ref. [28]). The expression is extremely simple in position space,4

〈φa(x1)φb(x2)φc(x3)〉
∣∣∣∣
u=u∗

= dabc c123(u∗)(
x2

12 − i0
)∆φ

2
(
x2

23 − i0
)∆φ

2
(
x2

31 − i0
)∆φ

2

, (2.27)

where xij = xi − xj , but becomes more complicated in momentum space. We recall that we
have to work directly in momentum space in order to study on-shell scattering amplitudes.
Expressions for the Fourier transform of the three-point conformal correlator have been
obtained in terms of Appell’s hypergeometric function F4 or triple-K integrals [5, 6, 29–34].
We adopt a different approach, and use of the technology developed for computing Feynman
integrals. The Fourier transform of the three-point correlator can in fact be written as

〈φa(p1)φb(p2)φc(p3)〉
∣∣∣∣
u=u∗

∝ dabc δ(d)(p1 + p2 + p3) I
(

2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
,

(2.28)

3We are mostly interested in the perturbative implications of conformal symmetry at the conformal fixed
point, and therefore do not study the nature of the latter [23, 27].

4We recall that we are working in the Minkowski space-time signature. The subtraction of a small
positive imaginary part i0 from each x2

ij corresponds to Feynman’s prescription for the propagators in
momentum space.
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Figure 1. Graph representing the one-loop triangle integral family defined by eq. (2.29). The
arrows denote the momentum flow.

up to an overall kinematic-independent factor, where I(e1, e2, e3) is a Feynman integral of
the one-loop “three-mass triangle family,”

I (e1,e2,e3) = eεγE

∫ ddk
iπ d2

1
[−k2−i0]e1 [−(k+p1)2−i0]e2 [−(k+p1+p2)2−i0]e3 , (2.29)

whose defining graph is shown in figure 1. In contrast with the usual Feynman integrals,
the propagators in eq. (2.28) are raised to non-integer, ε-dependent powers. Given this
aspect of novelty, we discuss thoroughly the computation using the method of differential
equations [35–38] in canonical form [39] in appendix E.1. As a result, we obtain the
analytic expression of the three-point conformal correlator in momentum space expanded
around ε = 0.5 It is written in terms of algebraic functions and two-dimensional harmonic
polylogarithms [40]. Remarkably, conformal symmetry captures entirely this complexity, in
an expression which in position space is ridiculously compact.

This is even more remarkable if contrasted with a perturbative computation of the
correlator. The latter in fact involves infinitely many Feynman diagrams (see e.g. figure 2),
which evaluate to complicated transcendental functions. All these pieces fit together, to all
orders, to reproduce the conformally invariant expression at the conformal fixed point, fixing
the normalisation factor c123 in eq. (2.27). We check this explicitly with a perturbative
computation of the two- and three-point correlators up to two-loop order in appendix D.2.

The analysis of the three-point correlator gives two important lessons. First, it gives a
paradigmatic example of the constraining power of conformal symmetry. Second, it shows
that conformal symmetry underlies the perturbative results in a very non-trivial way. This is
due to the second-order differential nature of the conformal constraints in momentum space.
A precise understanding of how these constraints are implemented is therefore imperative
in order to unveil the underlying conformal symmetry and exploit it.

In the next section we investigate how this extends to on-shell scattering amplitudes.
The latter are obtained from the correlators by amputating the external legs and taking the
light-like limits. These operations have a non-trivial interplay with conformal symmetry,
and generate an anomaly in the CWIs. The full analytic control over the three-point

5The expansion is truncated by the limited perturbative knowledge of the anomalous dimension γ. The
latter is given up to four-loop order in [25], which suffices to expand the correlator up to order ε4.
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Figure 2. Representative Feynman diagrams contributing to the three-point correlator C(3) up to
two-loop order.

correlator (2.28) achieved through Feynman integral techniques will be instrumental to
derive the conformal anomaly in the on-shell limit.

3 Anomalous conformal Ward identities for scattering amplitudes

In the previous section we have shown that the renormalised correlators are annihilated by
the conformal boost generator at the conformal fixed point,

Kµ
∆φ
〈φ(x1) . . . φ(xn)〉

∣∣∣∣
u=u∗

= 0 . (3.1)

In this section we discuss how this translates into a constraint on the corresponding
scattering amplitude. The latter is obtained from the correlator through the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula [41] (see ref. [42] for a formulation of the
LSZ reduction procedure in a conformal field theory).

We begin in section 3.1 by discussing the interplay between the LSZ reduction formula
and conformal symmetry. We show that the conformal boost generator does not commute
with the on-shell limit of the reduction, and how we overcome this obstacle by analysing
the asymptotic expansion of the correlator in the light-like limit. We do this explicitly for
the three-point case in section 3.2. We amputate one of the external legs and work out the
anomalous CWIs satisfied by the resulting amplitude. We then extend this procedure to a
multi-point correlator with several LSZ-reduced legs in section 3.3. The anomaly in general
comprises two terms. One is proportional to the elementary field anomalous dimension, and
thus involves only lower-loop information. In section 3.4 we argue that the second term
is governed by collinear regions of loop momentum, and that it can be represented as the
convolution of a universal function and lower-order amplitudes. This gives a handle on the
computation of the conformal anomaly, which this way becomes a lower-order problem.
In section 3.5 we give a few examples of computation of the conformal anomaly: for the
three-point case with one on-shell leg, both exactly to all orders and perturbatively up to
one loop, for the fully on-shell four-point case up to one loop, and for the four-point form
factor up to one loop.
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3.1 Definition of scattering amplitudes via LSZ formula and conformal
symmetry

The LSZ reduction procedure takes from the correlator to the scattering amplitude by
removing the bubble corrections from the external legs and setting the external momenta
on shell. In this section we show that the conformal boost generator can be pulled through
the amputation of the external bubbles, but does not commute with the on-shell limit.

We define the renormalised momentum-space correlators at the conformal fixed point
by Fourier transforming the position-space ones as

C(n) (p1, . . . , pn) (2π)d δ(d) (p1 + . . .+ pn) =
∫  n∏

j=1
ddxjeipj ·xj

 〈φ(x1) . . . φ(xn)〉
∣∣∣∣
u=u∗

.

(3.2)

We strip off the overall momentum-conservation δ function and a factor of (2π)d to simplify
the expressions. In appendix C we show that the conformal boost generator commutes with
the momentum-conservation δ function when acting on a correlator. We will thus neglect
the δ function hereinafter, and act with the conformal boost generator directly on C(n).

We begin with the amputation of the bubble corrections on each external leg. The latter
sum up to the renormalised two-point correlator. Their amputation therefore amounts to

G(n)(p1, . . . , pn) :=

 n∏
j=1

C(2)(pj ,−pj)

−1

C(n)(p1, . . . , pn) . (3.3)

We call this intermediate object, G(n), the amputated correlator. The two-point renormalised
correlator is given to all orders by (see appendix D.1)

C(2)(pj ,−pj) = c̃12 (u∗)
(
−p2

j

)−1+γ
, (3.4)

where c̃12 (u∗) is a kinematic-independent factor given by eq. (D.7). We can pull the
conformal boost generator through the inverse two-point correlation functions thanks to
the intertwining relation

Kµ
∆

(
p2
)∆− d2 =

(
p2
)∆− d2 Kµ

d−∆ . (3.5)

Setting ∆ = ∆φ, this relation, together with the invariance of the correlator (3.1), implies
that the amputated correlator G(n) satisfies the CWI

Kµ
d−∆φ

G(n)(p1, . . . , pn) = 0 . (3.6)

Therefore, pulling the conformal boost generator through the inverse two-point correlators
simply amounts to changing the conformal weight from ∆φ to its “shadow” d − ∆φ.
Equivalently, instead of the correlation function C(n) of elementary fields φ, we could have
considered a correlator of the shadow operators [43], which carry the shadow conformal
dimension. The latter coincides with G(n), and the amputation procedure (3.3) relates the
two pictures. In the representation theoretic language, representations of the conformal
algebra with weights ∆φ and d−∆φ are equivalent [44].

– 10 –



J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

The scattering amplitude, M (n), is then given by the on-shell limit of the amputated
correlator,6

M (n)(p1, . . . , pn) = lim
p2

1→0
. . . lim

p2
n→0

G(n)(p1, . . . , pn) . (3.7)

The conformal boost generator, however, does not commute with this limit. In order to
prove this, let us consider a toy example: a generic scalar function of a single squared
momentum, f(p2), which is finite at p2 → 0. The conformal boost generator acting on it is

Kµ
∆ = −pµ ∂

∂pν

∂

∂pν
+ 2pν ∂

∂pν
∂

∂pµ
+ 2(d−∆) ∂

∂pµ
. (3.8)

The commutator of the conformal boost generator and the on-shell limit acting on f is then
given by [

Kµ
∆, lim

p2→0

]
f
(
p2
)

= −4 lim
p2→0

pµ
[
p2f ′′

(
p2
)

+
(
d

2 + 1−∆
)
f ′
(
p2
)]

. (3.9)

The two terms on the right-hand side of the previous equation correspond to two different
physical effects that leads to an on-shell conformal anomaly:

• The first term on the right-hand side of eq. (3.9) also appeared in ref. [18] in the
context of finite conformal integrals. There it was shown that the action of the
conformal boost leads to an anomaly that is localised on collinear regions of the loop
integration (more on this in section 3.4).

• The second term on the right-hand side of eq. (3.9) vanishes for ∆ = d/2 + 1, or
equivalently ∆ = d−∆0. However, we see that there is a mismatch with the conformal
weight ∆ = d−∆φ that is needed to annihilate the amputated correlator, see eq. (3.6).
The discrepancy is proportional to the anomalous dimension γ. This generates a new
type of conformal anomaly, which we investigate in section 3.2. Since it is related to
the anomalous dimension, one could say that it is of ultraviolet origin.

The amputated correlator G(n) is finite at p2
i = 0, but its derivatives do not vanish

in general. To see this, consider for example the one-loop triangle integral defined by
eq. (2.29) with unit propagator powers. In a perturbative computation of G(3), this is the
only diagram contributing at one-loop order. In the light-like limit p2

1 → 0, the triangle
integral has the following asymptotic expansion,

I(1, 1, 1) =
∑
m≥0

(
−p2

1
)m
Ihard

[m] (1, 1, 1) +
∑
m≥0

(
−p2

1
)1−ε+m

Icoll
[m] (1, 1, 1) . (3.10)

The terms of the expansion can be computed using the method of the expansion by
regions [45–47]. One splits the loop integration domain into regions in which the expansion
in the small parameter (p2

1 in this case) and the integration commute, and it is thus possible
6In the following, it will also be convenient to consider analogous objects where only some of the external

legs are taken on-shell, which we will also denote by the letter M .
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to expand in series the integrand under the integral sign. The terms with integer exponents
of s1 in the expansion (3.10) stem from what is typically called the hard region in the
literature, which corresponds to expanding the loop integrand as is under the integral
sign, and integrating term by term. The terms in eq. (3.10) with ε-dependent powers
originate instead from the collinear region of the loop integration. Computing them requires
re-scaling appropriately the loop momenta so as to catch the contributions from this region,
before we expand and integrate. We discuss this thoroughly for the triangle integrals in
appendix E.2. In a perturbative expansion around ε = 0, the collinear region generates
terms of the form p2

1 log(−p2
1), which are finite at p2

1 = 0 but have singular derivative. In
general, the terms of order p2 and p2 log(−p2) in the asymptotic expansion of f(p2) in
eq. (3.9) give non-vanishing contributions to the commutator at p2 = 0.

These terms in the asymptotic expansion of the amputated correlator G(n) prevent
us from simply pulling the conformal boost generator through the on-shell limit. The
amplitude M (n) therefore does not inherit the conformal invariance from the amputated
correlator G(n) in general. Instead, it satisfies CWIs with an anomaly term,

Kµ
d−∆φ

M (n)(p1, . . . , pn) = A(n)µ(p1, . . . , pn) , (3.11)

where we recall that the external momenta are on-shell, p2
i = 0. The anomaly on the

right-hand side originates from the non-commutativity of the conformal boost generator
and the on-shell limit. Given that the terms on the right-hand side of eq. (3.9) have a
specific physical origin, we aim to find a universal description for them.

Before we present our idea to reach this goal, a word of caution is in order. The non-
commutativity of the conformal boost generator with the on-shell limit not only prevents
us from effortlessly deriving the implications of conformal symmetry for the scattering
amplitude. It also leads to a practical inconvenience: regardless of how we obtain the
anomalous CWI (3.11), the external momenta are put on-shell and the amplitude, the
anomaly, and — through the chain rule — the conformal generator are written in terms of
some set of independent variables. The latter are chosen so as to implement momentum
conservation and the on-shellness of the momenta, but are otherwise arbitrary. If the
conformal generator and the on-shell limit commuted, we would be free to change the
variables at any step. Since this is not the case, deriving the CWI (3.11) with a first choice
of variables and changing it to a second one gives a different result than using the second
from the beginning. The difference stems from the non-vanishing commutator in eq. (3.9)
with ∆ = d−∆φ, and is hence proportional to the anomalous dimension γ. This unusual
feature may be uncomfortable, but causes no harm provided we choose the independent
variables once and for all at the beginning of the derivation.

Let us now lay out our plan to derive the implications of conformal symmetry for the
scattering amplitude from the invariance of the correlator. The basic idea is to study its
asymptotic expansion in the light-like limits p2

i → 0, identify which terms contribute to the
anomaly, and find a convenient method to compute them. In the next section we discuss this
explicitly in the n = 3 case. The procedure and the conclusions can be straightforwardly
generalised to a generic number of particles, as we show in section 3.3.
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3.2 Anomalous Ward identity for a three-point amplitude

In this section we study what happens to the conformal properties of the three-point
correlator when amputating external legs and taking the on-shell limit. As discussed above,
the crucial step is the on-shell limit. We will study the case where one of the external
legs goes on-shell. Studying this case will allow us to understand the mechanism which
generates the anomaly in the CWI, and to generalise it to the general case.

Let us start from the amputated correlator G(3), which satisfies the CWI

Kµ
d−∆φ

G(3) (s) = 0 . (3.12)

We choose as independent variables s = (s1, s2, s3) with si = p2
i , and use the chain rule to

express the conformal boost generator as a differential operator in the si,

Kµ
∆ =

3∑
i=1

pµi K̂
(i)
∆ , (3.13)

where

K̂
(i)
∆ = 4 si

∂2

∂s2
i

+ 2 (d+ 2− 2∆) ∂

∂si
. (3.14)

By substituting eq. (3.13) into eq. (3.12) and using momentum conservation we obtain the
following scalar constraints, (

K̂
(2)
d−∆φ

− K̂(3)
d−∆φ

)
G(3) (s) = 0 , (3.15)(

K̂
(2)
d−∆φ

− K̂(1)
d−∆φ

)
G(3) (s) = 0 . (3.16)

Next, we take the on-shell limit s1 → 0 of the amputated correlator and define an
amplitude-like object,

M (3) (s2, s3) = lim
s1→0

G(3) (s) . (3.17)

We choose (s2, s3) as independent on-shell variables. In order to establish a link between
the amputated correlator and the amplitude in such a way that we can translate the
constraints (3.15) and (3.16) into conditions on the latter, we consider the asymptotic
expansion of the former in the s1 → 0 limit. The result of this analysis, which we discuss in
appendix E.2, is that the amputated correlator admits the following asymptotic expansion,

G(3) (s) =
∑
m≥0

(−s1)mG(3),hard
[m] (s2, s3) +

∑
m≥0

(−s1)1−γ+mG
(3),coll
[m] (s2, s3) . (3.18)

The series with integer powers of s1 originates from the hard region of the loop integration
defining the conformal correlator C(3) in eq. (2.27). It corresponds to expanding the integral
around s1 = 0 at the integrand level. The zero-th term gives the amplitude as one would
obtain it from a perturbative computation, setting s1 = 0 from the beginning,

M (3) (s2, s3) = G
(3),hard
[0] (s2, s3) . (3.19)

– 13 –



J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

The series with powers of (−s1)1−γ+m in the asymptotic expansion (3.18) stems instead
from the collinear region of the loop integration.

Upon perturbative expansion around ε = 0, the terms from the collinear region generate
logarithms of s1. For our purpose it is convenient to spell out these logarithms, by rewriting
eq. (3.18) as

G(3) (s) = M (3) (s2, s3) +
∑
m≥1

∑
k≥0

sm1 logk (−s1)G(3)
m;k (s2, s3) . (3.20)

We then substitute this expansion into eqs. (3.15) and (3.16). Since K̂(2)
∆ and K̂(3)

∆ do not
act on s1, we can set s1 = 0 in eq. (3.15), and get a first constraint on the amplitude M (3),(

K̂
(2)
d−∆φ

− K̂(3)
d−∆φ

)
M (3) (s2, s3) = 0 . (3.21)

On the other hand, we cannot set s1 = 0 naïvely in eq. (3.16), because of the operator
K̂

(1)
∆ on the right-hand side. Instead, we act with K̂(1)

∆ on the asymptotic expansion of the
amputated correlator (3.20), and set s1 = 0 after differentiation. The result is

K̂
(2)
d−∆φ

M (3) (s2, s3) = 4 γ G(3)
1;0 (s2, s3) + 4G(3)

1;1 (s2, s3) . (3.22)

This simple computation, the details of which can be found in appendix E.3, also leads
to an interesting bonus result. All terms G(3)

m;k in the asymptotic expansion (3.20) are
entirely determined by a sequence of conformal boost generators acting on just two terms:
the amplitude M (3) and G

(3)
1;1, namely the coefficient of s1 log(−s1) in the asymptotic

expansion of the amputated correlator in eq. (3.20). Let us also note that the sum of the
two terms in the expression of the anomaly on the right-hand side of eq. (3.22) is equal to
−4γG(3),hard

[1] (s2, s3), so that the collinear region contributes neither to the amplitude nor
to the conformal anomaly.

Finally, eqs. (3.21) and (3.22) can be combined into the desired anomalous CWI,

Kµ
d−∆φ

M (3) (s2, s3) = A(3)µ , (3.23)

where the anomaly is given by

A(3)µ = −4 pµ1
(
γ G

(3)
1;0 (s2, s3) +G

(3)
1;1 (s2, s3)

)
, (3.24)

and the conformal boost generator,

Kµ
∆ =

∑
i=2,3

pµi K̂
(i)
∆ , (3.25)

is exactly the generator (2.13) restricted to a function of s2 and s3, with s1 = 0. Several
comments are in order.

• What predictive power does the anomalous CWI (3.23) hold? In section 3.5.1 we
write down a closed-form expression for the anomaly, and solve the anomalous CWI
for the three-particle amplitude M (3) exactly.
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• In section 3.3 we discuss how the anomalous CWI generalises to the n-point correlator.
Although in this case an all-order result is out of reach, the anomalous CWI (3.23)
retains a strong predictive power in a perturbative approach, i.e. for computing the
amplitude up to a fixed order in ε. To this end, the computation of the anomaly must
be simpler than that of the amplitude at the same order. Let us then look at the two
terms of the anomaly in eq. (3.23) from a perturbative point of view.

• The term with the coefficient G(3)
1;0 is proportional to the anomalous dimension. Since

the latter starts at order ε, G(3)
1;0 is needed at a lower order in ε than the amplitude.

• The second term of the anomaly, containing G(3)
1;1, is instead needed at the same order

as the amplitude on the left-hand side. In section 3.4 we propose a method to compute
G

(3)
1;1 which relies on lower-loop information only.

• The tree-level amplitudes cannot contribute any logarithms, and therefore G(3)
1;1 starts

at order ε. The entire anomaly then starts at order ε, which is in agreement with the
well-known conformal invariance at tree level for ε = 0,

Kµ
d−∆φ

M (3) (s2, s3) = O (ε) . (3.26)

In this section we have proposed a procedure to extract the conformal anomaly associated
with amputating and putting on-shell one of the external legs in the three-point correlator.
In the next section we will iterate this procedure on multiple legs of an n-point correlator,
and generalise the anomalous CWI to the multi-point case.

3.3 Conformal Ward identity for n-particle amplitudes

In the previous sections we considered in detail the three-point correlator at the conformal
fixed point, and studied its conformal anomaly generated by putting one of its legs on-shell.
Many of the observed properties hold for n-point correlators when putting a subset Λ of its
legs on-shell,

si ≡ p2
i = 0 , i ∈ Λ ⊆ {1, . . . , n} . (3.27)

As we have already mentioned above, the precise form of the conformal anomaly equation
depends on the choice of independent kinematic variables. Nevertheless, some generic
features, which we develop below, hold for any choice of the variables.

We complement {si}i∈Λ ≡ sΛ with a set v of Mandelstam variables in order to parame-
terise the kinematics of the n-point correlator. Putting Λ of the n legs of the amputated
correlator G(n) on-shell results in an amplitude-like object M (n),

M (n) (v) =

∏
i∈Λ

lim
si→0

G(n) (v, sΛ) . (3.28)

The amputated correlator G(n) is conformally invariant with conformal weight d−∆φ

with respect to each leg. Among the conformal algebra generators, only the conformal boost
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symmetry is broken by an anomaly in the on-shell limit. We rewrite the momentum-space
conformal boost generator (2.13) in the Mandelstam variables v, sΛ using the chain rule as

Kµ
∆ =

n∑
i=1

pµiK
(i)
∆ . (3.29)

The scalar operators K(i)
∆ have the following form,

K
(i)
∆ = K(i)

∆ + K̂
(i)
∆ +

∑
j∈Λ

sj∂sjA
(ij) +

∑
j∈Λ

sjB
(ij) , i ∈ Λ , (3.30)

where K̂(i)
∆ defined in eq. (3.14) acts only on the si variables. As we will see below, only

this piece of the conformal boost generates the anomaly on the light-cone. The differential
operators K(i)

∆ , A(ij), B(ij) act only on Mandelstam invariants v, and do not involve any of
the sΛ. Their explicit form can be easily worked out for any given choice of the Mandelstam
variables v. Similarly, the operators referring to the remaining legs are as follows,7

K
(i)
∆ = K(i)

∆ +
∑
j∈Λ

sj∂sjA
(ij) +

∑
j∈Λ

sjB
(ij) , i ∈ {1, . . . , n}\Λ . (3.31)

In the asymptotic expansion of the amputated correlator in the on-shell limit si → 0
for all i ∈ Λ, each of the legs Λ contributes either smii with mi ≥ 0, or smii logki(−si) with
mi ≥ 1 and ki ≥ 1,

G(n) (v, sΛ) =
∑

mi≥ki≥0
ki≥mi≥1
for all i∈Λ

(∏
j∈Λ

s
mj
j logkj (−sj)

)
G

(n)
{ml;kl}l∈Λ

(v) . (3.32)

The amplitude M (n) is the term of the asymptotics with mi = 0 and ki = 0 for all i ∈ Λ.
In order to formulate the conformal anomaly equation for the amplitude M (n), only

2|Λ| coefficients in the asymptotic expansion (3.32) are required. They are those with one
pair (mi, ki) = (1, 1) or (mi, ki) = (1, 0) and all remaining pairs (mj , kj) = (0, 0). Given
their importance, let us introduce a notation for them,

M (n) (v) := G(n) (v, sΛ) |si=0 , (3.33)

G
(n)
i;pow(v) :=

[
G(n) (v, sΛ)

]
si
, (3.34)

G
(n)
i;coll(v) :=

[
G(n) (v, sΛ)

]
si log(−si)

. (3.35)

Acting on the asymptotic expansion (3.32) with the conformal boost generator (3.29)
(with eqs. (3.30) and (3.31)), and putting the legs Λ on shell (si → 0), we immediately
conclude that the anomaly comes from the K̂(i)

d−∆φ
piece (3.14) of the conformal boost

generator. It picks out the ∼ si and ∼ si log(−si) terms of the asymptotic expansion of the
amputated correlator (3.32).

7The three-point correlator and the amplitude considered in section 3.2 correspond to Λ = {1}, sΛ = {s1},
v = {s2, s3} in the notation of the current section. Also, we have A(ij) = B(ij) = K(1)

∆ = 0, K(2)
∆ = K̂

(2)
∆ and

K(3)
∆ = K̂

(3)
∆ .
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Putting everything together, we find the following anomalous conformal Ward identity
for the at the conformal fixed point,(

n∑
i=1

pµi K
(i)
d−∆φ

)
M (n) (v) = A(n)µ(v) (3.36)

with the anomaly given by

A(n)µ(v) ≡ −4
∑
i∈Λ

pµi

(
γ G

(n)
i;pow(v) +G

(n)
i;coll(v)

)
(3.37)

This, together with the specific form of the conformal anomaly terms to be derived in
the next section, is the main result of this paper. It generalises a result of [18] for finite
conformal integrals to amplitudes at a conformal fixed point in d dimensions. Let us discuss
the properties of our anomalous CWIs.

• The anomaly in eq. (3.37) has a local nature: for each external leg i ∈ Λ that is put
on-shell, there is a separate contribution, proportional to the momentum pµi .

• The first anomaly term is proportional to the field anomalous dimension. Therefore
constraining the amplitude M (n) up to a certain order in ε requires the computation
of G(n)

i;pow to one order lower only.

• The second anomaly term, G(n)
i;coll, has a collinear origin. We will show in the next

subsection that it is described by a convolution of lower-loop amplitudes with a
universal collinear kernel, which we determine here up to the two-loop order.

• The last two points imply that determining the anomaly in perturbation theory is
easier compared to computing the amplitudes directly. This makes the Ward identities
useful in practice.

3.4 Collinear anomaly from analysis of regions

In this section we use the method of the analysis of regions of Feynman integrals [45–
47] to find a formula which allows us to compute efficiently the collinear part of the
conformal anomaly, G(n)

i,coll in eq. (3.37), and to unveil its origin from the region of the loop
integration where some of the loop momenta become collinear with one of the external
on-shell momenta. We find that G(n)

i,coll is given by the convolution of a universal function
and lower-loop, higher-point amplitudes. This generalises the previous result of ref. [18] to
non-integer spacetime dimensions.

3.4.1 Review of the collinear anomaly in integer dimensions

The authors of ref. [18] studied finite Feynman integrals in integer dimensions in a number
of quantum field theories with classically conformal Lagrangian. They discovered that,
whenever one of the external legs is on shell, the conformal invariance of the integral is
broken by a contact term localised on the configurations where the loop momentum is
collinear to the external on-shell momentum. For scalar φ3 theory in d = 6 dimensions, the
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Kµ
d−∆0

∫
d6q ∼ pµ

∫ 1

0
dξ ξξ̄...

ξp

ξ̄p

...p

q

Figure 3. Pictorial representation of the collinear anomaly mechanism. The conformal boost
generator, acting on a UV-finite diagram in six dimensions with an on-shell external leg (p2 = 0),
produces a contact anomaly localised on the configuration where the loop momentum is collinear
to pµ. The contact anomaly freezes the adjacent loop integration, giving a finite anomaly entirely
determined by lower loop information. The collinear anomaly receives one such contribution for
each of the external on-shell legs.

master formula which gives the contribution to the conformal anomaly from each on-shell
corner (i.e. a trivalent vertex with an external on-shell leg) is

Kµ
d−∆0

1
[q2 + i0][(p+ q)2 + i0] = 4iπ3pµ

∫ 1

0
dξ ξ(1− ξ)δ(6)(q + ξp) , (3.38)

where p is the external on-shell momentum (p2 = 0), q is off-shell (q2 6= 0), and d−∆0 = 4.
Whenever the on-shell corner is part of a loop, the δ function localises the adjacent loop
integration on the collinear configuration q = −ξp.

Consider now some (finite) `-loop Feynman diagram F (n+1)
d=6 in the su(n) φ3 theory. We

focus on the corner around the on-shell momentum p,

F (n+1)
d=6 (pa, pa1

1 , . . . , p
an
n ) = −igdabc

∫ d6q

(2π)6
1

q2(p+ q)2G
(n+2)
d=6 (qb, (p− q)c, pa1

1 , . . . , p
an
n ) .

(3.39)

Equation (3.38) then gives

Kµ
d−∆0

F (n+1)
d=6 (pa,pa1

1 , . . . ,p
an
n ) = 4pµ gd

abc

(4π)3

1∫
0

dξ ξξ̄G(n+2)
d=6 (ξpb, ξ̄pc,pa1

1 , . . . ,p
an
n ) , (3.40)

where we use the short-hand notation ξ̄ := 1− ξ. According to eqs. (3.38) and (3.40), the
only contribution comes from the region of loop integrations where the collinear light-like
momenta ξp and (1− ξ)p flow through the two propagators in eq. (3.39). In other words,
all momenta entering the subdiagram (Fd=6\Gd=6) are collinear in the relevant region of
loop integrations. We give a pictorial representation of this relation in figure 3.

As a result of eq. (3.40), the anomaly is entirely determined by lower-loop information.
This allows for the computation of suitable integrals through the solution of the corresponding
anomalous CWIs [19–21]. An analogous collinear mechanism is also responsible for the
anomalies of the Yangian symmetry of the on-shell fishnet graphs [48].

3.4.2 Collinear anomaly from logarithmically enhanced terms of the correlator

Let us now formulate the collinear anomaly mechanism in a way which allows for the
extension to non-integer d. Recall from eq. (3.9) that in general we expect two terms in
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Figure 4. An example of a four-point three-loop Feynman diagram F (4)
d=6 having the tennis-court

topology. The only region of loop integration which contributes to the asymptotics p2 log(−p2) at
p2 → 0 is the one of collinear momenta, as indicated in the figure.

the conformal anomaly equation. In integer dimensions, however, we put γ to zero, and we
focus on the other term. On the one hand, we can see from eq. (3.9) that the conformal
boost generator picks out only the term p2 log(−p2) of the amputated correlator as p2 → 0.
On the other hand, eq. (3.40) gives a precise formula for the conformal anomaly. Comparing
the two expressions yields

[
F (n+1)
d=6 (pa,pa1

1 , . . . ,p
an
n )
]
p2 log(−p2)

= gdabc

(4π)3

1∫
0

dξ ξξ̄G(n+2)
d=6 (ξpb, ξ̄pc,pa1

1 , . . . ,p
an
n ) . (3.41)

This provides a practical recipe to evaluate the term p2 log(−p2) in the asymptotic expansion
of Fd=6, based on the knowledge of the lower-loop subdiagram Gd=6.

Let us now reproduce and understand eq. (3.41) in a different way. We are interested
in the kinematic limit p2 → 0 of a correlation function, and in particular in the term
proportional to p2 log(−p2) in that limit. We use the region expansion analysis [45–47] of
Feynman diagrams to analyse this limit.

When an external momentum pµ is taken to be on-shell, we find different relevant
contributions from the region expansion analysis. In addition to the so-called hard region,
which corresponds to the naïve limit, one finds that collinear regions, where one or more
loop momenta become collinear to pµ, are relevant.

For example, for the diagram shown in figure 4, we find that the only term contributing
to p2 log(−p2) in the limit comes from the one-loop collinear region indicated in the figure.
In fact, for (ultraviolet-)finite Feynman diagrams (as those considered in ref. [18]), one
finds that only one-loop collinear regions can produce logarithmically enhanced terms in
the limit. In this way, one recovers eq. (3.41). In this paper, we do not want to make any
assumptions on ultraviolet power counting, and perform an analysis in arbitrary dimension
d. As we will see in the next subsection, this means that in addition to one-loop collinear
regions, also multi-loop collinear regions are relevant to the conformal anomaly.

3.4.3 Region analysis in non-integer dimensions

Let us now reproduce the previous results from a region analysis, and generalise the
six-dimensional formula (3.38) to the d-dimensional case. To make the discussion more
accessible we begin with explicit examples at one- and two-loop order, before we present
the general result.
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One-loop example: we start with the one-loop triangle diagram which gives the one-loop
term of the amputated correlator G(3). We put on-shell p1 (s1 = 0) and we want to compute
the s1 log(−s1)-term of the asymptotic expansion in the limit s1 → 0. We express this
diagram in terms of the triangle integral from the family defined in eq. (2.29) as

pa1

pb2

pc3

= igun2 − 12
2n dabcI(1, 1, 1) . (3.42)

From the expansion in eq. (3.10), we see that the s1 log(−s1)-term of the triangle integral is
given by ε times the zeroth term from the collinear region. We compute the latter using the
method of the expansion by regions in appendix E.2. Using eq. (E.32), where we replace α1
with ξ to make contact with ref. [18], we find

[I(1, 1, 1)]s1 log(−s1) = εIcoll
[0] (1, 1, 1)

= eεγEεΓ (ε− 1)
∫ 1

0
dξ (ξξ̄)1−ε

ξ(s2 − s3)− s2
.

(3.43)

The denominator of the integrand can be viewed as a tree-level four-point diagram with
momenta (all incoming)

(
ξp1, ξ̄p1, p2, p3

)
in the (p2 + ξp1)2 channel. The s1 log(−s1)-term

of the asymptotic expansion of the triangle diagram can then be expressed as

[
pa1

pb2

pc3 ]
s1 log(−s1)

= gdah1h2

(4π)3

∫ 1

0
dξΩ1L (ξ,ε)

ξph1
1

ξ̄ph2
1

pb2

pc3

, (3.44)

where the one-loop collinear function Ω1L is given by

Ω1L (ξ, ε) = [−εΓ(ε− 1)eεγE ] (ξξ̄)1−ε

= ξξ̄ + ε ξξ̄
[
1− log(ξξ̄)

]
+O(ε2) .

(3.45)

This is in agreement with the six-dimensional eq. (3.41), and generalises it by also taking
into account ε-corrections which are necessary to go to higher orders in ε at the conformal
fixed point.

Two-loop example: as a more nontrivial example, we consider a two-loop triangle which
is one of several Feynman diagrams contributing to the correlator G(3) at the two-loop order,

pa1

pb2

pc3

= igu2
(

n2 − 12
2n

)2

dabcJ (3.46)
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where J is the following two-loop scalar Feynman integral,

J = e2εγE

∫ ddk ddl(
iπ d2

)2 1
k2 l2 (k + l)2(k + p1)2(l − p1)2(l + p2)2 . (3.47)

The propagators are assigned small imaginary parts as in eq. (2.29). The asymptotics of
J at p2

1 ≡ s1 → 0 is similar to that of the one-loop triangle given in eq. (3.10). The new
feature is that there are two regions of loop integrations which are responsible for the
collinear terms. We refer to them as one-loop-collinear and two-loop-collinear,

J =
∑
m≥0

(−s1)mJhard
[m] +

∑
m≥0

(−s1)1−ε+mJ1L-coll
[m] +

∑
m≥0

(−s1)1−2ε+mJ2L-coll
[m] . (3.48)

Both of them contribute to the s1 log(−s1)-term of the asymptotics,

[J ]s1 log(−s1) = εJ1L-coll
[0] + 2εJ2L-coll

[0] , (3.49)

which is responsible for the collinear part of the amplitude conformal anomaly. The
expansion by regions analysis yields the following expressions for the one-loop-collinear and
the two-loop-collinear contributions,

igu2
(

n2 − 12
2n

)2

dabc J1L-coll
[0] = g dah1h2

(4π)3

∫ 1

0
dξΩ1L(ξ, ε)

ξph1
1

ξ̄ph2
1

pb2

pc3

(3.50)

where Ω1L(ξ, ε) is the same as in the one-loop example (3.45), and

igu2
(

n2−12
2n

)2

dabcJ2L-coll
[0] = gudah1h2

(4π)3

∫ 1

0
dξΩ2L

dbl triang(ξ,ε)

ξph1
1

ξ̄ph2
1

pb2

pc3

(3.51)

with the two-loop collinear function

Ω2L
double triangle(ξ, ε) = n2 − 12

4n

[
2ξξ̄
ε

+
(
10ξξ̄ − 3ξξ̄ log(ξξ̄) + ξ log(ξ) + ξ̄ log(ξ̄)

)
+O(ε)

]
.

(3.52)

There are two different contributions to the ε-pole in the previous expression. One comes
from the UV-divergence of the one-loop triangle subdiagram of (3.46), and the other
stems from the collinear divergence in the one-loop box subdiagram of (3.46). The UV-
divergence is cancelled out by the corresponding counter-term diagram, which is the one-loop
diagram (3.42) with the counter-term vertex. The collinear function Ω for the counter-term
diagram contains an ε-pole which cancels out the UV-contribution to the pole in eq. (3.52).
The cancellation of the collinear contribution to the pole is discussed below.
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Figure 5. Subdiagrams with five propagators which contribute to the two-loop collinear function Ω.
They are to be complemented with the corresponding counter-term diagrams. In the relevant region
of loop integrations all internal momenta are collinear with p.

Equations (3.44), (3.50), and (3.51) are very suggestive. The term s1 log(−s1) in the
asymptotics of a Feynman diagram comes from subdiagrams with all internal momenta
localised on a collinear configuration, which turn into a function Ω of the collinear splitting
parameter ξ and ε.

Besides the Feynman diagram (3.46), there are several other Feynman diagrams (includ-
ing those with counter-term vertices) contributing to the three-point correlator G(3) at the
two-loop order. Their asymptotics at s1 → 0 has the same form as in (3.48). Calculating
the Ω function for each of them and taking their sum, we obtain the full two-loop collinear
function (see figure 5),

Ω2L(ξ, ε) = n2 − 12
4n

ξξ̄

ε
+ 59n2 − 884

36n ξξ̄ − 5n2 − 68
12n ξξ̄ log(ξξ̄)

+ n2 − 12
4n

[
ξ log(ξ) + ξ̄ log(ξ̄)

]
+O(ε) . (3.53)

The ε-pole in the two-loop Ω is of collinear origin.

Power counting in the collinear regions: a simple power-counting argument enables
us to determine the asymptotics of a given collinear region of loop integrations. Let us
consider a connected subdiagram H with E external points and involving N propagators.
The subdiagram H is adjacent to the corner with inflowing momentum pµ, which approaches
the light-cone p2 ∼ 0 (see the one- and two-loop examples in figures 4 and 5). We keep in
mind that H is to be attached to a diagram G such that all momenta flowing through H can
be collinear with pµ whereas the momenta flowing through G are generic, and ` independent
momenta flowing through H are integrated over.8 The region of loop integrations over `
momenta of H, where the momenta flowing through all N propagators are collinear with
pµ, has the asymptotics ( 1

p2

)N (
ddp

)`
∼ (p2)E−2−`ε . (3.54)

Here we applied standard graph relations to obtain 3`−N = E − 2. Expanding in ε the
right-hand side of eq. (3.54), we see that the p2 log(p2) terms come from the subdiagrams
with E = 3. The subdiagrams in figures 4 and 5 have E = 3 external points, corresponding

8Let us note that ` is not equal to the number of loops in H, i.e. the independent nontrivial one-cycles.
There are `+ 2− E independent nontrivial one-cycles in H.
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to momenta p, ξp, ξ̄p. The subdiagrams with E > 3, where pµ is split into E − 1 collinear
fractions, contribute to (p2)E−2 log(p2), and so are more suppressed as compared to p2 log(p2)
and do not contribute to the conformal anomaly.

UV-finite Feynman diagrams in d = 6 do not contain two- and three-point subdiagrams
with nontrivial one-cycles. We therefore conclude that only subdiagrams with ` = 1 of finite
Feynman integrals have E = 3. See e.g. figure 4. As a result, in d = 6 the collinear anomaly
is a “short-range” effect, namely it receives contribution only from the collinear region of
the loop integration adjacent to the on-shell momentum. However, generic Feynman graphs
in the d = 6− 2ε dimensional model (2.1) contain multi-loop UV-divergent subgraphs with
E = 3 and ` > 1. Figure 5 shows examples with ` = 2. Thus, to study the collinear part of
the conformal anomaly we have to take into account “long-range” effects as well.

Finally, let us note that the counting of eq. (3.54) changes for UV-finite Feynman
integrals in d = 4 Yukawa theory. As a result, the “long-range” effects impact the collinear
anomaly, namely subdiagrams with ` > 1 have to be taken into account as well.

General structure: based on the previous one-loop and two-loop examples, and the
power counting argument, let us summarise the outcome of expansion by region analysis for
a generic multi-loop Feynman diagram. In order to describe the p2 log(−p2) contribution to
the asymptotics of a Feynman diagram F at p2 ∼ 0, we split F into a subdiagram G with
n + 2 inflowing momenta q, p − q, p1, . . . , pn, and the complementary subdiagram (F\G)
with three inflowing momenta p,−q,−p+ q.9 The subdiagram G is `′-loop (0 ≤ `′ < `), and
(`− `′) independent loop momenta flow through (F\G). The subdiagram (F\G) contains
3(`− `′)− 1 propagators. The terms p2 log(−p2) come from the region of loop integrations
of the subdiagram (F\G) where all propagators carry momenta collinear with p, so its
inflowing momenta are also collinear: p,−ξp,−ξ̄p. This collinear region of loop integrations
results in a function ΩF\G(ξ), and summing over all possible ways of splitting F into G and
(F\G) as described above we find

[F(pa, pa1
1 , . . . , p

an
n )]p2 log(−p2) = gdabc

(4π)3

∑
G⊂F

1∫
0

dξΩF\G(ξ, ε,u)G(ξpb, ξ̄pc, pa1
1 , . . . , p

an
n ) .

(3.55)

So far we have considered the asymptotics of individual Feynman diagrams. It is
insightful to sum eq. (3.55) over all Feynman diagrams F contributing to the amputated
renormalised (n+ 1)-point correlator G(n+1), obtaining

[
G(n+1)(pa, pa1

1 , . . . , p
an
n )
]
p2 log(−p2)

= gdabc

(4π)3

∫ 1

0
dξΩ(ξ, ε,u)G(n+2)

reg (ξpb, ξ̄pc, pa1
1 , . . . , p

an
n ) .

(3.56)

The function Ω(ξ, ε,u) is the sum of ΩF\G over all three-point collinear subdiagrams.
The “regularised” amputated correlator G(n+2)

reg is the (n+ 2)-point amputated correlator
G(n+2)(q1, q2, p1, . . . , pn) calculated in the collinear configuration q1 = ξp, q2 = ξ̄p. Moreover,

9In the notations of the previous paragraph H = (F\G) and E = 3.
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the Feynman diagrams contributing to G(n+2) which are trivially singular as q1 and q2 are
collinear to p are dropped out.10 Let us stress that usually we cannot take the expression
for the renormalised correlator G(n+2) in generic kinematics and substitute the collinear
configuration q1 = ξp, q2 = ξ̄p into it. That would result into collinear divergences which
should be properly regularised. Thus, there are ε-poles in Greg which are due to collinear
divergences. They are compensated by the collinear ε-poles in Ω. The terms of order u0

and u1 of Ω, required to compute the collinear anomaly up to two-loop order, are given by
eqs. (3.45) and (3.53), respectively.

In conclusion, we find that the p2 log p2-term of the asymptotic expansion of the
(renormalised) amputated correlator G(n) is given by the convolution of a universal function,
Ω, with a (n+ 1)-point regularised correlator with two of the incoming momenta carrying
fractions of the on-shell momentum p. Because of the overall factor of g on the right-
hand side of eq. (3.56), and of the additional particle in the correlator under convolution,
computing the collinear part of the conformal anomaly for an amplitude at a given loop
order requires lower-loop information only.

3.5 Applications of the conformal Ward identity

In this section we give three instructive examples of the computation of the conformal
anomaly (3.37). First we consider the three-point amplitude with one on-shell leg, to all
orders using the method of expansion by regions in section 3.5.1, and perturbatively at one
loop in section 3.5.2. Then we study the fully on-shell four-point amplitude at one loop in
section 3.5.3, and the four-point form factor — with three legs on-shell and one off-shell —
at one loop in section 3.5.4.

3.5.1 Exact solution of the anomalous Ward identity for the three-point
amplitude

In this section we derive the exact, closed-form expressions of the anomaly A(3)µ and of the
amplitude M (3) in eq. (3.23). We recall that we put on-shell only the leg with momentum
p1. Remarkably, the anomalous CWI (3.23) constrains both the amplitude and the anomaly
up to two kinematic-independent coefficients. The computation of the anomaly is then
required only to fix these coefficients.

The starting point are the two scalar anomalous CWIs given by eqs. (3.21) and (3.22).
We denote by A(3) the anomaly on the right-hand side of the latter, namely

A(3) = 4 γ G(3)
1;0(s2, s3) + 4G(3)

1;1(s2, s3) . (3.57)

It is convenient to define dimensionless functions of the ratio y = s2/s3 as

M (3)(s2, s3) = (s2s3)
ε−3γ

4 M̃ (3)(y) , (3.58)

A(3)(s2, s3) = −s2(s2s3)
ε−3γ

4 −1Ã(3)(y) . (3.59)

10The singular Feynman diagrams are those involving the propagator 1/(q1 + q2)2.
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The dimensionful factor multiplying M̃ (3)(y) is chosen so as to be invariant under swapping
p2 and p3. As a result, M̃ (3)(y) is symmetric under y → 1/y. Substituting these definitions
into the scalar Ward identities gives the following system of DEs,

[
16(1−y)y2 d2

dy2 +8y [ε−γ+y(ε−γ−4)] d
dy+(1−y)(ε−3γ)(ε+γ−4)

]
M̃ (3)(y) = 0 ,[

16y2 d2

dy2 +8y(ε−γ) d
dy+(ε−3γ)(ε+γ−4)

]
M̃ (3)(y) =−4yÃ(3)(y) .

(3.60)

We can combine these two equations so as to eliminate the second derivative, obtaining an
equation relating the derivative of the amplitude M̃ (3)(y) directly to the anomaly Ã(3)(y),

d
dyM̃

(3)(y) = (1− y)
4y(ε− γ − 2)Ã

(3)(y) . (3.61)

The second independent equation can then be chosen to be a second-order ODE for either
the amplitude alone (the first equation of the system (3.60)), or the anomaly alone,{

16(1− y)y2 d2

dy2 + 8y [ε− γ + y(ε− γ − 8)] d
dy+

y(3γ + 4− ε)(ε+ γ − 8) + (ε− 3γ)(ε+ γ − 4)
}
Ã(3)(y) = 0 ,

(3.62)

which can be viewed as a consistency condition for the anomaly. Remarkably, thus, conformal
symmetry puts very strong constraints also on the anomaly.

Both the consistency condition (3.62) for the anomaly and the second-order ODE for
the amplitude in the system (3.60) can be solved in terms of ordinary hypergeometric
functions, as

Ã(3)(y) = y
3γ−ε

4

{
a1(ε, γ) 2F1

(
2 + γ − ε

2 , 1 + 3γ − ε
2 , 4 + γ − ε; 1− y

)
+

+ a2(ε, γ) (1− y)ε−γ−3
2F1

(
ε− γ

2 − 1, γ + ε

2 − 2, ε− γ − 2; 1− y
)}

,

(3.63)
and

M̃ (3)(y) = y
3γ−ε

4

{
b1(ε, γ) 2F1

(
1 + γ − ε

2 ,
3γ − ε

2 , 2 + γ − ε; 1− y
)

+

+ b2(ε, γ) (1− y)ε−γ−1
2F1

(
ε− γ

2 ,
ε+ γ

2 − 1, ε− γ; 1− y
)}

,

(3.64)

where ai(ε, γ) and bi(ε, γ) are arbitrary kinematic-independent coefficients. By plugging
these solutions into eq. (3.61) we can then relate the coefficients of the amplitude to those
of the anomaly,

b1(ε, γ) = 4(3− ε+ γ)
(3γ − ε)(2 + γ − ε)(ε+ γ − 4) a1(ε, γ) ,

b2(ε, γ) = a2(ε, γ)
4(2 + γ − ε)(ε− γ − 1) .

(3.65)
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The term proportional to b2(ε, γ) on the right-hand side of eq. (3.64) is singular at y = 1,
or equivalently at s2 = s3. The amplitude is free of this singularity, then

b2(ε, γ) ≡ 0 , (3.66)

and also a2(ε, γ) ≡ 0. We thus see that conformal symmetry — supplemented with a
simple physical argument — constrains M (3) up to the kinematic-independent normalisation
without requiring any knowledge of the anomaly. The latter fixes the overall factor.

We compute the closed-form expression of the anomaly using the method of the
expansion by regions [45–47]. We discuss this in appendix E.2, and give here the resulting
expressions for the anomaly coefficients:

a1(ε, γ) = c̃123
(c̃12)3 (3γ − ε)(γ + ε− 4)

eεγEΓ (1− γ) Γ2 (2− ε
2 + γ

2
)

Γ (4− ε+ γ) Γ2 (2− ε
2 −

γ
2
) ,

a2(ε, γ) = 0 .
(3.67)

Finally, by putting eqs. (3.67), (3.65), (3.64) and (3.58) together we obtain the closed-form
expression of the amplitude:

M (3)(s2, s3) = 4 c̃123
(c̃12)3

ε− γ − 3
ε− γ − 2

eεγEΓ (1− γ) Γ2 (2− ε
2 + γ

2
)

Γ (4− ε+ γ) Γ2 (2− ε
2 −

γ
2
) (−s3)

ε−3γ
2 ×

2F1

(
1− ε

2 + γ

2 ,
3γ
2 −

ε

2 , 2− ε+ γ; 1− s2
s3

)
.

(3.68)

We validated this result with an independent computation done with the method of the
expansion by regions, as discussed in appendix E.2. Using the explicit expressions for the
normalisation factors c̃12 and c̃123 — given in eqs. (D.21) and (D.24) up to order ε2 — we
can expand the amplitude around ε = 0.11 Up to order ε it is given by

M (3)(s2, s3) = ig∗
[
1 + u

∗n2 − 12
4n

3s2 − 3s3 − s2 log(−s2) + s3 log(−s3)
s2 − s3

+O
(
(u∗)2

)]
,

(3.69)

which we cross-checked against a direct one-loop perturbative computation.
In this subsection we have shown that conformal symmetry fixes both the three-point

amplitude at the conformal fixed point and its conformal anomaly to all orders in ε up to
two kinematic-independent coefficients, which we computed in closed form.

3.5.2 Conformal Ward identity for the one-loop three-point amplitude

We now re-calculate the one-loop approximation of the conformal anomaly of the three-
point amplitude M (3) (see eq. (3.23)). We label the momenta following the notation of
section 3.4, and consider the three-point correlator G(3)(p1, p2, p3) at p2

1 ∼ 0. We would like
to apply eq. (3.56). Since we aim for the one-loop approximation, we need the lowest order

11To expand the hypergeometric functions we used the Mathematica package HypExp [49, 50].
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approximation of Ω, namely Ω1L from eq. (3.45), and the lowest order approximation for
G(4), namely the tree-level approximation,

G(4)
reg(qb1, qc2, pa1

2 , p
a2
3 ) = −ig2

[
da1bfda2cf

(q1 + p2)2 + da1cfda2bf

(q2 + p3)2

]
, (3.70)

where we discarded the contribution from the third crossing channel since it is singular
where q1 and q2 are collinear with p1. Substituting all these ingredients into eq. (3.41) gives[
G(3)(pa1, pa1

2 , p
a2
3 )
]
p2

1 log(−p2
1)

= −ig
3daa1a2

(4π)3
n2 − 12

2n

∫ 1

0
dξ 2ξξ̄

ξs2 + ξ̄s3
+O(g3ε) (3.71)

= −igudaa1a2 n2 − 12
2n

s2
2 − s2

3 − 2s2s3 log(s2/s3)
(s2 − s3)3 +O(guε) .

At the conformal fixed point u = u
∗ (2.25), the p2

1 log(−p2
1) term in the asymptotics of G(3)

is the collinear contribution in the conformal anomaly, which is denoted as G(3)
1;1. As for the

second contribution to the anomaly, G(3)
1;0 in eq. (3.24), note that the amputated three-point

correlator is a constant at the tree-level,

G(3)(pa1, pa1
2 , p

a2
3 ) = igdaa1a2 +O(g3) . (3.72)

Consequently, the coefficients G(3)
m;k withm ≥ 1 and k ≥ 0 in the asymptotic expansion (3.20)

at p2
1 ∼ 0 are of order O(g3). This is in agreement with the explicit expression for G(3)

1;1 in
eq. (3.71). The perturbative expansion of the coefficient G(3)

1;0 also starts at order O(g3).
The contribution γ G(3)

1;0 in the conformal anomaly (3.24) at the conformal fixed point is
therefore of order O(ε2), and is thus neglected in the one-loop approximation. Finally, we
find the conformal anomaly (3.24),

A(3)µ = ig∗pµ1
{
u
∗n2 − 12

n
s2

2 − s2
3 − 2s2s3 log(s2/s3)

(s2 − s3)3 +O
(
ε2
)}

, (3.73)

which agrees with the Kµ
d−∆φ

-variation of the one-loop expression of M (3) given in eq. (3.69),
and with the all-order result obtained in section 3.5.1 (given by eqs. (3.63) and (3.67)).
Note that the anomaly in eq. (3.73) is finite at s2 = s3.

3.5.3 Conformal Ward identity for the one-loop four-point amplitude

As a simple illustration of the CWI beyond three points, we consider the four-point
amputated correlator G(4). As independent kinematic variables, we choose the standard
bi-particle Mandelstam variables,

s = (p1 + p2)2, t = (p2 + p3)2 , (3.74)

complemented by p2
i with i = 1, . . . , 4. We define the four-point amplitude M (4) by putting

on-shell all four legs of the amputated correlator,

M (4)(s, t) =
( 4∏
i=1

lim
p2
i→0

)
G(4)

(
s, t, p2

1, p
2
2, p

2
3, p

2
4

)
. (3.75)
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Rewriting the conformal boost generator with conformal weight ∆ = d − ∆φ in the
Mandelstam variables as in eqs. (3.30) and (3.31), we find the second-order scalar differential
operators in the variables s, t which play the role of the conformal boost generators for
the amplitude,

K(1) = 4 s ∂2
s + 4 t ∂t ∂s + 4 (2 + 2γ − ε) ∂s ,

K(3) = K(1)|s↔t , K(2) = K(1) + K(3) . (3.76)

Since the momentum pµ4 does not appear in the chosen on-shell Mandelstam variables,
K(4) ≡ 0. In other words, pµ4 is eliminated by the total momentum conservation. Then the
anomalous CWI for the amplitude M (4) (3.75) takes the following form,( 3∑

i=1
pµi K

(i)
)
M (4) (s, t) = A(4)µ(s, t) . (3.77)

The situation of the four-point amplitude with all legs on shell is special. In this case the
anomaly in fact vanishes, A(4)µ = 0. Indeed, it is easy to check that, for any function f ,

K(i) s−1+ε−2γ f

(
s

t

)
= 0 , i = 1, 2, 3 , (3.78)

where the overall factor of s carries the energy dimensions of the amplitude. We verify
explicitly up to one-loop order that all nontrivial contributions to the anomaly cancel out.

According to eq. (3.36) there are several contributions to the anomaly A(4)µ. They are
the terms in the asymptotic expansion of the correlator at p2

i → 0,

G(4) = M (4) (s, t) +
4∑
i=1

(
p2
i G

(4)
i;pow(s, t) + p2

i log
(
−p2

i

)
G

(4)
i;coll(s, t)

)
+ . . . . (3.79)

Despite the fact that the coefficients G(4)
i;coll and G

(4)
i;pow are nontrivial, the anomaly is zero.

Indeed, the contributions to the asymptotics (3.79) from each of the four legs are identical,
and the anomaly vanishes due to the total momentum conservation. For the sake of
illustration, we present here the coefficients G(4)

i;coll and G
(4)
i;pow. Expanding the tree-level

correlator in small p2
i we find
i
g2G

(4)
i;pow(s, t) = −d

acfdbdf

(s+ t)2 +O(u) , i = 1, . . . , 4 . (3.80)

There are no p2
i log(−p2

i ) terms in the asymptotic expansion of the tree-level correlator.
Such terms appear in the one-loop correlator. They are captured by the collinear anomaly
mechanism of section 3.4. For example, the one-loop contribution from leg 1 is

G
(4)
1;coll(s, t) = igdahg

(4π)3

∫ 1

0
dξ ξξ̄ M (5)

reg

(
ξph1 , ξ̄p

g
1, p

b
2, p

c
3, p

d
4

)
+ g2O(u2) , (3.81)

where M (5)
reg is the five-point tree-level amplitude with the Feynman diagrams which diverge

in the forward limit dropped. Pictorially we have

[
G

(4)
1;coll

]
1-loop

= igdahg
(4π)3

∫ 1

0
dξ ξξ̄


ξph1

ξ̄pg1 pb2

pc3pd4

+
ξph1

pb2 ξ̄pg1

pc3pd4

+ cross terms

 ,
(3.82)
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where the cross-terms are permutations of the legs 2, 3, 4, i.e. permutations of pb2, pc3, pd4.
Carrying out the one-fold integration gives

i
g2G

(4)
i;coll(s, t) = u

[
−n2 − 12

4n
d(ab,cd)

s2 − d(abcd)

st
+ cross terms

]
+O(u2) , (3.83)

where we introduced short-hand notations for the su(n) tensors d(ab,cd) := dabfdcdf and
d(abcd) := daefdbfgdcghddhe. We see from eqs. (3.80) and (3.83) that the contributions to
the anomaly from the i-th on-shell leg are independent of i, and hence sum to zero in the
anomaly A(4) because of momentum conservation. This completes the check.

3.5.4 Conformal Ward identity for the one-loop four-point form factor

A more nontrivial four-point application of the CWI is given by the form factor. The
calculation is very similar to that of the four-point amplitude considered in the previous
section, but the conformal anomaly is nonzero. We put three legs of the four-point amputated
correlator G(4) on-shell, and keep the fourth leg off-shell,12

M (4)(s, t, u) =
( 3∏
i=1

lim
p2
i→0

)
G(4)

(
s, t, u, p2

1, p
2
2, p

2
3

)
. (3.84)

Here we choose the independent variables in a crossing-symmetric way,

s = (p1 + p2)2 , t = (p2 + p3)2 , u = (p1 + p3)2 , (3.85)

complemented by p2
i with i = 1, 2, 3. We stress that p2

4 = s + t + u −
∑3
i=1 p

2
i is not an

independent variable in this setting. The conformal boost generators written in these
variables according to eqs. (3.29) and (3.30) are given by

K(1) = 4s∂2
s + 4u∂2

u + 4t∂t∂u + 4t∂s∂t − 4t∂s∂u + 4 (2 + 2γ − ε) (∂s + ∂u) ,
K(2) = K(1)|t↔u , K(3) = K(1)|s↔t , K(4) ≡ 0 . (3.86)

In accordance with the choice of independent variables, the conformal boost generators are
related to each other by crossing symmetry.

Following eq. (3.37), the conformal anomaly is determined by the following terms in
the expansion of the correlator at p2

i → 0,

G(4) =M (4) (s, t,u)+
3∑
i=1

(
p2
i G

(4)
i;pow(s, t,u)+p2

i log
(
−p2

i

)
G

(4)
i;coll(s, t,u)

)
+. . . . (3.87)

For the sake of illustration, we evaluate the anomaly at one-loop order. First of all, we notice
that the tree-level amputated correlator G(4) is a function of s, t and u only. As a result,
G

(4)
i;pow = O(u), and hence these terms do not contribute to the one-loop anomaly. Let us

stress that the expression of both the conformal anomaly and the conformal boost generators
12We use the same notation for the form factor as for the amplitude in (3.75) to be consistent with the

general notation set in eq. (3.28).
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in eq. (3.86) depend on the choice of independent variables. For a non-crossing-symmetric
choice of kinematic variables we would find that the terms G(4)

i;pow are of order O(u0) and
contribute to the conformal anomaly already at one loop.

The collinear part of the one-loop conformal anomaly can be represented pictorially as
in eq. (3.82), with the difference that pd4 is now off-shell. Integrating the tree-level five-point
diagrams (with one off-shell momentum and four on-shell momenta) over the splitting
parameter ξ gives

i
g2G

(4)
1;coll(s, t, u) = d(ab,cd)A[1] + d(ac,bd)A[2] + d(bc,ad)A[3]

+ d(abcd)A[4] + d(acbd)A[5] + d(bacd)A[6] .

(3.88)

The six independent su(N) structures are defined below eq. (3.83). We recall the discrete
symmetries d(ab,cd) = d(cd,ab) = d(ba,cd) = d(ab,dc) and d(abcd) = d(cbad) = d(bcda). The
accompanying one-loop functions A[k] are given by

A[1] = −n2 − 12
4n

u

s2 +O(u2) , A[2] = A[1]|s↔u ,

A[3] = −n2 − 12
2n

u

t

[
t+ q2

2(s+ u)2 + t q2

(s+ u)3 log
(
t

q2

)]
+O(u2) ,

A[4] = u

s

[
1

s+ u
− q2

(s+ u)2 log
(
q2

t

)]
+O(u2) ,

A[5] = A[4]|s↔u , A[6] = − u

su
+O(u2) ,

(3.89)

where q2 := s+ t+ u is the off-shell momentum of the form factor. Note that A[3] and A[5]

match the tree-level diagrams in eq. (3.82). The collinear contributions to the anomaly
from the other on-shell legs, G(4)

i;coll, are obtained from eq. (3.88) by crossing symmetry. By
taking p4 in eq. (3.88) to be on-shell, i.e. q2 = s+ t+ u→ 0, we recover eq. (3.83).

The form-factor M (4) is easy to calculate in the one-loop approximation. Its expression
for the single-field φ3 model in d = 6 dimensions is given in [42]. Promoting the latter to
our su(n)-matrix φ3 model gives13

i
g2M

(4)(s, t, u) = d(ab,cd)M [1] + d(ac,bd)M [2] + d(bc,ad)M [3]

+ d(abcd)M [4] + d(acbd)M [5] + d(bacd)M [6] ,

(3.90)

where

M [1] = 1
s

+ u

s

[
−n2 − 12

2n

(
log(s) + q2

2(u+ t) log
(
q2

s

))
+ n2 − 4

12n log(s) + c
]

+O(u2) ,

M [4] = −u
u

[
Li2

(
1− q2

t

)
+ Li2

(
1− q2

u

)
+ 1

2 log2
(
t

u

)
+ π2

6

]
+O(u2) ,

(3.91)
13As compared to ref. [42], we amputated the off-shell leg p4 to be consistent with the notation in eq. (3.3).
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and the remaining M [k] are obtained by crossing symmetry as follows:

M [2] = M [1]|s↔u , M [3] = M [2]|t↔u , M [5] = M [4]|s↔u , M [6] = M [4]|t↔u . (3.92)

The unspecified constant c, which accompanies a contribution proportional to the tree-level
form factor, is fixed by the renormalisation prescription and has no impact on the CWI at
the given perturbative order.

The su(n) tensor structure is very helpful to see how the anomalous CWI (3.36)
breaks into smaller pieces. Indeed, it is easy to check that the provided conformal boost
generators (3.86) and the one-loop expressions (3.89) and (3.91) satisfy

K(i)M [k] = −4A[k] +O(ε2) , (3.93)

for i = 1, 2, 3 and k = 1, . . . , 6. For i = 1, eq. (3.93) is satisfied for k = 3, . . . , 6 for any
coupling u ∝ ε, whereas for k = 1, 2 it requires the conformal fixed point u = u

∗ (2.25).
We have thus verified that the four-point form factor satisfies our CWI in the one-loop
approximation. In doing so, we have also checked that the expression for the one-loop
four-point form factor given in ref. [42] for the single-field model is in agreement with
our results.

4 Discussion and outlook

In this paper we analysed quantum field theories at a conformal fixed point in dimen-
sional regularisation. We derived conformal symmetry constraints for on-shell scattering
amplitudes, in the form of anomalous conformal Ward identities.

Previously, studies of implications of conformal symmetry in momentum space were
mostly restricted to off-shell quantities. It turns out that the interplay of conformal symmetry
with the on-shell limit is rather subtle. We carefully studied how conformal symmetry acts
on LSZ-reduced amplitudes. We found that, in the case where the scattered particles have
an anomalous dimension, the conformal symmetry generator does not commute with the
on-shell condition p2 = 0. As a consequence of this non-commutativity, an anomalous term
appears in the conformal Ward identity.

One of the main results of this paper is the anomaly formula eq. (3.36) for general
n-particle amplitudes, generalising to the d-dimensional case a previous result due to
ref. [18], which is valid for finite conformal loop integrals. We showed that the anomaly
in eq. (3.37) is comprised of two terms that have different physical origin: while the first
term is proportional to the elementary field anomalous dimension, the second term can be
traced to certain collinear regions of the loop momenta. Importantly, for both terms, at
L-loops, only (L− 1)-loop information is required to compute the anomaly. This makes our
anomaly formula useful for practical computations.

Furthermore, we showed that for n-particle amplitudes the conformal anomaly is a sum
of local contributions. In particular, leveraging the method of regions, we found that the
collinear anomaly term can be written as a convolution of lower-loop amplitudes over a
certain collinear kernel, Ω, cf. eq. (3.56), which we computed to two loops in perturbation
theory. This provides an important piece of universal information for using our conformal
Ward identities in practice.
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We have explicitly verified our anomalous conformal Ward identities in the following
cases: the three-point amplitude with one on-shell leg to all orders and perturbatively at
one loop, as well as for the four-point amplitude fully on-shell and with one off-shell leg
perturbatively at one loop.

There are a number of interesting future directions:

• Test our n-point anomaly formula for one-loop φ3 amplitudes, and use it to bootstrap
two-loop amplitudes.

• Understand the collinear kernel Ω more generally, and explore its relationship to
splitting functions considered in the QCD literature.

• Extend the methods developed in this work to gauge theory scattering amplitudes
(which are famously conformally invariant at tree level [9]). A natural starting point
may be the finite one-loop all-plus and single-minus amplitudes. It is known that the
one-loop all-plus helicity amplitudes are conformally invariant [16], but the single-
minus helicity amplitudes are not. Understanding the origin of its non-invariance
would be very interesting, and may shed light on the conformal properties of loop
amplitudes in gauge theories.
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A Conformal Ward identity for renormalised correlation functions

In this appendix we review the CWIs in the renormalised theory adopting the presentation
from [4, 53, 54]. We rely on the path-integral representation for the renormalised correlators,

〈φ(x1) . . . φ(xn)〉 = 1
N

∫
[Dφ] eiSφ(x1) . . . φ(xn) , (A.1)
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where the normalisation N =
∫

[Dφ] eiS is irrelevant in what follows. The path integration
is weighted with the renormalised action of the theory (2.1),

S =
∫

ddxL(x) , L := Z1
2 (∂φa)2 + 1

6gµ
εZgZ

3
2
1 d

abcφaφbφc , (A.2)

with renormalisation factors Z1 = Z1(u, ε) and Zg = Zg(u, ε). The renormalisation factors
Z1 and Z3 = ZgZ

3/2
1 were calculated in the minimal subtraction scheme up to order u2 in

ref. [24]. We spell them out here for the convenience of the readers:

Z1 = 1− n2 − 4
2n

[
u

6ε −
u

2

36

(
1
ε2

n2 − 16
n − 1

ε

n2 − 100
12n

)]
+O(u3) ,

Z3 = 1− u

4ε
n2 − 12

n + u
2

16

(
1
ε2

n2 − 16
n

n2 − 12
n − 1

ε

n4 − 100n2 + 960
6n2

)
+O(u3) .

(A.3)

The path integral is invariant under the infinitesimal variations of the fields given in
eq. (2.2), which result in the conformal Ward identities14

D∆〈φ(x1) . . . φ(xn)〉 = −i〈(D∆S)φ(x1) . . . φ(xn)〉 , (A.4)

Kµ
∆〈φ(x1) . . . φ(xn)〉 = −i〈

(
Kµ

∆S
)
φ(x1) . . . φ(xn)〉 . (A.5)

It remains to choose ∆ such that the right-hand sides of these Ward identities evaluate as a
UV-finite correlation function.

The bare action (2.1) in six dimensions is invariant under conformal variations (2.2) with
∆ = 2, which is the classical dimension of the scalar field. Thus, a nonzero variation of the
renormalised action in d-dimensions (A.2) may result only from the ∆-dependent terms of
the conformal generators in eqs. (2.3) and (2.5), which count the dimension. In the following
the choose ∆ = ∆φ (2.21). Then the dimension of the kinematic term of the action equals
to 2∆φ + 2− d = 2γ and the dimension of the cubic interaction 3∆φ − d = 3γ − ε, namely

iDµ
∆φ
S = 2γZ1

∫
ddx1

2(∂φa)2 + (3γ − ε)gZgZ
3
2
1
µε

6

∫
ddx dabcφaφbφc ,

−iKµ
∆φ
S = 2γZ1

∫
ddx(−2xµ)1

2(∂φa)2 + (3γ − ε)gZgZ
3
2
1
µε

6

∫
ddx(−2xµ)dabcφaφbφc .

(A.6)

Further, we would like to establish that the given above conformal variations of the
action are proportional to the beta-function. We will need the following expressions for
derivatives of the renormalisation constants. According to the definition of the anomalous
dimension γ (2.20) and of the β-function (2.19), we have that

γ(u) = 1
2

du
d logµ ∂u logZ1 = β(u)

2Z1
∂uZ1 . (A.7)

14The measure of the path integration is not invariant under conformal variations, but the resulting
contributions vanish in the dimensional regularisation.
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Moreover, the bare coupling does not depend on the renormalisation scale, namely dg0/dµ =
0. Hence, through to eq. (2.17), it follows that

εgZg = −β(u)∂u(gZg) . (A.8)

Equations (A.7) and (A.8) enable us to simplify the coefficients in eqs. (A.6),

2γZ1 = β(u)∂uZ1 , (A.9)

(3γ(u)− ε)gZgZ
3
2
1 = β(u)gZg ∂uZ

3
2
1 + β(u)Z

3
2
1 ∂u(gZg) = β(u) ∂u(gZgZ

3
2
1 ) . (A.10)

Thus we find that the conformal variations of the action are proportional to the β-function,

iD∆φ
S = β(u)

∫
ddx ∂uL(x) = β(u) ∂uS , (A.11)

−iKµ
∆φ
S = β(u)

∫
ddx(−2xµ) ∂uL(x) . (A.12)

It remains to be proven that ∂uL(x) is a UV-finite local operator.
The renormalised correlator is UV-finite, and so is its derivative in the coupling. The

latter results in the insertion of the action,

∂u〈φ(x1) . . . φ(xn)〉 = i〈φ(x1) . . . φ(xn)∂uS〉 . (A.13)

Consequently, the operator ∂uS =
∫

ddx ∂uL is UV-finite. In perturbation theory, the
renormalised action (A.2) is split into the tree-level part, Stree := S

∣∣
Zg ,Z1→1, and the

counter terms. The role of the counter-terms is to cancel out UV-divergences in the loop
corrections. Thus, by adding counter-terms to the operator ∂uStree we a obtain UV-finite
operator ∂uS, namely ∫

ddx [∂uLtree]R (x) =
∫

ddx ∂uL(x) , (A.14)

where explicitly ∂uLtree = gµεdabcφaφbφc/(12u). Combining together eqs. (A.4), (A.11)
and (A.14) we obtain the Ward identity for the dilatation, eq. (2.22).

Lifting up integration over x in (A.14), we conclude that the renormalised local
operator [∂uLtree]R (x) can differ from ∂uL(x) by a total derivative. There is no local
operator with a single total derivative in the theory which could mix with the Lagrangian
upon renormalisation, e.g. ∂µ (φa∂µφa) = ∂2(φa)2/2, therefore

[∂uLtree]R (x) = ∂uL(x) + ∂2F (x) , (A.15)

with a polynomial F (x) in the fields φa and their space-time derivatives. Hence, we can
insert a factor of xµ into the integration in eq. (A.14) without introducing a contribution
from the unknown F , ∫

ddxxµ∂uL(x) =
∫

ddxxµ [∂uLtree]R (x) . (A.16)

Combining together eqs. (A.5), (A.12) and (A.16) we obtain the Ward identity for the
conformal boost, eq. (2.23).
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Finally, let us note that the dilatation Ward identity is equivalent to the renormalisation
group equation. Indeed, according to eqs. (A.4), (A.11) and (A.13), we have that

iD∆φ
〈φ(x1) . . . φ(xn)〉 = −iβ(u)〈(∂uS)φ(x1) . . . φ(xn)〉 = −β(u)∂u〈φ(x1) . . . φ(xn)〉 .

(A.17)

Furthermore, the renormalised correlator carries the canonical dimension, namely

µ∂µ〈φ(x1) . . . φ(xn)〉 =
n∑
j=1

(
xµj ∂xµj

+ ∆0
)
〈φ(x1) . . . φ(xn)〉 . (A.18)

Putting eqs. (A.17) and (A.18) together gives the renormalisation group equation,

[µ∂µ + β(u)∂u + nγ] 〈φ(x1) . . . φ(xn)〉 = 0 . (A.19)

B Implications of conformal symmetry for amplitudes away from the
conformal fixed point

In this appendix we show how the knowledge of a (renormalised) n-point correlator at the
conformal fixed point u∗ constrains strongly its form away from the conformal fixed point.
Completely analogous observations hold for the scattering amplitudes. Let us assume we
know the correlator C at the conformal fixed point,

C
∣∣
u=u∗=

∑
k≥0

εkC∗k . (B.1)

The dependence on the kinematics is understood. Away from the conformal fixed point, the
renormalised correlator has the generic form

C = C0 +
∑
`≥1

u
`
∑
m≥0

C
[m]
` εm . (B.2)

By equating eq. (B.1) with eq. (B.2) evaluated at u = u
∗,

u
∗ =

∑
m≥1

umε
m , (B.3)

and solving for the C [0]
` ’s we obtain

C0 = C∗0 ,

C
[0]
1 = 1

u1
C∗1 ,

C
[0]
2 = 1

u
2
1
C∗2 −

u2
u

3
1
C∗1 −

1
u1
C

[1]
1 ,

(B.4)

and so on. Up to one loop conformal symmetry fixes entirely the finite part of the
renormalised correlator. This follows from the fact that the tree-level correlator does not
depend on ε. The finite part of the two-loop correlator is instead determined by conformal
symmetry together with the order-ε part of the one-loop correlator. In general, the finite
part of a renormalised correlator at a given loop order is determined by the correlator at
the conformal fixed point together with higher-ε but lower-loop information.
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C Conformal symmetry and momentum conservation

Momentum-space correlations functions and scattering amplitudes are always accompanied
by an overall δ function imposing momentum conservation. In this appendix we motivate
why, when studying the conformal properties of these objects, it is possible to effectively
neglect such δ function.

Let us consider a n-point correlation function C(n) in momentum space. We define the
reduced correlator C(n) by stripping off the overall momentum-conservation δ function,

C(n)(p1, . . . , pn) = δ(d)(P )C(n)(p1, . . . , pn) , (C.1)

where P = p1 + . . . + pn. The commutator between the conformal boost generator Kµ
∆

given in eq. (2.13) and the momentum-conservation δ function is[
Kµ

∆ , δ
(d)(P )

]
C(n)(p1, . . . , pn) = 2

(
[C(n)] + (n− 1)d− n∆

)
(∂Pµδ)C(n)(p1, . . . , pn) ,

(C.2)

where [C(n)] is the dimension of C(n) in units of energy. The dimension of the full reduced
correlator [C(n)] (i.e. not truncated to some perturbative order) is exactly such that the
right-hand side of eq. (C.2) vanishes. Therefore we can focus on the action of the conformal
generator on the reduced correlator,

Kµ
∆δ

(d) (P )C(n)(p1, . . . , pn) = δ(d) (P )Kµ
∆C

(n)(p1, . . . , pn) . (C.3)

Effectively this means we can neglect the momentum-conservation δ function and, for this
reason, we refer to the reduced correlator as correlator throughout this paper.

It is important to stress that Kµ
∆ and δ(d) (P ) do not commute if applied only to certain

terms of the perturbative expansion of C(n). For instance, C(3) has dimension −6 + ε,
whereas its tree-level term,

C
(3)
0 = 1

s1s2s3
, (C.4)

has dimension −6. For this reason,[
Kµ

∆ , δ
(d)(P )

]
C

(3)
0 = O(ε) . (C.5)

This is the case whenever we truncate the perturbative expansion to a certain order:
differences due to different ways of implementing momentum conservation kick in at higher
orders in ε, as expressed by eq. (C.2).

D Exact results for two- and three-point correlators

In this section we discuss how conformal symmetry constrains the renormalised two- and
three-point correlators at the conformal fixed point. We start off in position space, where
the correlators have particularly simple expressions, and then Fourier-transform them to
momentum space. While the Fourier transform of the two-point correlator is trivial, that of
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Figure 6. Representative Feynman diagrams contributing to the two-point correlator C(2) up to
two-loop order.

the three-point one requires the computation of a one-loop triangle integral with ε-dependent
powers of the propagators. We then compute perturbatively the correlators up to two
loop orders using Feynman diagrams, and show that the perturbative result matches the
conformal prediction at the conformal fixed point.

We begin by defining the notation. The main characters of this section are the two-
and three-point correlators at the conformal fixed point (2.25),

C(2)
ab (x1, x2) = 〈φa(x1)φb(x2)〉

∣∣
u=u∗ ,

C(3)
abc(x1, x2, x3) = 〈φa(x1)φb(x2)φc(x3)〉

∣∣
u=u∗ .

(D.1)

Both correlators have a single and overall su(n) factor, which it is convenient to strip off as

C(2)
ab (x1, x2) = δabC(2)(x1, x2) ,

C(3)
abc(x1, x2, x3) = dabcC(3)(x1, x2, x3) .

(D.2)

We define the momentum-space correlators by Fourier transforming the position-space ones
as in eq. (3.2).15 It is long known that conformal symmetry fixes them up to the overall
normalisation (see e.g. ref. [28]). In position space their expressions are extremely simple,

C(2)(x1, x2) = c12(u∗)(
x2

12 − i0
)∆φ

, (D.3)

C(3)(x1, x2, x3) = c123(u∗)(
x2

12 − i0
)∆φ

2
(
x2

23 − i0
)∆φ

2
(
x2

31 − i0
)∆φ

2

, (D.4)

where xij = xi − xj . We recall that we are working at the conformal fixed point u = u
∗,

hence ∆φ and the normalisation factors c12 and c123 are functions of ε. The anomalous
dimension γ at the conformal fixed point is given by

γ (u∗) =
∑
k≥1

γk ε
k

= −ε n2 − 4
3(n2 − 20) − 4ε2 (n2 − 4)(n4 − 94n2 + 840)

27(n2 − 20)3 +O
(
ε3
)
.

(D.5)

In the next subsections we will consider these correlators in momentum space, and compare
them against the result of a perturbative computation up to two-loop order.

15To avoid the proliferation of symbols we slightly abuse the notation, and use C(n) for the correlators in
both momentum and position space. The arguments make the distinction.
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D.1 Fourier transform of the conformal correlators

To warm up, we begin with the two-point correlator given by eq. (D.3). Since it is a function
of a single scalar invariant only, the Fourier transform has no mystery. It is given by

C(2)
(
p2
)

= c̃12(u∗)
(
−p2 − i0

)−1+γ
, (D.6)

where we absorbed the factors coming from the Fourier transform into the normalisation,

c̃12(u∗) = −i eiπ(γ−ε) 41−γπ
d
2 Γ (1− γ)

Γ(2− ε+ γ) c12(u∗) . (D.7)

We choose the minus sign for p2 in eq. (D.6) so that the series expansion around ε = 0 can
be directly compared against the perturbative results containing Feynman integrals, which
we compute in the Euclidean region, namely p2 < 0.

The Fourier transform of the three-point conformal correlator (2.27) is substantially
more involved, and has indeed been subject of deep investigation [5–8, 29–34].

As anticipated in section 2.3, we represent the Fourier transform as a Feynman integral,

C(3) (p1, p2, p3) = c̃123(u∗) I
(

2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
, (D.8)

where

c̃123(u∗) = c123(u∗)

2d−∆φπ
d
2 eiπ2 (γ−ε)

Γ
(
d−∆φ

2

)
Γ
(∆φ

2

)
3(

e−εγE

(4π) d2

)
, (D.9)

and I(e1, e2, e3) is a Feynman integral of the one-loop three-mass triangle family (2.29)
depicted in figure 1.16 The difference with the standard loop-integral computations is that
the powers of the propagators are not integers. We compute the integral in eq. (D.8) using
the method of the differential equations [35–38] in the canonical form [39]. For this purpose,
we consider the family of integrals of the form

I (a1 + εb1, a2 + εb2, a3 + εb3) , (D.10)

for constant integer ai and arbitrary bi. We call the latter shift parameters, and denote
them cumulatively by b = (b1, b2, b3). They can be functions of ε, provided they have a
Taylor expansion around ε = 0. Eventually we will in fact be interested in setting

bi = b∗ = −1
2

(
1 + γ

ε

)
, (D.11)

for i = 1, 2, 3, to obtain the integral in eq. (D.8). Since γ is of order ε, b∗ admits a Taylor
expansion around ε = 0. We can therefore treat the shift parameters b as additional
variables, compute the integrals of the form (D.10) as a Laurent expansions around ε = 0
up to a certain order, and then substitute bi = b∗ in the result.

16Note that we could equally have considered the amputated correlator directly. It corresponds to the
Feynman integral I with e1 = e2 = e3 = 1 + (γ − ε)/2, and with a change in the normalisation factor.
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The integrals of the form (D.10) for integer ai and fixed bi admit a finite dimensional
basis. In other words, any integral of the form (D.10) can be expressed as a linear
combination of a finite number of basis integrals, which are typically called master integrals
in the literature. In this case there are four, and we denote them cumulatively by ~g =
(g1, g2, g3, g4)T . We discuss their computation in a Laurent expansion around ε = 0 using
the method of the canonical differential equations in appendix E.1. Using integration-by-
parts identities (IBPs) [55–57] we can then express the integral relevant for the three-point
correlator in terms of the master integrals,

I

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
=

4∑
j=1

rj(s, ε) gj (s, ε) , (D.12)

where s = (s1, s2, s3), with si = p2
i .

We find that the algebraic coefficients ri in eq. (D.12) are given by

r1(s, ε) = 2 γ − ε
ε(γ + ε− 2)3

s2
1 − (s2 − s3)2

s1s2s3λ(s) ,

r2(s, ε) = r1(s, ε)
∣∣
s1→s2,s2→s3,s3→s1 ,

r3(s, ε) = r1(s, ε)
∣∣
s1→s3,s2→s1,s3→s2 ,

r4(s, ε) = 16(1− 2ε)s1s2s3 + 2(γ − ε)(s1 + s2 + s3)λ(s)
ε(ε+ γ − 2)3s1s2s3λ(s) 3

2
,

(D.13)

with the Källén function

λ(s) = s2
1 + s2

2 + s2
3 − 2s1s2 − 2s2s3 − 2s3s1 . (D.14)

Let us now perform a consistency check and use eq. (D.12) to verify that the momentum-
space expression we obtained for the three-point correlator is indeed conformally invariant,

Kµ
∆0+γ I

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
= 0 , (D.15)

where we recall that u = u
∗. The conformal boost generator is expressed as a differential

operator in the scalar invariants in eq. (3.13). Clearly we know how to differentiate the
rational coefficients ri(s, ε), and the system of DEs satisfied by the master integrals ~g (see
eq. (E.2) in appendix E.1) tell us how to express the derivatives of the master integrals ~g
as linear combinations of master integrals themselves. We can therefore straightforwardly
express the conformal variation of the three-point correlator as a combination of master
integrals. Since the latter are linearly independent, their coefficients vanish identically.
Having completed this consistency check, let us now return to the result we obtained.

By substituting the expressions of the master integrals computed in appendix E.1
into eq. (D.12), and multiplying by the normalisation factor c̃123, we obtain the analytic
expression of the three-point conformal correlator in momentum space. Here we give the
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first few terms in the perturbative expansion in ε,

C(3)(s) = c̃123 (u∗)
s1s2s3

{
−1+ε

[
−3

2 (1+γ1)+(3γ1−1)s1s2s3

λ(s) 3
2
f (2)(s)

+ 1
2λ(s)

((
s1(s2+s3−s1)+γ1

(
s2

1−2(s2−s3)2+s1 (s2+s3)
))

log(−s1)+cyc
)]

+O
(
ε2
)}

,

(D.16)

where h(s1, s2, s3) + cyc := h(s1, s2, s3) + h(s2, s3, s1) + h(s3, s1, s2) for a generic function
h, γ1 is defined by eq. (D.5), and f (2)(s) is a transcendental function,

f (2)(s) = 2Li2 (τ2) + 2Li2 (τ3) + log
(
τ3
τ2

)
log

(1− τ3
1− τ2

)
+ log (−τ2) log (−τ3) + π2

3 ,

(D.17)

with the arguments involving the square root of the Källén function (D.14) defined by

τ2 = −2 s2

s1 − s2 − s3 −
√
λ(s)

, τ3 = −2 s3

s1 − s2 − s3 −
√
λ(s)

. (D.18)

It is worth noting that f (2)(s) is the finite part of the four-dimensional triangle integral
(normalised by

√
λ(s)), and that it corresponds to the well-known Bloch-Wigner dilogarithm

in the variables z and z̄, related to s through s2 = s1zz̄ and s3 = s1(1− z)(1− z̄) [58].
We truncate the result to order ε2 because this is what is necessary in order to compare

against the two-loop perturbative computation which we discuss in section D.2. Only at
two-loop order, in fact, certain crucial features of the CWIs for the on-shell amplitudes
become relevant (see section 3). However, the computation of the master integrals for the
non-integer-power triangle family can be straightforwardly extended to any fixed order in ε
(provided enough computing power for performing the required linear algebra is available).
At higher orders more complicated transcendental functions make their appearance. In
general, the class of functions corresponding to the alphabet in eq. (E.4) is that of the
two-dimensional harmonic polylogarithms [40]. Conformal symmetry captures entirely this
complexity, to all orders. In the next section we will compare this simplicity against a
“traditional” perturbative computation using Feynman diagrams, and marvel at how the
many pieces fall into place at the conformal fixed point to reproduce the conformal result.

D.2 Two-loop perturbative computation of the three-point correlator

In this section we present the perturbative computation of the two- and three-point
correlators up to two-loop orders. We generate the Feynman diagrams contributing to the
bare correlators using Qgraf [59]. Representative Feynman diagrams are shown in figures 6
and 2. We express the Feynman diagrams in terms of scalar Feynman integrals, and rewrite
the latter in terms of independent master integrals by solving the IBP relations [55–57] using
LiteRed [60, 61]. The two-point one- and two-loop master integrals have long been known
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analytically because of their simplicity. The one- and two-loop three-particle integrals
were computed analytically in refs. [58, 62–68]. In order to have a uniform setup between
the perturbative computation and the Fourier transform of the three-point correlator, we
re-computed these Feynman integrals using the method of the differential equations [35–38]
in the canonical form [39]. We constructed the canonical bases of master integrals using
the Mathematica packages DlogBasis [69, 70] and INITIAL [71], and the heuristic
rules discussed in refs. [72, 73]. We fixed the boundary values by imposing that all master
integrals are finite on the hypersurface where λ(s) = 0, and using the well-known closed-form
expressions for the bubble-type integrals. We checked the boundary values by evaluating
the integrals numerically using pySecDec [74].

The renormalised correlators are obtained by multiplying the bare ones by a factor of
Z
− 1

2
1 for each external particle, and replacing the bare coupling with the renormalised one

according to eq. (2.17). We work in the modified minimal subtraction (MS) scheme, and
we set the renormalisation scale µ to

µ2 = eγE

4π , (D.19)

this way absorbing the factors of the Euler-Mascheroni constant γE and of π coming from
the Feynman integrals.

For the two-point renormalised correlator we obtain

C
(2)
pert(p2;u, ε) = i

p2

{
1

+u n2−4
432n

[
36 log(−p2)−96+ε

(
3π2−208+96log(−p2)−18log2(−p2)

)
+O

(
ε2
)]

+u2 n2−4
1728n2

[
3764−81n2+4(17n2−548) log(−p2)−12(n2−28) log2(−p2)+O (ε)

]
+O

(
u

3)} .
(D.20)

We use the subscript “pert” to distinguish the correlators computed perturbatively from
those at the conformal fixed point determined by conformal symmetry. Indeed, setting
u = u

∗ in eq. (D.20), and comparing against the Fourier transform of the conformal
correlator in eq. (D.6) allows us to determine the overall normalisation constant up to order
(u∗)2 (or equivalently order ε2). In this way we find

c̃12(u∗) = −i
(

1− 2u∗n
2 − 4
n − (u∗)2(n2 − 4)396− 127n2 + 3(n2 − 20)π2

1728n2 +O
(
(u∗)3

))
.

(D.21)
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For the three-point renormalised correlator we obtain

C
(3)
pert(s;u, ε) = g

s1s2s3

{
1

+ u

12nλ(s)

[
(n2−76)λ(s)+

(
ra(s) log(−s1)+cyc

)
−6(n2−12)s1s2s3√

λ(s)
f (2)(s)

+ε
(
λ(s)

3 (11n2−548+6π2)−6(n2−12)s1s2s3√
λ(s)

f (3)(s)

+
(
rb(s) log(−s1)+rc(s) log2(−s1)+cyc

))
+O

(
ε2
)]

+O
(
u

2
)}

,

(D.22)

where

ra(s) = s1(s2 + s3)(n2 − 28)− 2s2
1(n2 − 16) + (s2 − s3)2(n2 − 4) ,

rb(s) = 1
3

[
s2

1(292− 19n2) + 8(s2 − s3)2(n2 − 4) + s1(s2 + s3)(11n2 − 260)
]
,

rc(s) = (n2 − 16)s2
1 −

n2 − 28
2 s1(s2 + s3)− n2 − 4

2 (s2 − s3)2 ,

(D.23)

f (2) is defined in eq. (D.17), and f (3) is a weight-three transcendental function. We do not
spell out the order-u2 term for the sake of conciseness. We then compare the perturbative
result at the conformal fixed point against the Fourier transform of the conformal correlator
in eq. (D.16). We find agreement, and fix the normalisation constant up to order (u∗)2 as

c̃123(u∗) = −g∗
[
1 + u

∗n2 − 40
3n + (u∗)2

n2

(46n4 − 5501n2 + 79156
432

+ (n2 − 28)(n2 − 20)
192 π2 + 2(n2 − 10)ζ3

)
+O

(
(u∗)3

)]
.

(D.24)

Let us take a moment to appreciate how non-trivial this is. The perturbative computation
involves dozens of Feynman diagrams, which evaluate to complicated transcendental func-
tions. All these pieces fit together perfectly to reproduce, at the conformal fixed point, the
conformal correlators. What is more, the incredibly compact position-space expressions
for the conformal correlators actually capture the entire perturbative expansion of the
correlators at the conformal fixed point, which here we have probed up to two loops.

E Details of the exact calculation of the triangle correlator and its
conformal anomaly

E.1 Canonical differential equation for the triangle integrals with ε-dependent
exponents

In this appendix we discuss the computation of the master integrals of the one-loop
three-mass triangle family with shifted propagator powers, I (a1 + εb1, a2 + εb2, a3 + εb3),
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defined in eq. (2.29). We adopt the method of the differential equations [35–38] in the
canonical form [39]. We emphasize that, in contrast with the traditional applications of
this method, here we consider a family of integrals with non-integer, ε-dependent powers
of the propagators. We recall that the indices ai are integers, whereas we treat the shift
parameters bi as additional variables.

We generate the analytic integration-by-parts identities (IBPs) [55–57] and Lorentz-
invariance identities [38] manually, and “seed” them only with respect to the integer
parameters ai. We solve the resulting system of equations with the Laporta algorithm [57]
using the dense linear solver implemented in the finite-field framework FiniteFlow [75, 76].
There are four master integrals, which the Laporta algorithm chooses as{

I(1 + εb1, 1 + εb2, εb3) , I(εb1, 1 + εb2, 1 + εb3) ,

I(1 + εb1, εb2, 1 + εb3) , I(1 + εb1, 1 + εb2, 1 + εb3)
}
.

(E.1)

This is in complete analogy with the usual integer-power case. Indeed, by setting the shift
parameters bi to zero we get the bubbles in the three possible channels, and the triangle.
In contrast with the integer-power case, however, this family contains no bubble integral
for bi 6= 0. All integrals have an inevitable triangle component.

We construct a custom basis of master integrals, ~g = (g1, g2, g3, g4), which satisfy a
system of DEs in the canonical form [39],

d~g(s, b, ε) = ε dÃ(s, b) · ~g(s, b, ε) , (E.2)

where we differentiate with respect to the independent kinematic variables s. The matrix Ã
has the form

Ã(s, b) =
6∑
i=1

Ai(b) logWi(s) , (E.3)

where the Ai’s are matrices which depend linearly on the shift parameters b, and the
arguments of the logarithms are algebraic functions of the kinematic variables called
letters [58],

W1 = s1 , W2 = s2 , W3 = s3 ,

W4 = s1 − s2 − s3 −
√
λ(s)

s1 − s2 − s3 +
√
λ(s)

, W5 = s2 − s1 − s3 −
√
λ(s)

s2 − s1 − s3 +
√
λ(s)

, W6 =
√
λ(s) .

(E.4)

Three master integrals are the non-integer-power equivalent of the bubble integrals in
d = 2 − 2ε dimensions (normalised by their scale), which are known to satisfy canonical
DEs. The fourth integral is the non-integer-power triangle in d = 4− 2ε dimension. We fix
its normalisation by requiring that the DEs take the canonical form, and that the matrices
Ai(b) in eq. (E.3) depend at most linearly on the shift parameters b. We expressed these
integrals in terms of integrals in d = 6− 2ε dimensions through the dimensional recurrence
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relations [77] implemented in LiteRed [60, 61]. Explicitly, they are given by

g1 = ε s1

[
2b3ε(1 + b1ε)I (2 + b1ε, 1 + b2ε, 1 + b3ε)

+ 2b3ε(1 + b2ε)I (1 + b1ε, 2 + b2ε, 1 + b3ε) + b3ε(1 + b3ε)I (1 + b1ε, 1 + b2ε, 2 + b3ε)
+ (1 + b1ε)(2 + b1ε)I (3 + b1ε, 1 + b2ε, b3ε) + (1 + b2ε)(2 + b2ε)I (1 + b1ε, 3 + b2ε, b3ε)

+ 2(1 + b1ε)(1 + b2ε)I (2 + b1ε, 2 + b2ε, b3ε)
]
, (E.5)

g2 = ε s2

[
2b1ε(1 + b2ε)I (1 + b1ε, 2 + b2ε, 1 + b3ε)

+ 2b1ε(1 + b3ε)I (1 + b1ε, 1 + b2ε, 2 + b3ε) + b1ε(1 + b1ε)I (2 + b1ε, 1 + b2ε, 1 + b3ε)
+ (1 + b2ε)(2 + b2ε)I (b1ε, 3 + b2ε, 1 + b3ε) + (1 + b3ε)(2 + b3ε)I (b1ε, 1 + b2ε, 3 + b3ε)

+ 2(1 + b2ε)(1 + b3ε)I (b1ε, 2 + b2ε, 2 + b3ε)
]
, (E.6)

g3 = ε s3

[
2b2ε(1 + b3ε)I (1 + b1ε, 1 + b2ε, 2 + b3ε)

+ 2b2ε(1 + b1ε)I (2 + b1ε, 1 + b2ε, 1 + b3ε) + b2ε(1 + b2ε)I (1 + b1ε, 2 + b2ε, 1 + b3ε)
+ (1 + b3ε)(2 + b3ε)I (1 + b1ε, b2ε, 3 + b3ε) + (1 + b1ε)(2 + b1ε)I (3 + b1ε, b2ε, 1 + b3ε)

+ 2(1 + b1ε)(1 + b3ε)I (2 + b1ε, b2ε, 2 + b3ε)
]
, (E.7)

g4 = ε2(2 + b1 + b2 + b3)
√
λ(s)

[
(1 + b1ε)I (2 + b1ε, 1 + b2ε, 1 + b3ε) +

+ (1 + b2ε)I (1 + b1ε, 2 + b2ε, 1 + b3ε) + (1 + b3ε)I (1 + b1ε, 1 + b2ε, 2 + b3ε)
]
, (E.8)

where λ(s) is defined in eq. (D.14). For this choice of basis, the kinematic-independent
matrices Ai in eq. (E.3) are

A1(b) =


−1− b1 − b2 0 0 0
− b1

2 − b1
2

b1
2 0

− b2
2

b2
2 − b2

2 0
0 0 0 −1− b1+b2

2

 , (E.9)

A2(b) =


− b3

2 − b3
2

b3
2 0

0 −1− b2 − b3 0 0
b2
2 − b2

2 − b2
2 0

0 0 0 −1− b2+b3
2

 , (E.10)

A3(b) =


− b3

2
b3
2 − b3

2 0
b1
2 − b1

2 − b1
2 0

0 0 −1− b1 − b3 0
0 0 0 −1− b1+b3

2

 , (E.11)
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A4(b) =


0 0 0 − b3

2
0 0 0 0
0 0 0 b2

2
−1− b2+b3

2
b3−b2

2 1 + b2+b3
2 0

 , (E.12)

A5(b) =


0 0 0 0
0 0 0 − b1

2
0 0 0 b2

2
b1−b2

2 −1− b1+b2
2 1 + b1+b2

2 0

 , (E.13)

A6(b) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

 . (E.14)

The DEs (E.2) determine the master integrals up to an integration constant. In order
to uniquely fix the solution we need the values of the integrals at an arbitrary point. We
choose a point in the Euclidean region, where si < 0 for any i = 1, 2, 3,

s(0) ≡ {s1 = −1, s2 = −1, s3 = −1} ,
√
λ
(
s(0)) = i

√
3 . (E.15)

In the non-integer-power case it is sufficient to impose that all integrals are finite on the
hypersurface where λ(s) = 0 to relate the value of the triangle integral to that of the
bubbles, which are then easily computed in closed form. As we already pointed out, there is
no bubble integral for generic values of the shift parameters b. In order to fix the boundary
values we therefore complement the finiteness at λ(s) = 0 with the analysis of the soft
limits pi → 0 with the method of the expansion by regions [45–47]. First, we integrate the
canonical DEs from s(0) to a point s∗ such that λ(s∗) = 0.17 Requiring that the integrals
are finite at s∗ gives constraints among the boundary values, order by order in ε. Next, we
study the soft limits of the integrals. The asymptotic expansion of the master integrals
can be computed systematically through the canonical DEs (see e.g. ref. [79] for a detailed
discussion, and ref. [80] for an explicit application to Feynman integrals). For instance, the
integral g1 develops three regions in the limit p1 → 0,

g1 ∼
p1→0

ghard
1 (s2, s3, b, ε) + gsoft,1

1 (s2, s3, b, ε) s−b1−b21 + gsoft,2
1 (s2, s3, b, ε) s−2(1+b1+b2)

1 ,

(E.16)

up to infinitesimal terms. The hard region corresponds to setting p1 = 0 at the integrand
level, which results in a bubble integral as shown in figure 7. We can thus compute closed-
form expressions for the hard region. Matching the closed-form expressions for the hard
regions in the soft limits against the asymptotic solution of the canonical DEs order by
order in ε gives further constraints on the boundary values. Putting these together with
those originating from the finiteness at λ(s∗) = 0 fixes entirely the values of the master

17We made use of the Mathematica package HPL [78] to manipulate the harmonic polylogarithms appearing
in the solution of the DEs.
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Figure 7. The hard region of a triangle integral in the soft limit p1 → 0 is given by a bubble
integral. The arrows denote the momentum flow, while e1, e2 and e3 are generic propagator powers.

integrals at s(0). In order to compare against the perturbative computation up to two
loops, we need to determine the conformal correlator C(3) up to order ε2. This requires the
boundary values of the master integrals up to order ε3. We obtain

g1(s(0)) = 2+b1+b2
(1+b1)(1+b2)

(
1−ε2π

2

12

)
− ζ3

3

{
8(4+b1+b2+b3)(b3−2)−321+b2

1+b1

+ 2+b1+b2
(1+b1)(1+b2)

[
55+60b2+6b22+6b21(1+b2)+b1(28+34b2+6b22)

]}
ε3+O

(
ε4
)
,

g2(s(0)) = g1(s(0))
∣∣∣∣
b1→b2,b2→b3,b3→b1

,

g3(s(0)) = g1(s(0))
∣∣∣∣
b1→b3,b2→b1,b3→b2

,

g4(s(0)) = i(2+b1+b2+b3)
{
α2ε

2+
(17

45π
3+ 1

5α3

)
ε3
}

+O
(
ε4
)
,

(E.17)

where α2 and α3 are transcendental constants,

α2 = 4 Im
[
Li2

(
eiπ3
)]

,

α3 = π log2(3)− 48 Im
[
Li3

( i√
3

)]
.

(E.18)

We validated the values in eq. (E.17) by evaluating numerically some finite integrals of the
family. We worked out their Feynman parameterisation, expanded it around ε = 0, and
integrated each term numerically at s(0) using pySecDec [74].

Once the boundary values are determined, the canonical DEs (E.2) can be solved
straightforwardly in terms of Chen’s iterated integrals [81, 82] or two-dimensional harmonic
polylogarithms [40] (see e.g. the lecture notes [73]). Up to the order required for our
purposes (namely ε3), logarithms and classical polylogarithms are all we need. For the sake
of illustration, we give explicitly the expressions of the canonical master integrals up to
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order ε2,

g1(s,b,ε) = 1
(1+b1)(1+b2)

{
(2+b1+b2)−ε

[
(1+b1+b2)(2+b1+b2) log(−s1)

+b3(1+b1) log(−s2)+b3(1+b2) log(−s3)
]
+ε2

[
−π

2

12(2+b1+b2)

+ 1
2(1+b1+b2)2(2+b1+b2) log2 (−s1)+ 1

2(1+b1)b3(1+b2+b3) log2 (−s2)

+ 1
2(1+b2)b3(1+b1+b3) log2 (−s3)+(1+b1)(1+b1+b2)b3 log(−s1) log(−s2)

−(1+b1)(1+b2)b3 log(−s2) log(−s3)+(1+b2)(1+b1+b2)b3 log(−s3) log(−s1)
]}

+O
(
ε3
)
,

g2(s,b,ε) = g1(s,b,ε)
∣∣
s1→s2,s2→s3,s3→s1,b1→b2,b2→b3,b3→b1 ,

g3(s,b,ε) = g1(s,b,ε)
∣∣
s1→s3,s2→s1,s3→s2,b1→b3,b2→b1,b3→b2 ,

g4(s,b,ε) = ε2(2+b1+b2+b3)f (2)(s)+O
(
ε3
)
,

(E.19)

where f (2)(s) is the Bloch-Wigner dilogarithm defined in eq. (D.17).

E.2 Asymptotic expansion of the three-point correlator and closed-form
expression of the anomaly

In this appendix we present the computation of the closed-form expression of the anomaly
in the CWIs (3.23). To do so, we compute the asymptotic expansion in the small s1 limit
of the amputated correlator G(3) using the method of the expansion by regions [45–47].

We begin by expressing the amputated correlator in terms of an integral of the three-
mass triangle family (2.29), through eqs. (D.8) and (3.3), as

G(3) = c̃123
(c̃12)3 (−s1s2s3)1−γI

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
. (E.20)

The triangle integrals (2.29) have the following asymptotic expansion in the light-like
limit s1 → 0,

I(e1, e2, e3) =
∞∑
m=0

(−s1)mIhard
[m] (e1, e2, e3) +

∞∑
m=0

(−s1)
d
2−e1−e2+mIcoll

[m] (e1, e2, e3) . (E.21)

This can be shown by analysing the DEs of the basis integrals for this family (see
appendix E.1), or by using the Mathematica package asy2.m [83, 84]. Substituting
eq. (E.21) into eq. (E.20) gives the asymptotic expansion of G(3), which we anticipated in
eq. (3.18), with

G
(3),hard
[m] = c̃123

(c̃12)3 (s2s3)1−γIcoll
[m]

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
,

G
(3),coll
[m] = c̃123

(c̃12)3 (s2s3)1−γIhard
[m]

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
,

(E.22)
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for m ≥ 0. We emphasise that collinear and hard regions are exchanged between the
amputated correlator and the triangle integrals. This follows from the factor of (−s1)1−γ in
eq. (E.20), which turns the integer powers (−s1)m in the expansion of the integrals (E.21)
into (−s1)1−γ+m-terms of the amputated correlator, and vice versa the terms of order
(−s1)−1+γ+m of the integrals into integer powers of the amputated correlator.

The m = 0 term from the collinear region gives the amplitude M (3),

M (3) = c̃123
(c̃12)3 (s2s3)1−γIcoll

[0]

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
. (E.23)

Similarly, acting with K̂(1)
d−∆φ

on the asymptotic expansion of G(3) (3.18) and letting s1 = 0
gives the anomaly in the CWI (3.57),

A(3) = lim
s1→0

K̂
(1)
d−∆φ

G(3) =

= −4γ c̃123
(c̃12)3 (s2s3)1−γIcoll

[1]

(
2− ε+ γ

2 , 2− ε+ γ

2 , 2− ε+ γ

2

)
.

(E.24)

The amplitude and the conformal anomaly are thus determined by the first two terms
coming from the collinear region the triangle integral, which — because of eq. (E.22) —
constitute the first two terms from the hard region of the amputated correlator. We now
proceed to compute them.

We start from the Feynman parameterisation of the triangle integrals,

I(e1, e2, e3) = Ω0(e1, e2, e3)
∫

[0,∞)3

 3∏
j=1

dαjα
ej−1
j

 δ (α1 + α2 − 1) U
e123−d

Fe123− d2
, (E.25)

where

Ω0(e1, e2, e3) =
eεγEΓ

(
e123 − d

2

)
Γ(e1)Γ(e2)Γ(e3) , (E.26)

U = α1 + α2 + α3 , (E.27)

F = −s1α1α2 − s2α2α3 − s3α3α1 , (E.28)

e123 = e1 + e2 + e3 . (E.29)

To compute the terms from the collinear region, we rescale the Feynman parameter α3 as
s1α3 (as prescribed by asy2.m), expand around s1 = 0 under the integral sign, and integrate
term by term. We obtain the following closed-form expressions for the first two terms,

Icoll
[0] (e1, e2, e3) = eεγE

Γ
(
e1 + e2 − d

2

)
Γ
(
d
2 − e1

)
Γ
(
d
2 − e2

)
Γ (e1) Γ (e2) Γ (d− e1 − e2) (−s3)−e3 ×

2F1

(
e3,

d

2 − e1, d− e1 − e2; 1− s2
s3

)
,

(E.30)
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and

Icoll
[1] (e1,e2,e3) = e3(e123−d)eεγE

Γ
(
e1+e2− d

2−1
)

Γ
(
d
2 +1−e1

)
Γ
(
d
2 +1−e2

)
Γ(e1)Γ(e2)Γ(d+2−e1−e2) ×

(−s3)−1−e3 y
d
2−e2−e32F1

(
d

2 +1−e2,1+d−e123,d+2−e1−e2;1− s2
s3

)
.

(E.31)

Let us also spell out the first term from the collinear region prior to carrying out the
integration which produces the hypergeometric function,

Icoll
[0] (e1, e2, e3) =

eεγEΓ
(
e1 + e2 − d

2

)
Γ(e1)Γ(e2)

∫ 1

0
dα1

α
d
2−e2−1
1 (1− α1) d2−e1−1

[α1(s2 − s3)− s2]e3 . (E.32)

Substituting eqs. (E.30) and (E.31) into eqs. (E.23) and (E.24) finally gives closed-form
expressions for the amplitude and the anomaly. The resulting expression for the anomaly
matches the solution of the anomaly consistency condition given by eq. (3.63), fixing the
free coefficients to the values given in eq. (3.67). The expression for the amplitude agrees
with the solution of the CWIs given in eq. (3.68). We arrived at the same results also
starting from the canonical DEs for the basis integrals of the triangle family with shifted
propagator powers discussed in appendix E.1. We solved the DEs asymptotically in the
limit s1 → 0, and substituted the resulting expansions into the correlator through eq. (D.8).
We found perfect agreement between the two approaches.

E.3 The conformal boost generator controls the on-shell expansion of the
correlator

In this appendix we prove that the entire asymptotic expansion (3.20) of the amputated
correlator G(3) in the on-shell limit s1 → 0 is determined by just two terms, G(3)

1;0 and G(3)
1;1.

Moreover, using the anomalous CWIs, we show that the off-shell amputated correlator G(3)

can be expressed in terms of the amplitude M (3) and G(3)
1;1 through an operator series which

effectively restores the off-shellness.
We begin by plugging the asymptotic expansion of G(3) given in eq. (3.20) into the

Ward identity (3.16),

KM (3) +
∑
m≥1

∑
k≥0

sm1 LkKG(3)
m;k −

∑
m≥0

∑
k≥0

sm1 Lk
[
(γ +m)(m+ 1)G(3)

m+1;k+

+ (2m+ 1 + γ)(k + 1)G(3)
m+1;k+1 + (k + 1)(k + 2)G(3)

m+1;k+2

]
= 0 ,

(E.33)

where we used the short-hand notations

K = 1
4K̂

(2)
d−∆φ

, L = log(−s1) . (E.34)

Only the terms with m = 0 survive in the s1 → 0 limit. Those with m = 0 and k = 0
produce the anomaly equation,

KM (3) = γ G
(3)
1;0 +G

(3)
1;1 . (E.35)
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Those with m = 0 and k > 0 must cancel out. This implies the recursion relation

γ G
(3)
1;k + (1 + γ)(k + 1)G(3)

1;k+1 + (k + 1)(k + 2)G(3)
1;k+2 = 0 (E.36)

for all k > 1, which can be solved as

G
(3)
1;k = c1

(−1)k
k! + c2

(−γ)k−1

k! , (E.37)

where c1 and c2 are independent of k. We recall that G(3)
1;k is the coefficient of p2

1 logk(−p2
1) in

the asymptotic expansion of the amputated correlator G(3). As such, the lowest perturbative
order of G(3)

1;k should increase along with k. This implies c1 = 0 and hence that

G
(3)
1;k = (−γ)k−1

k! G
(3)
1;1 . (E.38)

Similarly, by demanding that all remaining terms in eq. (E.33) cancel out we find

G
(3)
m;0 = Γ(γ + 1)

m!Γ(γ +m) [K]m−1G
(3)
1;0 + Γ(γ)

m!Γ(γ +m) [K]m−1G
(3)
1;1+

− Γ(γ −m)
(m− 1)!Γ(γ − 1)γ [−K]m−1G

(3)
1;1 , (E.39)

Gm;k = (−γ)k−1

(m− 1)!k!
Γ(γ −m)
Γ(γ − 1) [−K]m−1G

(3)
1;1 , (E.40)

for m ≥ 1 and k ≥ 1. We therefore see that all terms of the asymptotic expansion of the
amputated correlator G(3) are determined by just two: G(3)

1;0 and G(3)
1;1.

Furthermore, using the recursive expressions for the coefficients G(3)
m;k given in eqs. (E.38),

(E.39) and (E.40), and the anomaly equation (E.35), we can resum the asymptotic expansion
in the concise form

G(3) = 0F1 (γ; s1K)M (3) − 1
γ

(−s1)1−γ
0F1 (2− γ; s1K)G(3)

1;1 , (E.41)

where the hypergeometric functions 0F1 are understood as power series of the operator s1K.
This series representation for G(3) exactly reproduces the expansion into hard and collinear
regions in eq. (3.18), which we prove in appendix E.2. Furthermore, by acting with the
conformal boost K on the right-hand side of eq. (E.41), one can immediately verify that the
off-shell correlator G(3) is conformally invariant, provided that the amplitude M (3) satisfies
the anomaly equation (E.35). In conclusion, thanks to conformal symmetry, the amplitude
M (3) and the coefficient G(3)

1;1 are sufficient to restore the off-shell amputated correlator G(3).
In section 3.3 we briefly discuss how to find an analogue of eq. (E.41) for n-point

correlators with several legs approaching the light cone. In this generic case, a concise
expression like (E.41) is not known. Still, the conformal boost invariance severely restricts
the form the asymptotic expansion (3.32). Solving the contiguous relations following from
the conformal boost invariance of G(n) requires the boundary conditions, which are 2|Λ|
coefficients among G(n)

{ml;kl}l∈Λ
(v) of the asymptotic expansion (3.32). All coefficients of the

expansion are obtained from the boundary coefficients by acting on them with polynomials
in the operators K(i), A(ij), B(ij) from eqs. (3.30) and (3.31).

– 50 –



J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal Invariance in Quantum Field
Theory, Edizioni della Normale Pisa (1978) [INSPIRE].

[2] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, New
York, U.S.A. (1997) [DOI:10.1007/978-1-4612-2256-9] [INSPIRE].

[3] E.S. Fradkin and M.Y. Palchik, New developments in D-dimensional conformal quantum field
theory, Phys. Rept. 300 (1998) 1 [INSPIRE].

[4] V.M. Braun, G.P. Korchemsky and D. Müller, The Uses of conformal symmetry in QCD, Prog.
Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

[5] C. Coriano, L. Delle Rose, E. Mottola and M. Serino, Solving the Conformal Constraints for
Scalar Operators in Momentum Space and the Evaluation of Feynman’s Master Integrals,
JHEP 07 (2013) 011 [arXiv:1304.6944] [INSPIRE].

[6] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in
momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

[7] A. Bzowski, P. McFadden and K. Skenderis, Conformal n-point functions in momentum space,
Phys. Rev. Lett. 124 (2020) 131602 [arXiv:1910.10162] [INSPIRE].

[8] A. Bzowski, P. McFadden and K. Skenderis, Conformal correlators as simplex integrals in
momentum space, JHEP 01 (2021) 192 [arXiv:2008.07543] [INSPIRE].

[9] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.
252 (2004) 189 [hep-th/0312171] [INSPIRE].

[10] G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering
amplitudes in N = 4 SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].

[11] T. Bargheer et al., Exacting N = 4 Superconformal Symmetry, JHEP 11 (2009) 056
[arXiv:0905.3738] [INSPIRE].

[12] N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian
Symmetries of Scattering Amplitudes in N = 4 Super Yang-Mills, JHEP 04 (2010) 085
[arXiv:1002.1733] [INSPIRE].

[13] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar
Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[14] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

[15] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys.
Rev. Lett. 123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

[16] J. Henn, B. Power and S. Zoia, Conformal Invariance of the One-Loop All-Plus Helicity
Scattering Amplitudes, JHEP 02 (2020) 019 [arXiv:1911.12142] [INSPIRE].

– 51 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/literature/138782
https://doi.org/10.1007/978-1-4612-2256-9
https://inspirehep.net/literature/454643
https://doi.org/10.1016/S0370-1573(97)00085-9
https://inspirehep.net/literature/453228
https://doi.org/10.1016/S0146-6410(03)90004-4
https://doi.org/10.1016/S0146-6410(03)90004-4
https://arxiv.org/abs/hep-ph/0306057
https://inspirehep.net/literature/620571
https://doi.org/10.1007/JHEP07(2013)011
https://arxiv.org/abs/1304.6944
https://inspirehep.net/literature/1230355
https://doi.org/10.1007/JHEP03(2014)111
https://arxiv.org/abs/1304.7760
https://inspirehep.net/literature/1230988
https://doi.org/10.1103/PhysRevLett.124.131602
https://arxiv.org/abs/1910.10162
https://inspirehep.net/literature/1760410
https://doi.org/10.1007/JHEP01(2021)192
https://arxiv.org/abs/2008.07543
https://inspirehep.net/literature/1812093
https://doi.org/10.1007/s00220-004-1187-3
https://doi.org/10.1007/s00220-004-1187-3
https://arxiv.org/abs/hep-th/0312171
https://inspirehep.net/literature/635599
https://doi.org/10.1016/j.nuclphysb.2010.01.022
https://arxiv.org/abs/0906.1737
https://inspirehep.net/literature/822591
https://doi.org/10.1088/1126-6708/2009/11/056
https://arxiv.org/abs/0905.3738
https://inspirehep.net/literature/821272
https://doi.org/10.1007/JHEP04(2010)085
https://arxiv.org/abs/1002.1733
https://inspirehep.net/literature/845460
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/literature/882932
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/literature/37455
https://doi.org/10.1103/PhysRevLett.123.071601
https://doi.org/10.1103/PhysRevLett.123.071601
https://arxiv.org/abs/1905.03733
https://inspirehep.net/literature/1734033
https://doi.org/10.1007/JHEP02(2020)019
https://arxiv.org/abs/1911.12142
https://inspirehep.net/literature/1767460


J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

[17] D. Chicherin and J.M. Henn, Symmetry properties of Wilson loops with a Lagrangian insertion,
JHEP 07 (2022) 057 [arXiv:2202.05596] [INSPIRE].

[18] D. Chicherin and E. Sokatchev, Conformal anomaly of generalized form factors and finite loop
integrals, JHEP 04 (2018) 082 [arXiv:1709.03511] [INSPIRE].

[19] In collaboration, Conformal Symmetry and Feynman Integrals, PoS LL2018 (2018) 037
[arXiv:1807.06020] [INSPIRE].

[20] D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward
Identities, Phys. Rev. Lett. 121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].

[21] D. Chicherin, J.M. Henn and E. Sokatchev, Amplitudes from anomalous superconformal
symmetry, JHEP 01 (2019) 179 [arXiv:1811.02560] [INSPIRE].

[22] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28
(1972) 240 [INSPIRE].

[23] J.A. Gracey, T.A. Ryttov and R. Shrock, Renormalization-Group Behavior of φ3 Theories in
d = 6 Dimensions, Phys. Rev. D 102 (2020) 045016 [arXiv:2007.12234] [INSPIRE].

[24] V.M. Braun and A.N. Manashov, Evolution equations beyond one loop from conformal
symmetry, Eur. Phys. J. C 73 (2013) 2544 [arXiv:1306.5644] [INSPIRE].

[25] J.A. Gracey, Four loop renormalization of φ3 theory in six dimensions, Phys. Rev. D 92 (2015)
025012 [arXiv:1506.03357] [INSPIRE].

[26] G. Parisi, Conformal invariance in perturbation theory, Phys. Lett. B 39 (1972) 643 [INSPIRE].

[27] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QEDd, F -Theorem and the ε
Expansion, J. Phys. A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].

[28] A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381
[INSPIRE].

[29] E. Barnes, D. Vaman, C. Wu and P. Arnold, Real-time finite-temperature correlators from
AdS/CFT, Phys. Rev. D 82 (2010) 025019 [arXiv:1004.1179] [INSPIRE].

[30] A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP 02
(2016) 068 [arXiv:1511.02357] [INSPIRE].

[31] H. Isono, T. Noumi and T. Takeuchi, Momentum space conformal three-point functions of
conserved currents and a general spinning operator, JHEP 05 (2019) 057 [arXiv:1903.01110]
[INSPIRE].

[32] T. Bautista and H. Godazgar, Lorentzian CFT 3-point functions in momentum space, JHEP
01 (2020) 142 [arXiv:1908.04733] [INSPIRE].

[33] M. Gillioz, Conformal 3-point functions and the Lorentzian OPE in momentum space,
Commun. Math. Phys. 379 (2020) 227 [arXiv:1909.00878] [INSPIRE].

[34] A. Bzowski, TripleK: A Mathematica package for evaluating triple-K integrals and conformal
correlation functions, Comput. Phys. Commun. 258 (2021) 107538 [arXiv:2005.10841]
[INSPIRE].

[35] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[36] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.
B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

– 52 –

https://doi.org/10.1007/JHEP07(2022)057
https://arxiv.org/abs/2202.05596
https://inspirehep.net/literature/2031361
https://doi.org/10.1007/JHEP04(2018)082
https://arxiv.org/abs/1709.03511
https://inspirehep.net/literature/1623036
https://doi.org/10.22323/1.303.0037
https://arxiv.org/abs/1807.06020
https://inspirehep.net/literature/1682811
https://doi.org/10.1103/PhysRevLett.121.021602
https://arxiv.org/abs/1804.03571
https://inspirehep.net/literature/1667071
https://doi.org/10.1007/JHEP01(2019)179
https://arxiv.org/abs/1811.02560
https://inspirehep.net/literature/1702329
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevLett.28.240
https://inspirehep.net/literature/67609
https://doi.org/10.1103/PhysRevD.102.045016
https://arxiv.org/abs/2007.12234
https://inspirehep.net/literature/1808702
https://doi.org/10.1140/epjc/s10052-013-2544-1
https://arxiv.org/abs/1306.5644
https://inspirehep.net/literature/1239673
https://doi.org/10.1103/PhysRevD.92.025012
https://doi.org/10.1103/PhysRevD.92.025012
https://arxiv.org/abs/1506.03357
https://inspirehep.net/literature/1375497
https://doi.org/10.1016/0370-2693(72)90020-2
https://inspirehep.net/literature/75736
https://doi.org/10.1088/1751-8113/49/13/135403
https://arxiv.org/abs/1508.06354
https://inspirehep.net/literature/1389863
https://inspirehep.net/literature/61162
https://doi.org/10.1103/PhysRevD.82.025019
https://arxiv.org/abs/1004.1179
https://inspirehep.net/literature/851279
https://doi.org/10.1007/JHEP02(2016)068
https://doi.org/10.1007/JHEP02(2016)068
https://arxiv.org/abs/1511.02357
https://inspirehep.net/literature/1403571
https://doi.org/10.1007/JHEP05(2019)057
https://arxiv.org/abs/1903.01110
https://inspirehep.net/literature/1723291
https://doi.org/10.1007/JHEP01(2020)142
https://doi.org/10.1007/JHEP01(2020)142
https://arxiv.org/abs/1908.04733
https://inspirehep.net/literature/1749312
https://doi.org/10.1007/s00220-020-03836-8
https://arxiv.org/abs/1909.00878
https://inspirehep.net/literature/1752367
https://doi.org/10.1016/j.cpc.2020.107538
https://arxiv.org/abs/2005.10841
https://inspirehep.net/literature/1797466
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/literature/300446
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1016/0550-3213(94)90398-0
https://arxiv.org/abs/hep-ph/9306240
https://inspirehep.net/literature/355590


J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

[37] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997)
1435 [hep-th/9711188] [INSPIRE].

[38] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.
Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[39] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[40] T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic
polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].

[41] H. Lehmann, K. Symanzik and W. Zimmermann, On the formulation of quantized field
theories, Nuovo Cim. 1 (1955) 205 [INSPIRE].

[42] M. Gillioz, M. Meineri and J. Penedones, A scattering amplitude in Conformal Field Theory,
JHEP 11 (2020) 139 [arXiv:2003.07361] [INSPIRE].

[43] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal
algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim. 4S2 (1972) 115
[INSPIRE].

[44] A.W. Knapp and E.M. Stein, Interwining Operators for Semisimple Groups, Annals Math. 93
(1971) 489.

[45] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl.
Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

[46] V.A. Smirnov, Problems of the strategy of regions, Phys. Lett. B 465 (1999) 226
[hep-ph/9907471] [INSPIRE].

[47] B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076
[arXiv:1111.2589] [INSPIRE].

[48] D. Chicherin and G.P. Korchemsky, The SAGEX review on scattering amplitudes Chapter 9:
Integrability of amplitudes in fishnet theories, J. Phys. A 55 (2022) 443010
[arXiv:2203.13020] [INSPIRE].

[49] T. Huber and D. Maitre, HypExp: A Mathematica package for expanding hypergeometric
functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122
[hep-ph/0507094] [INSPIRE].

[50] T. Huber and D. Maitre, HypExp 2, Expanding Hypergeometric Functions about Half-Integer
Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].

[51] B. Power, Conformal symmetry predictions for on-shell scattering amplitudes, MSc thesis,
Ludwig Maximilians Universität München, Munich, Germany (2020).

[52] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for
drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009)
1709 [arXiv:0811.4113] [INSPIRE].

[53] S.E. Derkachov, N.A. Kivel, A.S. Stepanenko and A.N. Vasiliev, On calculation in 1/n
expansions of critical exponents in the Gross-Neveu model with the conformal technique,
hep-th/9302034 [INSPIRE].

[54] A.N. Vasilev, The field theoretic renormalization group in critical behavior theory and
stochastic dynamics, Chapman and Hall/CRC (2004) [DOI:10.1201/9780203483565] [INSPIRE].

– 53 –

https://doi.org/10.1007/BF03185566
https://doi.org/10.1007/BF03185566
https://arxiv.org/abs/hep-th/9711188
https://inspirehep.net/literature/451594
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/literature/511533
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/literature/1227527
https://doi.org/10.1016/S0010-4655(02)00139-X
https://arxiv.org/abs/hep-ph/0111255
https://inspirehep.net/literature/566982
https://doi.org/10.1007/BF02731765
https://inspirehep.net/literature/3553
https://doi.org/10.1007/JHEP11(2020)139
https://arxiv.org/abs/2003.07361
https://inspirehep.net/literature/1785830
https://doi.org/10.1007/BF02907130
https://inspirehep.net/literature/77568
https://doi.org/10.2307/1970887
https://doi.org/10.2307/1970887
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/literature/451284
https://doi.org/10.1016/S0370-2693(99)01061-8
https://arxiv.org/abs/hep-ph/9907471
https://inspirehep.net/literature/504335
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://inspirehep.net/literature/945404
https://doi.org/10.1088/1751-8121/ac8c72
https://arxiv.org/abs/2203.13020
https://inspirehep.net/literature/2058020
https://doi.org/10.1016/j.cpc.2006.01.007
https://arxiv.org/abs/hep-ph/0507094
https://inspirehep.net/literature/686913
https://doi.org/10.1016/j.cpc.2007.12.008
https://arxiv.org/abs/0708.2443
https://inspirehep.net/literature/758560
https://doi.org/10.1016/j.cpc.2009.02.020
https://doi.org/10.1016/j.cpc.2009.02.020
https://arxiv.org/abs/0811.4113
https://inspirehep.net/literature/803505
https://arxiv.org/abs/hep-th/9302034
https://inspirehep.net/literature/34165
https://doi.org/10.1201/9780203483565
https://inspirehep.net/literature/670459


J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

[55] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group
Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

[56] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate beta
Functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[57] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,
Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[58] F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP
11 (2012) 114 [arXiv:1209.2722] [INSPIRE].

[59] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279
[INSPIRE].

[60] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[INSPIRE].

[61] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.
523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[62] E.E. Boos and A.I. Davydychev, A Method of the Evaluation of the Vertex Type Feynman
Integrals, Moscow Univ. Phys. Bull. 42N3 (1987) 6 [INSPIRE].

[63] N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point
ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].

[64] N.I. Usyukina and A.I. Davydychev, Some exact results for two loop diagrams with three and
four external lines, Phys. Atom. Nucl. 56 (1993) 1553 [hep-ph/9307327] [INSPIRE].

[65] A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A
25 (1992) 5587 [INSPIRE].

[66] N.I. Usyukina and A.I. Davydychev, New results for two loop off-shell three point diagrams,
Phys. Lett. B 332 (1994) 159 [hep-ph/9402223] [INSPIRE].

[67] A.I. Davydychev, Explicit results for all orders of the epsilon expansion of certain massive and
massless diagrams, Phys. Rev. D 61 (2000) 087701 [hep-ph/9910224] [INSPIRE].

[68] T.G. Birthwright, E.W.N. Glover and P. Marquard, Master integrals for massless two-loop
vertex diagrams with three offshell legs, JHEP 09 (2004) 042 [hep-ph/0407343] [INSPIRE].

[69] P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, Ph.D. thesis,
Institut für Physik (IPH), Johannes Gutenberg-Universität Mainz (JGU), Germany (2018)
[INSPIRE].

[70] J. Henn, B. Mistlberger, V.A. Smirnov and P. Wasser, Constructing d-log integrands and
computing master integrals for three-loop four-particle scattering, JHEP 04 (2020) 167
[arXiv:2002.09492] [INSPIRE].

[71] C. Dlapa, J. Henn and K. Yan, Deriving canonical differential equations for Feynman integrals
from a single uniform weight integral, JHEP 05 (2020) 025 [arXiv:2002.02340] [INSPIRE].

[72] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point
integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799]
[INSPIRE].

[73] J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015)
153001 [arXiv:1412.2296] [INSPIRE].

– 54 –

https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/literature/167175
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/literature/171845
https://doi.org/10.1142/S0217751X00002159
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/literature/552763
https://doi.org/10.1007/JHEP11(2012)114
https://doi.org/10.1007/JHEP11(2012)114
https://arxiv.org/abs/1209.2722
https://inspirehep.net/literature/1185420
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/literature/315611
https://arxiv.org/abs/1212.2685
https://inspirehep.net/literature/1207080
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/literature/1256956
https://inspirehep.net/literature/253339
https://doi.org/10.1016/0370-2693(93)91834-A
https://inspirehep.net/literature/343180
https://arxiv.org/abs/hep-ph/9307327
https://inspirehep.net/literature/345697
https://doi.org/10.1088/0305-4470/25/21/017
https://doi.org/10.1088/0305-4470/25/21/017
https://inspirehep.net/literature/332769
https://doi.org/10.1016/0370-2693(94)90874-5
https://arxiv.org/abs/hep-ph/9402223
https://inspirehep.net/literature/371504
https://doi.org/10.1103/PhysRevD.61.087701
https://arxiv.org/abs/hep-ph/9910224
https://inspirehep.net/literature/508103
https://doi.org/10.1088/1126-6708/2004/09/042
https://arxiv.org/abs/hep-ph/0407343
https://inspirehep.net/literature/655416
https://inspirehep.net/literature/1770273
https://doi.org/10.1007/JHEP04(2020)167
https://arxiv.org/abs/2002.09492
https://inspirehep.net/literature/1781938
https://doi.org/10.1007/JHEP05(2020)025
https://arxiv.org/abs/2002.02340
https://inspirehep.net/literature/1778906
https://doi.org/10.1007/JHEP07(2013)128
https://arxiv.org/abs/1306.2799
https://inspirehep.net/literature/1238295
https://doi.org/10.1088/1751-8113/48/15/153001
https://doi.org/10.1088/1751-8113/48/15/153001
https://arxiv.org/abs/1412.2296
https://inspirehep.net/literature/1333244


J
H
E
P
0
6
(
2
0
2
3
)
1
1
0

[74] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,
Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[75] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[76] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow
graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

[77] O.V. Tarasov, Connection between Feynman integrals having different values of the space-time
dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

[78] D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.
Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

[79] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied
Mathematics 14, Interscience Publishers John Wiley & Sons Inc., New York-London-Sydney
(1965).

[80] S. Caron-Huot et al., Multi-Regge Limit of the Two-Loop Five-Point Amplitudes in N = 4
Super Yang-Mills and N = 8 Supergravity, JHEP 10 (2020) 188 [arXiv:2003.03120]
[INSPIRE].

[81] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].

[82] F. Brown, Iterated integrals in quantum field theory, in the proceedings of the 6th Summer
School on Geometric and Topological Methods for Quantum Field Theory, Villa de Leyva
Colombia, July 6–23 (2009) [Cambridge University Press (2013), p. 188–240]
[DOI:10.1017/CBO9781139208642.006] [INSPIRE].

[83] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals,
Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].

[84] B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and
Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].

– 55 –

https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/literature/1519856
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://inspirehep.net/literature/1479771
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://inspirehep.net/literature/1735575
https://doi.org/10.1103/PhysRevD.54.6479
https://arxiv.org/abs/hep-th/9606018
https://inspirehep.net/literature/419275
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
https://arxiv.org/abs/hep-ph/0507152
https://inspirehep.net/literature/687356
https://doi.org/10.1007/JHEP10(2020)188
https://arxiv.org/abs/2003.03120
https://inspirehep.net/literature/1784240
https://doi.org/10.1090/S0002-9904-1977-14320-6
https://inspirehep.net/literature/1235976
https://doi.org/10.1017/CBO9781139208642.006
https://inspirehep.net/literature/1385010
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
https://inspirehep.net/literature/878288
https://doi.org/10.1140/epjc/s10052-012-2139-2
https://arxiv.org/abs/1206.0546
https://inspirehep.net/literature/1117032

	Introduction
	Correlation functions at the conformal fixed point
	Conformal invariance at the classical level
	Conformal invariance for renormalised correlation functions
	A toy example: the three-point correlator

	Anomalous conformal Ward identities for scattering amplitudes
	Definition of scattering amplitudes via LSZ formula and conformal symmetry
	Anomalous Ward identity for a three-point amplitude
	Conformal Ward identity for n-particle amplitudes
	Collinear anomaly from analysis of regions
	Review of the collinear anomaly in integer dimensions
	Collinear anomaly from logarithmically enhanced terms of the correlator
	Region analysis in non-integer dimensions

	Applications of the conformal Ward identity
	Exact solution of the anomalous Ward identity for the three-point amplitude
	Conformal Ward identity for the one-loop three-point amplitude
	Conformal Ward identity for the one-loop four-point amplitude
	Conformal Ward identity for the one-loop four-point form factor


	Discussion and outlook
	Conformal Ward identity for renormalised correlation functions
	Implications of conformal symmetry for amplitudes away from the conformal fixed point
	Conformal symmetry and momentum conservation
	Exact results for two- and three-point correlators
	Fourier transform of the conformal correlators
	Two-loop perturbative computation of the three-point correlator

	Details of the exact calculation of the triangle correlator and its conformal anomaly
	Canonical differential equation for the triangle integrals with eps-dependent exponents
	Asymptotic expansion of the three-point correlator and closed-form expression of the anomaly
	The conformal boost generator controls the on-shell expansion of the correlator


