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ABSTRACT 10 

In this study, HS-SPME-GC-MS was applied in combination with machine learning tools to the identitation 11 

of a set of cocoa samples of different origins. Untargeted fingerprinting and profiling approaches were 12 

tested for their informative, discriminative and classification ability provided by the volatilome of the raw 13 

beans and liquors inbound at the factory in search of robust tools exploitable for long-time studies. The 14 

ability to distinguish the country of origin on both beans and liquors is not so obvious due to processing 15 

steps accompanying the transformation of the beans, but this capacity is of particular interest to the 16 

chocolate industry as both beans and liquors can indifferently enter at different steps of the chocolate 17 

processing. Both fingerprinting (untargeted) and profiling (targeted) strategies enable to decipher of the 18 

information contained in the complex dataset and the cross-validation of the results, affording to 19 

discriminate between the origins with effective classification models.  20 

 21 

 22 

 23 

 24 

 25 
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1. INTRODUCTION 28 

Cacao (Theobroma cacao L.) is a perennial tropical crop economically important for the countries 29 

growing it. It is also a raw material of great relevance for different fields including confectionary and 30 

functional food and beverages (cocoa and chocolate derivatives) that cover more than 60% of the market 31 

(Research and Markets, 2021). The flavour is one of the main features linked to chocolate product quality 32 

besides brand and cost (CABISCO/ECA/FCC, 2015). Cocoa beans and the post-harvest treatments are 33 

uniquely responsible for the flavour and nutritional components of cocoa derivatives, which implies that 34 

the cocoa chain must be supplied with products with consistent standards of quality, i.e. uniform raw 35 

materials with specific quality parameters from the country of origin. This is a serious issue for chocolate 36 

manufacturers since they need bulks of raw or semi-finished cocoa products of consistent quality to 37 

respond to the demand. 38 

However, standardisation of quality over time is difficult to achieve as cocoa beans are mostly 39 

produced in non-EU countries by a large number of independent farmers, resulting in remarkable 40 

fragmentation and heterogeneity of batches where socio-political instability and the impact of climate 41 

change negatively affect cocoa production and farm survival (Boeckx, Bauters, & Dewettinck, 2020; 42 

Danezis, Tsagkaris, Brusic, & Georgiou, 2016; Lahive, Hadley, & Daymond, 2019; Medina, Perestrelo, Silva, 43 

Pereira, & Câmara, 2019; Somarriba et al., 2021). Objective and robust tools to trace the authenticity and 44 

the quality stability of cocoa products are therefore necessary to support the continuity year-to-year in 45 

an ever-increasing global demand at the industrial level. 46 

Different instrumental analytical methods have so far been applied to sustain cocoa-origin 47 

authentication based on bioactive components or flavour-related compounds (Febrianto & Zhu, 2022; 48 

Kumar et al., 2022; Magagna et al., 2017; Marseglia, Musci, Rinaldi, Palla, & Caligiani, 2020). Spectroscopic 49 

and spectrometric-based methods have recently been reported for cocoa, and more in general, for food 50 

and fingerprinting analysis (Gutiérrez, 2017; Buertt, Harris, & Klevorn, 2016; Medina, Perestrelo, et al., 51 

2019a; Scavarda et al., 2021; Acierno, Alewijn, Zomer, & van Ruth, 2017). In food authentication 52 

fingerprinting and profiling strategies are becoming widely used and accepted to monitor food integrity 53 
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(Ballin & Laursen, 2019; Luis Cuadros-Rodríguez, Ortega-Gavilán, Martín-Torres, Arroyo-Cerezo, & 54 

Jiménez-Carvelo, 2021; Medina, Pereira, Silva, Perestrelo, & Câmara, 2019; Suman, Cavanna, Sammarco, 55 

Lambertini, & Loffi, 2021). Indeed, food authentication is often based on determining the degree of 56 

similarity of the fingerprints of some diagnostic chemical characteristics of an unknown sample compared 57 

to a representative reference sample (Cuadros-Rodríguez,Ruiz-Samblás,Valverde-Som,Pérez-58 

Castaño,&González Casado, 2016). Consequently, fingerprinting and profiling approaches require a 59 

suitable number of pure and authentic samples to establish a representative database of the “genuine” 60 

food population (Danezis et al., 2016). This step is known as food ‘Identitation’ and, if correctly carried 61 

out, affords a reliable food authentication (L. Cuadros-Rodríguez et al., 2016). Furthermore, flavour quality 62 

identitation requires analytical methods able to provide diagnostic detailed profiles correlated with the 63 

sensory features that can be monitored and quantified for an objective assessment in quality control (QC) 64 

(Bressanello et al., 2021; Bressanello et al., 2018; Magagna et al., 2017; Perotti et al., 2020; Stilo et al., 65 

2021). Chromatographic hyphenated platforms combined with artificial intelligence are the tools of choice 66 

to obtain significant information encrypted in complex data sets to delineate significant trends and/or 67 

data structures. In addition, they are of crucial importance in reliably assessing associations and/or 68 

correlations between the chemical composition of foodstuffs and food extracts to determine compliance 69 

with quality and legal standards for the authentication of samples (Bressanello et al., 2018; Bressanello et 70 

al., 2017; Rodionova & Pomerantsev, 2020). 71 

In this study, HS-SPME-GC-MS combined with machine learning tools has been applied to the 72 

identitation of a set of cocoa samples of different origins. Untargeted fingerprinting capability and at the 73 

same time the potentiality of profiling in identitation of origin were tested as well as the chemical 74 

information they can provide from the volatilome of cocoa beans and liquors. This information is 75 

important on an industrial level for the development of an artificial smelling machine to check the quality 76 

of incoming beans and liquors and to fulfil the flavour reference driver in product design. The study is the 77 

first step of a wider project that aims 1) to investigate the flavour profiles of different origins and define 78 

their chemical-sensory identity card; 2) to guarantee consistent supplies from different origins over time 79 

independently of climate change and geo-political conflicts; and 3) to ensure final standard quality of the 80 
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cocoa products from a sensorial and qualitative point of view by blending different origins through 81 

objective assessments using chemical analysis and machine learning when supply difficulties may occur. 82 

 83 

2. EXPERIMENTAL 84 

2.1 Cocoa samples and reference compounds 85 

A total of 160 samples of unroasted beans (n=85) and liquors (n=75) (Theobroma cacao L.) of 86 

cocoa were analysed. Samples were provided by Soremartec Italia s.r.l. (Alba, Italy) and were from 4 87 

origins: Colombia (COL), Cameron (CAM) and West Africa (WA, a blend of Ghana, Ivory Coast and 88 

Nigeria) all from Forastero variety, Ecuador (ECU) from CCN51 Clone, harvested in 2015 and 2016 by 89 

different local regional farmers. Cocoa was of commercial grade (beans size “standard” based on 90 

counting test under guidelines of the Federation of cocoa commerce) (FCC, 2015). Samples were 91 

ground in liquid nitrogen to obtain a homogeneous powder and then stored at -80°C until analysis. 92 

Pure reference standards for identity confirmation (key-aroma compounds (§) and informative 93 

volatiles) as reported in Table A1, normal alkanes (n-alkanes n-C9 to n-C25) for Linear Retention Index 94 

(IT
S) determination and α-thujone as internal standard (ISTD) were from Merk (Milan, Italy). An α-95 

thujone solution (ISTD) at a concentration of 1000 mg/L was prepared in degassed sunflower seed oil 96 

and stored in a sealed vial at -18°C.  97 

 98 

2.2 Automated Head Space Solid Phase Micro Extraction: sampling device and analysis conditions 99 

Automated Headspace Solid Phase Microextraction (auto-HS-SPME) was performed using a 100 

Combi-PAL AOC 5000 (Shimadzu, Milan, Italy) online integrated with a Shimadzu QP2010 GC–MS 101 

system provided with Shimadzu GC–MS Solution 2.51 software (Shimadzu, Milan, Italy). SPME fibre: 102 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm - 2 cm length from 103 

Millipore (Bellefonte, PA, USA). Fibres were conditioned before use as recommended by the 104 
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manufacturer. The standard-in-fibre procedure was adopted to pre-load the ISTD (α-thujone) onto 105 

the fibre before sampling (Wang, O’Reilly, Chen, & Pawliszyn, 2005). 5.0 µL of ISTD solution were 106 

placed in a 20 mL glass vial and submitted to HS-SPME at 50°C for 20 min, stirring speed 350 rpm. 107 

Cocoa powder (1.00 g) was weighed in the headspace glass vials (20 mL) and submitted to automated 108 

HS-SPME sampling. After ISTD loading on the fibre, the SPME device was exposed to the headspace 109 

of cocoa for 40 min at 50° at a shaking speed of 350 rpm.  110 

GC-MS analysis- Chromatographic conditions: analyses were run on a Shimadzu QP2010 GC–MS 111 

system, controlled by Shimadzu GC–MS Solution 2.5SU1 software (Shimadzu, Milan, Italy) Injector 112 

temperature: 240°C, injection mode: splitless; carrier gas: helium, flow rate: 1 mL/min. Sampled 113 

analytes were recovered by thermal desorption into the split/splitless (S/SL) injection port of the GC 114 

system at 240°C for 5 min.  GC column: SolGelwax (100% polyethene glycol) 30 m x 0.25 mm dc x 0.25 115 

μm df Trajan Analytical Science (Ringwood, Australia). Temperature program, from 40°C (2 min) to 116 

200°C at 3,5°C/min, then to 240°C (5 min) at 10°C/min. MSD conditions: ionization mode: EI (70 eV); 117 

temperatures: ion source: 200°C; quadrupole: 150°C; transfer line: 260°C; scan range: 35-350 amu. 118 

Each sample was analyzed in triplicate.  119 

2.6 Analytes identification and data analysis 120 

Untargeted fingerprinting data elaboration, Principal Component Analysis (PCA), Partial Least 121 

Square Discriminant Analysis (PLS-DA) and regression analysis, was carried out with Pirouette® 122 

(Comprehensive Chemometrics Modelling Software, version 4.5-2014) (Infometrix, Inc. Bothell, WA). 123 

Heat map and hierarchical clustering were obtained with Morpheus 124 

(https://software.broadinstitute.org/morpheus/). Targeted analysis was on 55 compounds identified 125 

by matching their EI-MS fragmentation patterns (NIST MS Search algorithm, version 2.0, National 126 

Institute of Standards and Technology, Gaithersburg, MD, USA, with Direct Matching Factor > 900) 127 

with those stored in commercial (NIST2014 and Wiley 7n) and in-house databases, and/or with 128 

reference standards available in the laboratory. Linear retention indices (IT
S) were taken as a further 129 

parameter to support identification and experimental values were compared to tabulated values 130 
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(Table A1 in Appendix A). Profiling data elaboration and the Kruskall-Wallis test were performed with 131 

XLSTAT version 2021.4.1 statistical and data analysis solution. (Addinsoft (2022), New York, USA.  132 

https://www.xlstat.com/en) 133 

 134 

3. RESULTS AND DISCUSSION 135 

3.1 Untargeted fingerprinting approach and origin identity 136 

Untargeted fingerprinting approaches are time-saving and can be exploited in screening for 137 

authentication and very recently in detecting food fraud thanks to platforms with highly informative 138 

power (Greño, Plaza, Luisa Marina, & Castro Puyana, 2023; Suman et al., 2021). The increasing 139 

difficulties in supplying high-quality raw materials due to the climate and social instability crisis have 140 

prompted the large-scale industry to look for new sources or new strategies to maintain or improve 141 

the standard quality of raw and finished products. Cocoa volatilome is the final expression of the 142 

different “chemical and biochemical activities” occurring in the beans as a result of the varieties, 143 

agronomic practices, post-harvest treatments and industrial processing (Lytou, Panagou, & Nychas, 144 

2019). With these perspectives, untargeted volatilomics can be applied to define the fingerprint of 145 

quality standard and/or to benchmark with a quality reference e.g. linked to the origin. In particular, 146 

the origin benchmark based on the similarity of the volatilome can be a useful strategy to deepen the 147 

knowledge of the origin, to evaluate the yields with a view on the compatibility with large chocolate 148 

productions, to detect the defects and evaluate roasting profiles or to define blending strategies to 149 

standardize the reference quality. To define an origin identity based on the cocoa volatilome it is 150 

necessary to have representative reference samples of each investigated origin. The reliability of the 151 

identitation process depends on the parameters influencing the origin characteristics included within 152 

the reference samples (i.e. seasonality, regional variations, post-harvest treatments, farm of 153 

production, etc.).  154 

https://www.xlstat.com/en
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Exploratory data analysis on untargeted chromatographic fingerprints shows a better origin 155 

description with beans than with liquors (Figure 1 a and b) with respectively 74.3 and 59.7 % of 156 

explained variance, but in any case, with very good results. This agreement was not obvious since 157 

liquors undergo further processing steps that tend to homogenize origin information. Supervised 158 

approach by PLS-DA for beans based on a training set of 66 samples internally cross-validated (CV 5) 159 

and an external test set of 18 samples shows excellent results with 100% of correct classification 160 

within origins. An OPLS-DA model cross-validated (CV 4) based on a liquor training set of 58 samples 161 

presents a total ability in origin classification of 88.24% when applied to the external test set (17 162 

samples), with high specificity for all origins but a lower sensitivity (71%) for Colombia (COL) compared 163 

to other origins (Figure 1c and d). 164 

This approach is very similar to others applied for origin discrimination but in addition shows that 165 

beans and liquors provide similar chemical information (Acierno, Yener, Alewijn, Biasioli, & Van Ruth, 166 

2016; Liu et al., 2017; Medina, Perestrelo, et al., 2019; Torres-Moreno, Tarrega, & Blanch, 2014; 167 

Acierno et al., 2017). The ability to distinguish the country of origin of both beans and liquors is of 168 

particular interest to the chocolate industry, as either beans or liquors can indifferently be processed 169 

by the chocolate factory depending on the country of origin. Despite these excellent results in origin 170 

identitation, the untargeted strategies do not provide detailed information about the aroma chemical 171 

profile that, on the contrary, enables an in-depth knowledge of the aroma components that 172 

characterise the standards quality for cocoa flavour. 173 

 174 

3.2 Profiling and origin identity: chemical information provided from beans and liquors 175 

The flavour is an essential criterion of quality for manufacturers of cocoa products 176 

(CABISCO/ECA/FCC, 2015). It represents an overall sensation that emerges from the interaction of 177 

taste, odour and textural feeling and it results from three classes of compounds, i.e. those responsible 178 

for taste (generally non-volatile compounds), for odours (aroma volatile substances) or both of them 179 

(Belitz, Grosch, & Schieberle, 2009). Cocoa quality and economic value are strictly related to unique 180 
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and complex flavours. Generally, the sensory profile (aroma, taste, mouth feel, and texture) is a key 181 

factor in obtaining premium-quality products meeting consumer preferences. Several chemical 182 

compounds are involved in the flavour composition (aldehydes, ketones, esters, alcohols, pyrazines, 183 

quinoxalines, furans, pyrones, lactones, pyrroles, and diketopiperazines) and their concentration 184 

strictly depends on the components formed during processing steps of the cocoa supply chain 185 

(fermentation, drying, roasting etc.) (Aprotosoaie, Vlad Luca, & Miron, 2016). Therefore, the content 186 

of these components is related to the processing methods applied both in the countries of origin and 187 

by the chocolate manufacturer. In this respect, flavour composition can be evaluated to find a 188 

characteristic chemical profile enabling to recognition cocoa beans and liquors coming from a specific 189 

country to authenticate incoming raw materials from a sensory point of view. Furthermore, a more 190 

detailed analysis of the volatile components is required when the aim is to find similarities in aroma 191 

profiles to create similar blends and to know the chemical components responsible for different 192 

sensory properties. Cocoa aroma is described by “generalist” odorants that are in common with other 193 

foods with which they share the same processing such as fermentation and thermal treatment. 194 

However, “individualist” odorants can be derived from particular processing methods and/or origins 195 

(Dunkel et al., 2014). Moreover, several non-odorant compounds can significantly affect the sensory 196 

profiles through the so-called odour synaesthesia (Chambers & Koppel, 2013; Prescott, 2015). 197 

Therefore, gas chromatographic analysis of cocoa volatilome benefits from detailed profiling, which 198 

can then be used for correlations with sensory data and characterisation of the chemical odour code. 199 

From these points of view, it became interesting to evaluate the chemical information provided by 200 

beans and liquors, because, in general, the panel(s) taste the liquors to evaluate the cocoa flavour. 201 

Despite the further processing that the liquors undergo compared to the beans, the analytical 202 

patterns of volatiles are similar when describing the origin of samples, albeit to different quantitative 203 

extents, as shown in the heat map in Figure 2. Figure 2 shows the chromatographic profiles in plan 204 

view, where L and B indicate liquors and beans, and the volatile distribution depending on the origins. 205 

The clustering of the origins is based on the agglomerative average linkage method and the one-minus 206 

Pearson correlation distance on the zeta score-adjusted data matrix. The colour scale ranges from red 207 
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(volatile substances in larger quantities) to blue (volatiles in smaller quantities). The representative 208 

abundance of the volatilome of both beans and liquors for the different origins under study is 209 

reported on the tree chart in Figure A1 in Appendix A. 210 

Normalized responses of the main volatiles in beans and liquors were transformed by logarithmic 211 

function and pre-processed by Pareto scaling before PCA analysis. Explorative data elaboration by PCA 212 

of the target volatiles displays similar power in the origin discrimination both for beans and liquors on 213 

the first 3 principal components (PCs) confirming an existing correlation between the two patterns of 214 

volatiles Figure 3 a and b.  215 

Beans from different countries of origin have different ratios between volatiles, which mainly 216 

reflect the origin and primary processing in the country of origin (mainly fermentation and drying), as 217 

we can see from the boxplots of the different chemical classes in Figure 4. The content of volatiles of 218 

cocoa beans from Colombia was somewhat lower than in the other countries of origin. Factors such 219 

as the system of storage of the pods and its duration influence the pH, titratable acidity and 220 

temperature reached during fermentation affecting enzyme activities and flavour development 221 

(Afoakwa, Paterson, Fowler, & Ryan, 2008; Aprotosoaie et al., 2016). Further steps in the processing 222 

of the beans (e.g. roasting, alkalisation, batch blending, milling) affect the overall profile, especially 223 

the abundance and ratios of volatiles. The relative content of volatiles was highest in cocoa liquors 224 

from Ecuador as also reported by Lie et al. (Liu et al., 2017). The processing of the beans leads to a 225 

quali-quantitative “flattening” of some volatiles between the origins, e.g. aromatics and aldehydes, 226 

while it increases the differences in esters, alcohols, terpenes, ketones and acids although with a 227 

different trend depending on the origins. For example, acids decrease more in COL and WA, but less 228 

in ECU and CAM liquors, and they change their distribution with the origins. Acids are generated in 229 

the fermentation process, in particular, acetic acid whose content is in strict relationship with the 230 

fermentation conditions (Schwan & Wheals, 2004). Esters are an important class of volatiles formed 231 

from amino acids in unroasted beans that impart fruity and floral aromas whose content is negatively 232 
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influenced by roasting. Liquors from Ecuador contain higher amounts of esters compared to other 233 

origins (Figure 5).  234 

However, supervised methods are needed to classify and predict origin based on chemical 235 

characteristics (Casale M. et al., 2020). The main objective of supervised machine learning is to model 236 

data to obtain qualitative prediction models, and thanks to dedicated algorithms to define target 237 

compounds that are characteristic of the origin. The Variable Importance in Projection (VIP), for 238 

example, is a well-known method to find significant variables in complex data sets. It enables to select 239 

variables from the PLS model by calculating the VIP scores for each chemical variable and removing 240 

those with a VIP score below a predefined threshold (default=1) (Medina, Perestrelo, et al., 2019). 241 

Orthogonal signal correction Partial Least Square Discriminant Analysis (OPLS-DA) is a supervised 242 

approach giving excellent results in the origin classification and identification of components 243 

potentially associated with both beans and liquors with a classification rate of over 92% (i.e. 92.86% 244 

for beans and 92.31% for liquors) Figures 3 c and 3 d. The 20% of samples were selected by the 245 

Kennard-Stone algorithm within each sample set (i.e. beans and liquors) to create the external test 246 

sets. OPLS-DA was built on the training data sets (65 samples for beans and 60 samples for liquors), 247 

log10 transformed, autoscaled and cross-validated (10 CV). The models were then applied to the 248 

external test sets (i.e. 14 beans and 13 liquors) (Figures 3 c and d). The results of origin classification 249 

were similar to the untargeted fingerprinting approach but with a better classification rate in 250 

particular for liquors. 251 

Figure 6 a and b reports the VIP graphics from the OPLS-DA both from beans and liquors profiling, the 252 

scale is from 0 and 1.8, but only those higher than 1 were selected as important for origin 253 

classification. Several VIP (VIP>1) compounds are in common between beans and liquors: 254 

Acetophenone, Benzaldehyde, 3-Methylbutanoic acid, 2,3-Butanediol, Tetramethylpyrazine, 2-255 

Heptanone, Styrene, 4-Heptanol Figure 6 a and b. These volatiles are important variables in the origin 256 

classification and share similar relative abundance in beans and liquors of the same sample (Figure 257 

A2 in Appendix A). Benzaldehyde, Tetramethylpyrazine and 3-Methylbutanoic acid have been also 258 
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evidenced as aroma-active compounds in liquors for WA and Cameroon besides other origins from 259 

Liu et al., while Isobutyl acetate, Benzaldehyde, Trimetylpyrazine, Butanal, 2 and 3-methyl-Butanal, β-260 

Myrcene and 2-heptanone were indicated by Marseglia et al. as characteristic compounds both of 261 

unroasted and roasted beans although at different extents, higher in roasted beans (Liu et al., 2017; 262 

Marseglia et al., 2020). Tetramethylpyrazine whose odour quality is described as cocoa, chocolate - 263 

coffee, comes from Maillard reactions that can also occur in the beans during fermentation and drying 264 

due to the temperatures reached in this stage. However, roasting is the main factor contributing to 265 

its formation in liquors. WA cocoas result richer in Tetramethylpyrazine compared to other origins 266 

both in beans and in liquors and generally higher in liquors (Figure 6c). WA cocoa beans, and more in 267 

general from African regions, result richer in Acetophenone responsible for the floral and sweet notes 268 

among the ketones, and in 3-Methylbutanoic acid (sweaty, rancid), Trimethylpyrazine (cocoa, roasted 269 

nutty), Benzaldehyde (bitter almond), 4-Heptanol (alcoholic) (Figure 6c), confirming the observation 270 

of Marseglia et al. although their relative distribution, compared to other origins, are not respected 271 

for all compounds in liquors (Marseglia et al., 2020; Tuenter et al., 2020).  272 

For example, some 2-Heptanol (citrus), 2-Heptanone (sweet, fruity) and 2-Heptanol acetate (fruity) 273 

tend to be characteristics of liquors from South American countries (Figure 6c), which agrees with 274 

Marseglia et al. but contrast with the findings of Tuenter et al. who compared West Africa bulk with 275 

Ecuadorian fine-flavour cocoas (Marseglia et al., 2020; Tuenter et al., 2020).  276 

Besides these volatiles, a group of monoterpenoids contribute significantly to the definition of the 277 

origin of liquors, the main ones of them being -pinene (woody, resinous-piney), -3-carene (sweet 278 

citrus), trans--ocimene (floral), -myrcene (balsamic, must, spicy, sweet), limonene (citrus-like) and 279 

linalool  (a key-odorant of cocoa conferring a floral, leafy, and tea-like note) Figure 6 and b.  Although 280 

these volatiles are associated with odour description very far from the cocoa flavour and have a high 281 

odour threshold, they do affect its overall aroma (Liu et al., 2017; Ullrich et al., 2022). In addition, 282 

some of the above monoterpenoids are chiral compounds and their enantiomers can have different 283 

odour thresholds and/or sensory descriptions, and can differently influence the cocoa aroma, thus 284 
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making of particular interest the determination of their enantiomeric distribution in cocoa products 285 

(Cagliero, Sgorbini, Cordero, Liberto, Rubiolo, Bicchi, 2017). These components derive from the 286 

monoterpenoid biosynthetic pathway and, during fermentation, they are present in higher amounts 287 

in beans than in pulp (Chetschik et al., 2018). Monoterpenoids have not yet been studied in depth in 288 

cocoa, but they can play a marked role in defining/monitoring i) the origin through the liquor 289 

volatilome, ii) the different fermentation processes, and iii) more in general, the post-harvest 290 

processing in the countries of origin (Aprotosoaie et al., 2016; Afoakwa et al., 2008). For instance, 291 

Calva-Estrada et al. have recently shown that limonene has an important role in the composition of 292 

the dark-chocolates aroma profile from Latin American cocoas (Calva-Estrada, Utrilla-Vázquez, 293 

Vallejo-Cardona, Roblero-Pérez, & Lugo-Cervantes, 2020). 294 

 295 

 296 

4. CONCLUSIONS 297 

The volatilome of cocoa beans and liquors is a very rich source of information to define the origin 298 

of incoming raw material. Both fingerprinting (untargeted) and profiling (targeted) strategies allow 299 

to decipher the information contained in the complex dataset resulting from HS-SPME-GC-MS 300 

analysis, and the cross-validation of the results enables to discriminate between the origins of both 301 

beans and liquors studied with suitable classification models. Fingerprinting and profiling approaches 302 

provided comparable classification performance. The untargeted approach can be used for rapid 303 

screening for quality control and for a preliminary evaluation of incoming lots, but it does not provide 304 

chemical information. On the other hand, profiling is more time-consuming but provides detailed 305 

chemical information on the samples, enabling the definition of the chemical marker(s) of origin and 306 

is very useful, in particular, if carried out in connection with the sensory profile. Targeted methods 307 

have allowed the identification of several origin-related key odorants in both bean and liquor 308 

samples. Furthermore, the targeted approach enables the establishment of correlations with the 309 

chemical pathways involved with the volatile formation. This information can be linked to the soil 310 
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and climate characteristics, and in-situ processing of the world region under consideration before 311 

the next steps of the chocolate production chain. However, volatile fingerprinting to be reliable and 312 

to be used as a robust authentication tool for origin requires a large number of representative 313 

samples, including the variability of cocoa products, to build up a representative cocoa chemical 314 

identity card correlated to the sensory profile. The information provided by the untargeted approach 315 

can thereby be sufficient for the basic authentication of cocoa volatiles for routine control quality to 316 

standardize the quality year-to-year. On the other hand, the targeted approach is mandatory when 317 

a certification of origin is requested, as it requires an identity card detailing the chemical and sensory 318 

characteristics of the origin itself to fulfil the flavour reference driver in product design. 319 
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Appendix A. Supplementary data 326 

Table A1 Targeted volatiles identified with their experimental and literature retention indices ITs, Target 327 

ion (Ti) and qualifier ions (Qis) and their mass spectral similarity index (SI). *Volatiles confirmed by the 328 

reference standard (A), Relative retention index (RI), and Mass spectrum similarity (MS). § Key aroma 329 

compounds. 330 

Figure A1 Tree chart of the comparison of the cocoa volatilome of beans and liquors 331 

Figure A2 Box plots of the compounds from OPLS-DA (with VIP>1) in describing the origins common to 332 

both beans and liquors. 333 

  334 
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Captions to figures 335 

Figure 1 Untargeted data mining results: a) and b) are PCA scores plots of beans and liquors respectively, 336 

and c) and d) are the results from the OPLS-DA Class Predicted plot for beans and liquors. Pre-337 

process: autoscale. Class 1: CAM, Class 2: COL, Class 3: ECU, Class 4: WA 338 

Figure 2 Heat-map of the target volatiles in describing the different origins; clustered data by Z score and 339 

Pearson correlation. Colour rendering from low (blue) to high amount (red). L: target liquor 340 

volatiles, B: target bean volatiles. 341 

Figure 3 Targeted metabolites profiles from PCA a) and b) scores plots of beans and liquors respectively, 342 

c) and d) are the results from the OPLS-DA Class Predicted plot for beans and liquors. Pre-process: 343 

autoscale. Class 1: COL, Class 2: ECU, Class 3: CAM, Class 4: WA 344 

Figure 4 Box-plots of the comparison of the composition of the beans by representative chemical classes.  345 

Figure 5 Box-plots of the comparison of the composition of liquors according to representative chemical 346 

classes. 347 

Figure 6 VIP (higher than 1) from the OPLS-DA from the OPLS-DA on targeted profiling for beans and 348 

liquors respectively in a), in b) Venn diagram of volatiles describing the origins with VIP>1 from 349 

the OPLS-DA of beans and liquors, c) heat map of the VIP distribution between the origins. 350 

 351 
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