
25 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Towards formal model for location aware workflows

Publisher:

Published version:

DOI:10.1109/COMPSAC57700.2023.00289

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Hossain Shahriar, Yuuichi Teranishi, Alfredo Cuzzocrea, Moushumi Sharmin, Dave Towey, AKM Jahangir

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1919170 since 2023-07-10T14:04:19Z



Towards formal model for location aware workflows
Doriana Medić

Department of Computer Science
University of Turin

Turin, Italy
doriana.medic@unito.it

Marco Aldinucci
Department of Computer Science

University of Turin
Turin, Italy

marco.aldinucci@unito.it

Abstract—Designing complex applications and executing them
on large-scale topologies of heterogeneous architectures is becom-
ing increasingly crucial in many scientific domains. As a result,
diverse workflow modelling paradigms are developed, most of
them with no formalisation provided. In these circumstances,
comparing two different models or switching from one system to
the other becomes a hard nut to crack.

This paper investigates the capability of process algebra to
model a location aware workflow system. Distributed π-calculus
is considered as the base of the formal model due to its ability
to describe the communicating components that change their
structure as an outcome of the communication. Later, it is
discussed how the base model could be extended or modified
to capture different features of location aware workflow system.

The intention of this paper is to highlight the fact that due to
its flexibility, π-calculus, could be a good candidate to represent
the behavioural perspective of the workflow system.

Index Terms—Workflow, distributed, π-calculus, locations

I. INTRODUCTION

Nowadays, designing complex applications and executing
them on large-scale topologies of heterogeneous architectures
is becoming increasingly crucial in many scientific domains.
Along with it, the workflow modelling paradigms have evolved
in different directions to adapt to the needs of different
users, focusing on generality and user-friendliness or favouring
flexibility at the expense of greater complexity. As a conse-
quence, there are more than three hundred different Workflow
Management Systems [8] and comparing their features or
migrating from one system to the other is becoming a burden.

One of the reasons for mentioned complexity is the fact
that WMS implementations rarely come with formalised con-
current execution semantics. Some valuable efforts have been
made to develop unifying interfaces for the workflow coor-
dination model, e.g. the Workflow Patterns initiative [9] or
the Common Workflow Language [10] open standard. They
encompass concurrent executions, even if their semantics is
not fully formalised.

In the literature, up to our knowledge, there are few work-
flow management systems for which formal models have been
developed: Taverna [1], [15], where workflow language is

This work has been partially supported by the Spoke 1 ”FutureHPC
& BigData” of ICSC - Centro Nazionale di Ricerca in High-Performance
Computing, Big Data and Quantum Computing, funded by European Union -
NextGenerationEU. This research is also partly supported by project EUPEX,
which has received funding from the European High-Performance Computing
Joint Undertaking (JU) under grant agreement No 101033975.

defined in functional terms using the computational lambda
calculus [16]; Kepler [2] based on Process Networks [3] and
BPEL [4] giving a complete formalization of all control-flow
constructs and communication actions of BPEL in Petri nets. A
detailed representation of the workflow patterns has been made
with YAWL [5], a workflow language built upon experiences
with the languages supported by contemporary workflow man-
agement systems. The base model of this language are Petri
nets because of their power in dealing with the specification of
control-flow dependencies in workflows. YAWL provides the
representation of all workflow patterns, as well as tool support
and interfacing with various workflow tools.

Different attempts to describe the behaviour of the work-
flows by process theory models can be found in the literature.
In [11], the π-calculus [18], a well-established process algebra,
is claimed to be a natural fit for modelling a workflow system.
The processes able to dynamically change their structure can
be naturally expressed by π-calculus thanks to its feature
called mobility (the capability of sending names along the
channels where received names can be used as channel names
in future communications). Discussion about describing a
workflow system by π-calculus or Petri nets is given in [12].
Both paradigms have their advantages and disadvantages and
should be used with slightly different aims, leading to more
theoretical and compositional, or functional and user-friendly
models.

The first step in the analysis of the capabilities of the π-
calculus with respect to workflow patterns [13] is given in [6].
It introduces a class of workflow patterns formalised with
concise and unambiguous expressions. The behaviour of each
workflow pattern has been precisely defined thanks to the
execution semantics of the π-calculus. Another approach to
the use of the π-calculus for workflow definitions is given
in [17] and it concentrates on basic control flow constructs
and the definition of activities. Besides π-calculus, in [19],
to model Web Service Choreography Interface descriptions,
Calculus of Communication Systems (CCS) [20] is used. It
is shown that the obtained formal model can be exploited for
the definition of compatibility and replaceability tests between
Web services, and the automatic generation of adaptors that
can bridge the differences between a priori incompatible Web
services.

This paper is following a research line of [6] and aims
to provide a broader exploitation of the process theory for

Doriana Medic
Preprint version of “Doriana Medic and Marco Aldinucci. Towards formal model for location aware workflows”, 2023 IEEE 47th Annual Computers, Software, and Applications Conference, doi: 10.1109/COMPSAC57700.2023.00289 



describing workflow systems. Differently from [6], where
the highlight is on giving the formalisation for all workflow
patterns, the purpose of this work is to explore the features
required by location aware workflows with the intention to
strengthen the idea of having a formal representation of a
workflow model given with a distributed process algebra. To
do that, a distributed π-calculus [7] is chosen as a process
model paradigm and used as a base for the workflow de-
scription. Distributed π-calculus is based on the π-calculus,
to which a network layer and a primitive migration construct
are added. It is a compositional process algebra built by
processes and channels through which processes communicate.
The flexibility of distributed π-calculus allows for further cus-
tomisation of the proposed description of a workflow system,
based on different workflow and location specifications. One
of the advantages of π-calculus is that it is equipped with
the equivalence theory. Two processes can be checked for
equivalence in terms of bisimulation [22], what is particularly
useful in business process optimization.

The paper is structured as follows. Section II gives an
interpretation of the considered workflow setting and pro-
vides the syntax of the distributed π-calculus, tailored to
described workflow. The operational semantics is presented in
Section III, while Section IV contains a discussion on the given
formalisation suggesting different variations of it. Section V
concludes the paper.

II. FORMALISING LOCATION AWARE WORKFLOWS

This paper considers an abstract definition of the location
aware workflows leaving a lot of freedom for the implementa-
tion of different specifications. Directed Acyclic Graph (DAG)
is chosen for the workflow representation. Nodes of the graph
stands for the workflow steps to be executed, while annotated
directed edges (arrows) are defining the flow of the workflow
execution (dependencies between the steps) and the name of
the port (channel) through which two steps are connected.
Each step is bounded to the location in which is to be executed.
It is allowed for one step to be executed on more locations1

and for more steps to be mapped to one location, in which case
the steps can be executed in parallel if there is no dependency
between them and resource allows for it. It is assumed that
the initial data is already positioned on the first location of
the workflow (location to which the first step is mapped to)
and it is abstracted from the actual internal computation of a
step and the data type used for it. Denotation of the workflow
components is done in the following way: steps are represented
with S1, S2, . . ., channel names with a, b, c, . . ., data to be
transferred with d1, d2, . . . and locations with l1, l2, . . .. To
make it straightforward, each step, channel, location and data
produced as a result of a step execution are unique (even if
there could be the steps which during the execution do not
change received data).

1Mapping step to more locations and not just dividing original step
into more steps is used in the case when, for instance, there is the same
code executed on multiple computing elements, like MPI (Message Passing
Interface) [21] program.

Fig. 1. Example of a workflow graph

As an example, Figure 1 depicts a workflow which shall
be used through the paper to give an idea how formal model
captures different operations (not as the representation of the
actual workflow application). Workflow DAG consists of the
six nodes (six steps) represented with squares and denoted with
the couple S,L containing information about the step and the
locations to which the step is bounded (set of locations L).
The edges are annotated with the name of the channel. Step
S1, after its internal computation, is sending data to the steps
S2 and S6 mapped to the corresponding locations (i.e. from
location l1 data is sent to locations l2, l6 and l7), while the
step S2 is sending its data to the step S3 or to the step S4.
The workflow is completed when step S6 is executed. The
behaviour of each step except the initial and the last steps is:
receiving data to be processed, processing data and sending
resulting data to the next steps. In this example, step S6 is
bounded to two locations l6 and l7 while the rest of the steps
are executed each on a single location.

A distributed π-calculus [7] tailored to our setting together
with the examples explaining how to model the workflow of
Figure 1 are presented in the following. The representation
of the workflow patterns by π-calculus, without considering
locations, is done in [6]. This work is following the approach
of [6] with a difference that distributed π-calculus [7] is used
and locations are added.

Distributed π-calculus systems [7], denoted with M ,
adapted to our setting, are given with the following syntax:

M ∶∶= lJP K ∣ (M ∣ M) ∣ 0
The parallel composition of systems is denoted with

(M ∣ M), while the idle system is represented by 0. Term
lJP K defines a process P to be performed on the location l. In
the context of the workflow, process P can be seen as a step
S to be executed on the location l. The π-calculus process P
is defined as:

P ∶∶= π.P ∣ (P ∣ P ) ∣ P + P ∣ stop



where the parallel composition and the choice operator are
represented with terms P ∣ P and P + P , respectively, while
the process termination is denoted by stop. Process π.P
stands for a sequential execution i.e. the process P can be
executed only after the prefix π is performed. Prefix denotes
a simple action to be executed and it is defined with:

π ∶∶= a⟨d⟩ ∣ a(x) ∣ goto l ∣ τS
Term a⟨b⟩ depicts sending the data d over the channel

named a, while a(x) stands for the process able to receive
the certain data over the channel a. The received data is then
bounded to the placeholder x. The internal computation of a
step is indicated with τS .

In distributed π-calculus, to be able to communicate with
a process on a different location it is necessary to explicitly
move the data to the targeting location and then do the com-
munication. This is enabled with the prefix goto l, indicating
to move to the location l (having goto l.P would imply to
move the process P on the location l).

In the workflow setting, the data is transferred from one
location to the other through the corresponding channel and
then used for the internal computation of the step. In the formal
description, this behavior is modelled by first moving to the
targeting location with action goto l and then communicating
through the corresponding channel. The workflow model is not
changing, while the execution plan would have one additional
operation every time when it is necessary to move data from
one location to the other.

In the following example, it is illustrated how workflow
given in DAG can be syntactically represented with the cal-
culus defined above.

Example 1: The formal syntactic representation of the
workflow DAG given on Figure 1, can be done with the
following steps:

• Nodes Si, Li when i = 1, . . . , 6, can be seen as systems
Mi, such that

Mi = {liJSiK for Li = {li}
l1JS1K ∣ . . . ∣ lnJS1K for Li = {l1, . . . , ln}

In words, if step is mapped to n > 1 locations then the
system Mi shall contain n subsystems composed in paral-
lel. Considering graph on Figure 1, for instance, the node
S1, {l1} becomes the system M1 = l1JS1K, while the node
S6, {l6, l7} translates into system M6 = l6JS6K ∣ l7JS6K.

• The entire workflow, denoted with W can be defined as
a parallel composition of systems Mi:

W = l1JS1K ∣ . . . ∣ l5JS5K ∣ l6JS6K ∣ l7JS6K

• Step S1 (already containing data) is defined as

S1 = τS1
.(goto l2.b⟨d1⟩ ∣ goto l6.a⟨d2⟩ ∣ goto l7.a⟨d2⟩)

The internal computation of the step S1 (denoted with
τS1

) is followed by moving to the locations l2, l6, l7
(depicted with the goto l prefix) and executing the cor-
responding communications.

(OUT) a⟨d⟩ a⟨d⟩
−−−−→ stop

(IN) a(x).P a(d)
−−−−→ P{d/x}

Fig. 2. (OUT) and (IN) rules

• Step S2 is modelled as

S2 = b(x).τS2
.(goto l3.c1⟨d3⟩ + goto l4.c2⟨d3⟩)

Once data is received over the channel b, step S2 executes
its internal computation and sends resulting data d3
through the channel c1 to the step S3 or the channel c2
to S4.

• Steps S3 i S4 are modelled in a similar way:

S3 = c1(y).τS3
.goto l5.e1⟨d4⟩

S4 = c2(z).τS4
.goto l5.e2⟨d5⟩

Both steps receive data, process it, produce a new one
and output it over the channels e1 and e2.

• The internal computation of the step S5 is triggered by
the data received over the channel e1 or e2. The resulting
data is sent over channel f to the locations l6 and l7 to
which step S6 is mapped to:

S5 =e1(x).τS5
.(goto l6.f⟨d6⟩ ∣ goto l7.f⟨d6⟩)+

e2(y).τS5
.(goto l6.f⟨d6⟩ ∣ goto l7.f⟨d6⟩)

• The last step, S6, can perform the internal computation
only when all data is received. Therefore, it can be
represented as

S6 = a(x).f(y).τS6
+ f(y).a(x).τS6

The algorithm described above, illustrates how to syntactically
represent the workflow DAG with the distributed π-calculus.
In the following, each operation of the syntax is paired with
the corresponding behaviour.

III. OPERATIONAL SEMANTICS

This section provides the operational semantics of the
distributed π-calculus [7], adapted to the syntax defined in
Section II and the workflow setting. First, the two simple rules
not involving locations are presented end depicted in Figure 2.
The output rule (OUT) is describing the sending of the data d
over the channel a. There is no continuation after the action
is executed since asynchronous π-calculus is considered. In
the input rule (IN), data d is received and bounded to the
placeholder x. The computation continues with the execution
of the process P where each occurrence of the variable x is
substituted with d. In the workflow setting, the received data
d shall be used for the internal computation of a step.

The operational semantics, involving locations, for dis-
tributed π-calculus, is given in Figure 3. The description of
each rule is provided below:

• Rule (STEP) enables the internal computation of step S.



(STEP) lJτS .P K −→ lJP K

(SPLIT) lJP ∣ P1K −→ lJP K ∣ lJP1K

(MOVE)
l
′
∈ L

lJgoto l
′
.P K −→ l

′JP K

(COMM)
a⟨d⟩ a⟨d⟩

−−−−→ stop a(x).P a(d)
−−−−→ P{d/x}

lJa⟨d⟩K ∣ lJa(x).P K −→ lJP{d/x}K

(CHOICE-1)
P

α
−−→ P

′
, α = {a⟨d⟩, a(d)}

lJP + P1K −→ lJP ′K

(CHOICE-2)
lJgoto l

′
.P K −→ l

′JP K

lJ(goto l
′
.P ) + P1K −→ l

′JP K

(PAR)
M −→ M

′

M ∣ M1 −→ M
′ ∣ M1

Fig. 3. Semantics rules of a distributed π-calculus

• Rule (SPLIT) allows a system composed of the processes
in parallel to be split into smaller systems which can
continue computation separately. For instance, in the
workflow setting, this rule is applied when the step has
two output actions targeting different locations.

• Moving the step from one location to the other is defined
with the rule (MOVE). Mostly, this rule is applied to move
the data to the targeting location and in this way enable
the communication.

• The communication is done through the rule (COMM). It
can be applied only if both, input and output, actions are
able to execute on the same location. To communicate
with the process on a different location, one should first
apply the rule (MOVE).

• The choice rules select one of the possible options of
computations and discard the others. Rule (CHOICE-1)
considers simple input and output actions and it can be
applied only with the assumption that these actions can
be executed. Similar for the rule (CHOICE-2) and action
goto l. The reason to have two separate choice rules is
only to avoid overloading a single one.

• Lastly, the parallel rule is allowing a system to be
executed as a part of a larger system. One could notice
that there is no direct rule executing the system lJP ∣ P ′K.
This is due to the fact that the system lJP ∣ P ′K can be
split into two separate systems lJP K and lJP ′K on which
the rule (PAR) can be applied.

For parallel, choice and communication rules of Figure 3
there are the symmetric rules which are omitted.

How the semantics defined above captures the behaviour

of the workflow step S1 of Example 1 is illustrated in the
following. Since the step S1 is the initial step, it already
contains the necessary data and can perform the internal
computation by applying the rule (STEP):

l1JτS1
.(goto l2.b⟨d1⟩ ∣ goto l6.a⟨d2⟩ ∣ goto l7.a⟨d2⟩)K −→

l1Jgoto l2.b⟨d1⟩ ∣ goto l6.a⟨d2⟩ ∣ goto l7.a⟨d2⟩K

The next action to do is to split obtained system into the
smaller ones by applying twice the rule (SPLIT):

l1Jgoto l2.b⟨d1⟩ ∣ goto l6.a⟨d2⟩ ∣ goto l7.a⟨d2⟩K −→−→

l1Jgoto l2.b⟨d1⟩K ∣ l1Jgoto l6.a⟨d2⟩K ∣ l1Jgoto l7.a⟨d2⟩K

Now, the rule (MOVE) can be applied to shift the process
b⟨d1⟩ into the location l2:

l1Jgoto l2.b⟨d1⟩K ∣ l1Jgoto l6.a⟨d2⟩K ∣ l1Jgoto l7.a⟨d2⟩K −→

l2Jb⟨d1⟩K ∣ l1Jgoto l6.a⟨d2⟩K ∣ l1Jgoto l7.a⟨d2⟩K

By putting together the obtained system and the system
M2 containing the step S2, the communication can be done
through the rule (COMM):

l2Jb⟨d1⟩K ∣ l1Jgoto l6.a⟨d2⟩K ∣ l1Jgoto l7.a⟨d2⟩K ∣
l2Jb(x).τS2

.(goto l3.c1⟨d3⟩ + goto l4.c2⟨d3⟩)K −→
l2JstopK ∣ l1Jgoto l6.a⟨d2⟩K ∣ l1Jgoto l7.a⟨d2⟩K ∣
l2JτS2

.(goto l3.c1⟨d3⟩ + goto l4.c2⟨d3⟩)K

In this way, the internal computation of step S2 (τS2
) is

enabled. The data transfer between steps S1 and S6 follows
the same approach, with the difference that the data is actually
transferred to both locations l6 and l7 to which step S6 is
mapped.

Remark 1: Taking into account Example 1 and the def-
inition of the step S6, one could imagine that the natural
representation of it should be S6 = (a(x) ∣ f(y)).τS6

indicating that the two receiving actions a(x) and f(y) can
be executed in parallel in any order, and only when both
of them are executed, the internal τS6

computation can be
performed. This kind of modelling, more precise, system
S6 = (a(x) ∣ f(y)).τS6

is not allowed by the syntax defined
in Section II and the one defined in [7], as well. For instance,
the term (a(x) + b(y)).τS is also not allowed. Instead, it is
modelled as a(x).τS + b(y).τS .

Including the mentioned terms into the calculus used in this
paper could be done by adding the term P.P into process
definition P and in that way allowing any kind of sequencing
processes. In that way, one would be able to simplify the
representations of the workflows, especially when a step has
a big number of input or output actions. On the other side,
it would require a complete revision of the rules given in
Figures 2 and 3. For instance, the rule (IN) would not be
enough because it allows only the execution of the process
a(x).τS not of the process (a(x) ∣ f(y)).τS where two
parallel input actions are gathered to the shared action τS .



IV. DISCUSSION

This section contains a discussion of the proposed model
and suggests improvements in a few different directions:
1) The description of the workflow, used in this paper, to-
gether with its formal representation are quite abstract and
with minor modifications allow implementation of the specific
features. For instance, Example 1 depicts one of the possible
representations of the workflow conditional patterns (choice
operator). It could be noticed that when step S2 make a choice
between sending data to the step S3 or S4 (location l3 or l4),
the remaining step is not performing its computation and still
waiting for data to arrive. For instance, if data d3 is sent to
the step S4, step S3, does not have knowledge about the fact
that the decision is made and it is still running waiting for
data to process until it is forced to stop or ignored. From the
theoretical point of view, one could ignore the fact that the step
S3 is still waiting and state that the workflow computation is
completed since the last step of it (in our example, step S6)
is performed. From the practical perspective, this could result
in the waste of resources and can impact on the cost of the
computation.

In that case, one could think about signaling to the not-
chosen step that the decision is made and that it can be
terminated. In the calculus defined in Sections II and III, it
can be done, for example, by introducing an ’empty’ message
denoted with a special symbol (for instance ∅). Like this, the
data will be sent to the chosen step, while to the rest of the
possible choices, the empty message is outputted. Considering
Example 1, the discussed behaviour could be obtained by
slightly modifying steps S2, S3 and S4 and by introducing the
’empty’ message. The step S2 could be modelled as (goto
actions are omitted):

S2 = b(x).τS2
.(c1⟨d3⟩.c2⟨∅⟩ + c2⟨d3⟩.c1⟨∅⟩)

If the chosen path for the data d3 is transfer through channel
c1, then over the channel c2 an empty message is sent as a
notification that the decision is made. To complete this, step
S3 should be modelled as (goto actions are omitted):

S3 = c1(y).τS3
.e1⟨d4⟩ + c1(∅).stop

The reception of the empty message enables the termination
of the step S3. Introducing the ’empty’ message would not
imply any major changes in the syntax or semantics of the
formal model. The difference would be in the modelling of
the choice operator.

Using signaling to notify about the correct or incorrect ter-
mination of a process is used already in Erlang2 in which case
signals are not empty messages but containing different values
indicating what was the reason for the process termination.
2) The distributed π-calculus [7] does not allow for a direct
data transfer if the steps are not on the same location, instead,
the additional actions of moving steps to the different locations
are executed. While this design decision has a justification

2https://www.erlang.org/

when considering the process calculus formalisation, in the
workflow setting a different solution may have more impact.
For example, by allowing data transfer between different
locations, sending data to the step mapped to more locations
(i.e. sending data to more locations) could be modelled by
data broadcasting. In the calculus presented in this paper, rule
(MOVE) could be substituted with the broadcast rule:

a⟪d⟫ a⟪d⟫
−−−−−→ stop ∀i a(x).Pi

a(d)
−−−−→ Pi{d/x}

lJa⟪d⟫K ∣
n

∏
i=1

liJa(x).PiK −→ lJstopK ∣
n

∏
i=1

liJPi{d/x}K

where a⟪d⟫ is a broadcast action and ∏n
i=1 liJa(x).PiK

represents all steps to which the data is broadcasted. In this
way, the broadcast action is considered atomic, what is not
the case in the approach of distributed π-calculus and the rule
(MOVE).
3) The fact that one step can be mapped to different locations
imposes the synchronisation between the locations on which
the step is executing. It could be executed exactly at the same
moment on all locations it is mapped to, or a certain amount
of freedom could be left. In the case of distributed π-calculus,
there is no synchronisation on the timing of the step execution.
It could be implemented, by adding the rule collecting all
locations to which step is mapped and forcing them to execute
the internal step τ in the same moment.
4) In the majority of workflow systems, the workflow model is
entirely independent of the execution topology, meaning that
the user has reduced control over the mapping of workflow
steps into execution locations. However, if a StreamFlow [14]
is considered, it is possible to implement different location
topologies. It allows the user to constrain the information flow
for security/privacy reasons or to exploit location heterogeneity
in the case when the single processing element is expected
to be more and more specialised. To be able to model this
behaviour, the formal model described in Sections II and III
should be equipped with the location topology information.
Given a desired topology, it can be represented as a mapping
function and added to the syntax as a syntactic sugar of the
location. Later the defined function is used as the condition in
the semantics rules disabling the application of a certain rule
if it is not in the compliance with the mapping function.
5) Loops in the workflow setting could be represented with the
recursion operation in the process algebra. To represent loops
explicitly and model a setting in which a part of a workflow
containing different locations is looping, it is necessary to add
a new operator. The recursion is defined as lJP K∣RMR where
lJP K is the location that triggers the recursion and MR is the
recursion term (in our case, distributed π-calculus system).
Then, the necessary rule would be:

P
a⟨d⟩
−−−−→ stop Q

a(d)
−−−−→ Q{d/x}

lJP K∣RlJQK −→ lJQ{d/x}K

For instance, consider the workflow in Figure 4. The formal
representation would be (goto actions are omitted):



Fig. 4. Example of a workflow with a loop

l1JS1K ∣ l2JS2K ∣ l3JS3K∣RMR ∣ l4JS4K

where

S1 = τS1
.a⟨d1⟩

S2 = a(x).τS2
.b⟨d2⟩ + e(y).τS2

.b⟨d2⟩
S3 = b(x).τS3

.(e⟨d3⟩ + c⟨d4⟩)
MR = l2JS2K ∣ l3JS3K

S4 = c(x).τS4

From the equations (3) and (4) it can be seen that the
recursion term MR is triggered by the communication on
channel e. In this case, the operation ∣R guarantees that the
recursion terms are executed only when the step S3 triggers
it, not before (by using the classical parallel operator ∣ there
would not be such guaranty).

V. CONCLUSION

This paper explores the possibility of modelling work-
flow systems with the modified version of the distributed π-
calculus [7]. It discusses how adaptable the model could be
(thanks to the nature of the π-calculus) and what are the
qualifications to be implemented into the basic formalisation.

The fact that mobile systems change their structure by
communicating makes distributed π-calculus a good candidate
to model the ability to dynamically change workflows on
demand. As stated in [17], the formalisation of workflows
done with Petri nets does not pose a complete algebra of
operations. For instance, there is no concurrency operator
that can be used to compose Petri nets to obtain larger Petri
nets. On the contrary, compositionality is one of the main
features of process algebras and it could be very useful for
workflow verification. By increasing the model complexity,
the verification of models is more and more difficult. A
compositional model would allow for verification of the part of
the workflow and then in the next verification step, using the
black box for representation of it. In that way, the complexity
of the verification tasks would be reduced.

In future work, we shall take into account different propos-
als mentioned in Section IV and gather them to obtain a formal
model able to express a vast range of different workflows. The
obtained model could be used to prove different properties
of a workflow, like information flow, confluence, correctness,
equivalence, etc. Once the formal model is defined, it could
be used to model a real case workflow. Additionally, it would

simplify the extension of a base model with the new features
(for instance fault-tolerance).

REFERENCES

[1] D. Turi, P. Missier, C. Goble, D. D. Roure and T. Oinn,“Taverna Work-
flows: Syntax and Semantics,” Third IEEE International Conference
on e-Science and Grid Computing (e-Science 2007), Bangalore, India,
2007, pp. 441-448, doi: 10.1109/E-SCIENCE.2007.71.

[2] B. Ludscher, I. Altintas, C. Berkley, and el. “Scientific workflow
management and the kepler system,” Concurrency and Computation:
Practice and Experience, Special Issue on Scientific Workflows, 2005.

[3] G. Kahn and D.B. MacQueen, “Coroutines and networks of parallel
processes,” In IFIP congress, 1977.

[4] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
and A. H. M. ter Hofstede, “ Formal semantics and analysis of control
flow in WS-BPEL,” Sci. Comput. Program., 67(2-3):162–198, 2007

[5] W. M. P. van der Aalst, A. H. M. ter Hofstede, “YAWL: yet another
workflow language,” Information Systems, Volume 30, Issue 4, 2005,
Pages 245-275, ISSN 0306-4379

[6] F. Puhlmann, M. Weske, “Using the π-Calculus for Formalizing Work-
flow Patterns,” Business Process Management. BPM 2005, Lecture
Notes in Computer Science, vol 3649. Springer, Berlin, Heidelberg.

[7] M. Hennessy, “A Distributed Pi-Calculus. Cambridge: Cambridge Uni-
versity Press,” 2005, doi:10.1017/CBO9780511611063

[8] P. Amstutz, M. Mikheev, M. R. Crusoe, N. Tijanić, S. Lampa, et al.
, “Existing Workflow systems,” Common Workflow Language wiki,
GitHub. https://s.apache.org/existing-workflow-systems

[9] W. M. P. van der Aalst,“Three good reasons for using a Petri-net-
based workflow management system, pages 161–182. The Kluwer
International Series in Engineering and Computer,” Kluwer Academic
Publishers, Netherlands, 1998.

[10] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Ti-
janic, H. Ménager, S. Soiland-Reyes, and C. A. Goble,“Methods in-
cluded: Standardizing computational reuse and portability with the
common workflow language,” Communication of the ACM, 2022.
doi:10.1145/3486897.

[11] H. Smith, P. Fingar,“Business Process Management – The Third Wave,”
MeghanKiffer Press, Tampa (2002)

[12] W.M.P. van der Aalst,“Pi calculus versus petri nets: Let us
eat ”humble pie” rather than further inflate the ”pi hype”,”
(http://is.tm.tue.nl/research/patterns/ download/pi-hype.pdf (2005))

[13] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.
Barros,“ Workflow patterns,” Distributed and Parallel Databases 14
(2003) 5–51

[14] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci,“StreamFlow:
cross-breeding cloud with HPC,” IEEE Transactions on
Emerging Topics in Computing, 9(4):1723–1737, 2021.
doi:10.1109/TETC.2020.3019202.

[15] J. Sroka, J. Hidders, P. Missier, C. Goble,“A formal semantics for
the Taverna 2 workflow model,” Journal of Computer and System
Sciences, Volume 76, Issue 6, 2010, Pages 490-508, ISSN 0022-0000,
https://doi.org/10.1016/j.jcss.2009.11.009.

[16] E. Moggi,“Notions of computation and monads,” Inf. Comput.,
93(1):55–92, 1991.

[17] Y. Dong, Z. Shen-Sheng,“Approach for workflow modeling using π-
calculus,” Journal of Zhejiang University Science 4 (2003) 643–650

[18] D. Sangiorgi, D. Walker, “The π-calculus: A Theory of Mobile Pro-
cesses,” Paperback edn. Cambridge University Press, Cambridge (2003)

[19] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo, “Formalizing Web Service
Choreographies,” Proceedings of First International Workshop on Web
Services and Formal Methods. Electronic Notes in Theoretical Computer
Science, Elsevier (2004)

[20] R. Milner, “Communication and Concurrency,” Prentice Hall, 1989
[21] M. P. Forum, “MPI: A Message-Passing Interface Standard”, University

of Tennessee, USA, Tech. Rep., 1994.
[22] D. Sangiorgi, D. Walker, “The Pi-Calculus - a Theory of Mobile

Processes”, Cambridge Univ. Press, 2001.


