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breaks spontaneously this symmetry which is thereby realized non-linearly in the effective

action of these extended objects. As a consequence the form of the action is strongly

constrained. A new general method is described to obtain in a systematic way higher

order Lorentz invariant contributions to this action. We find a simple recipe to promote

a term invariant under the stability subgroup to an expression invariant under the whole

Lorentz group. It is based on the following three steps: in the saturation of worldsheet

(or worldvolume) indices replace the Minkowski metric with the inverse of the induced

metric; in the saturation of indices of the transverse coordinates describing the position of

the extended object replace the Euclidean metric with a certain new metric; finally replace

the field derivatives of order higher than two with a certain covariant derivative. Lorentz

invariance of the expression modified this way immediately follows. We find in particular

that the leading bulk deviation of the Nambu Goto action in any space-time dimensions is

proportional to the square of scalar curvature.
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1 Introduction

The effective string action describes one-dimensional solitonic objects embedded in a space-

time of higher dimensions, like for instance Abrikosov vortices in superconductors, Nielsen

Olesen vortices in Abelian Higgs theory or cosmic strings in grand unified models. It

is particularly useful in the study of the long-distance properties of the string-like flux

tubes in confining gauge theories [1] where, even though the formation of such an extended

object between quark sources is not a proved fact, numerical experiments and theoretical

arguments in lattice gauge theories leave little doubt that this physical picture is basically

correct [2–6].

When this string-like object forms in the vacuum, the Poincaré symmetry breaks spon-

taneously and Nambu-Goldstone modes appear. These are described, in a D -dimensional

Minkowski space-time, by the transverse displacementsXi(ξ0, ξ1) of the string (i = 2, . . . , D−
1). Integrating out the massive degrees of freedom of the D-dimensional theory one ends

up, at least in principle, with a two-dimensional effective action

S = σ

∫
d2ξ L(∂aXi, ∂b∂cXj , . . . ) , (1.1)

where σ is the string tension and the Lagrangian density is a local function of the deriva-

tives of the transverse fields Xi. It is expedient to think of S as the low energy effective

action describing the fluctuations of a long string of length R. Then there is a natural

dimensionless expansion parameter [7], namely 1/(
√
σ R), and this expansion corresponds

to the power expansion of S in the number of derivatives.

The physical behaviour of the string cannot depend on the choice of its worldsheet

coordinates, of course. In fact this theory could be written in a form invariant under

diffeomorphisms. The present formulation, called physical or static gauge, uses a choice of

coordinates in which only the physical degrees of freedom - the transverse fluctuations Xi

of the string- appear in the action.
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Notice that the process of dimensional reduction from a D− dimensional fundamental

theory to an effective two-dimensional string action is not always at a purely conjectural

stage. In the physics of interfaces in three dimensional systems, for instance, in some

cases one is able to integrate out bulk degrees of freedom [8, 9], obtaining in this way the

Nambu-Goto action [9] or its Gaussian limit [8].

The terms contributing to the effective action are all those respecting the symmetries

of the system, thus the worldsheet derivatives ∂a (a = 0, 1) should be saturated according

to the worldsheet symmetry SO(1, 1) and similarly the transverse indices i = 2, . . . , D − 1

should always form scalar products in order to respect the transverse SO(D − 2) invari-

ance. Besides these obvious symmetries there are some further constraints to be taken into

account. As first observed in [4] and then generalized in [10], comparison of the string par-

tition function in different channels (“open-closed string duality”) fixes by consistency the

first coefficients, at least, of the derivative expansion of S. It was subsequently recognised

the crucial role of the Lorentz symmetry of the underlying Yang-Mills theory [11–13]. In

fact, integrating out the massive modes of the fundamental theory to obtain the effective

string action does not spoil its ISO(1, D−1) symmetry, but simply realises it in a non-linear

way, as always it happens in the spontaneous breaking of a continuous symmetry [14, 15].

In other words, the physical gauge hides the Lorentz invariance of the underlying theory

which is no longer manifest, but poses strong constraints on the form of the effective action,

as this should be invariant under the effect of a non-linear Lorentz transformation. The

latter, when applied to a generic term made with m derivatives and n fields, schematically

dmXn, transforms it in other terms with the same value of the difference m − n, called

“scaling” of the given term [16]. The terms of scaling zero are only made with first deriva-

tives and demanding invariance under the non-linear Lorentz transformations implies that

they coincide with the derivative expansion of the Nambu-Goto action [12, 13, 17]. There

is however a subtlety about this point that should be mentioned. The first few terms of the

derivative expansion of the effective action (1.1) associated with a Wilson loop encircling

a minimal surface Σ of area A are, omitting the perimeter term,

S = −σA−
∫

Σ
d2ξ

(
c0

2
∂aX ·∂aX+c2(∂aX ·∂aX)2 +c3(∂aX ·∂bX)(∂aX ·∂bX)+ . . .

)
(1.2)

where ci are dimensionful parameters. Note that the Xi’s have the dimensions of length,

as they are the transverse displacements of the string, hence c0 cannot be reabsorbed in a

redefinition of Xi and gives measurable effects. In particular the transverse area w2 of the

flux tube increases logarithmically with the quark distance R and at the leading order one

finds [18, 19]

w2 =
D − 2

2πc0
log(R/R0) , (1.3)

where R0 is a low-energy distance scale. In the Nambu-Goto string it turns out that c0 = σ

and this has been confirmed by numerical calculations in different lattice gauge models [20–

23]. The last equality is not a specific property of the Nambu-Goto model: open-closed

string duality implies c2 = c0/8, c3 = −c0/4 and c0 = σ as is easy to verify. On the

contrary, at the classical level, the only requirement of Lorentz invariance, even if it fixes
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the whole series of scaling zero terms, does not link c0 to the string tension. We find indeed

(see next section)

S = −c0

∫
Σ
d2ξ
√
−g + (c0 − σ)

∫
Σ
d2ξ + higher scaling terms , (1.4)

where g is the determinant of the induced metric defined in (1.7). Clearly (1.4) can be put

in a reparametrization invariant form only if c0 = σ.

In order to find the explicit form of Lorentz invariant higher order terms in (1.4) one

starts typically with a non-vanishing term of scaling greater than zero and adds iteratively

an infinite sequence of terms generated by the non-linear Lorentz transformation. Only if

this process comes to an end and no further terms are generated one can conclude that

the starting term has a Lorentz-invariant completion and is then compatible with Lorentz

symmetry. This procedure has been accomplished for the boundary action of the open

string in [24], where a systematic classification of the Lorentz invariant contributions up

to terms of scaling six has been found.

So far, the form of the leading bulk correction to the Nambu-Goto action is still

debated. A class of obvious higher order Lorentz invariants can be constructed in terms

of the extrinsic curvature [25, 26] or other geometric quantities like (powers of) Gaussian

curvature of the induced metric [27], but these geometric terms do not exhaust the list of

the Lorentz invariants, as we shall show in the present paper. So far it has been assumed

that the first allowed correction to the Nambu-Goto action could be the six derivative

term [10]

S4 = −c4

∫
d2ξ

(
∂a∂bX · ∂a∂bX

)
(∂cX · ∂cX) , (1.5)

which is non-trivial only when D > 3. Opinions differ on the role of this term and on the

value of the coefficient c4. In [16] it was suggested that if this term has an all-orders Lorentz

invariant completion, it could be the analogous in the static gauge of the contribution

conjectured by Polchinski and Strominger [28] as the leading correction to the Nambu-

Goto action in the conformal gauge, where the Lorentz symmetry is linearly realized. In

this gauge it takes the form

26−D
96π

∫
d2ξ
√
−gR 1

�
R , (1.6)

where R is the induced curvature scalar and � the d’Alembertian. Motivated by this re-

sult it was conjectured that c4 = (26 −D)/192π, see also [29]. In [30] eq. (1.5) is instead

considered as a Lorentz-violating counterterm necessary to cancel a Lorentz anomaly gen-

erated by the ζ-function regularization in the static gauge and the coefficient c4 turns out

to be c4 = −1/8π.

In the present paper we show in particular that the above term is actually absent, at

least at the classical level. Our goal is to describe a general class of Lorentz invariants

which are obtained by performing an all orders Lorentz completion of suitable terms.

Applying this method to the term (1.5) we find that the orbit generated by the non-linear

Lorentz transformation includes other terms of the same perturbative order which combine
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with (1.5) to form a total derivative. Thus we are led to conclude that there is really no

six derivative term compatible with Lorentz completion.

The recipe we find to build a Lorentz invariant in the bulk space-time is not specific

for the string, as it can be applied to any p−dimensional classically flat extended object,

like for instance p−branes. As expected, in this context the induced metric gab plays a

crucial role. We have

gab = ηab + δij∂aXi∂bXj = ηab + hab , (1.7)

where ηab is the diagonal Minkowski metric with 1 = −η00 = ηaa (a = 1, . . . , p) and its

matrix inverse is ηab with ηabη
bc = δca. Our recipe differs from the one suggested by the

classical works on non-linear realization of spontaneously broken symmetries [14, 15, 31],

based on the introduction of suitable covariant derivatives.

A generic term invariant under the unbroken subgroup ISO(1, p) × SO(D − p − 1) is

formed by scalar products of the worldvolume indices saturated by ηab and scalar products

in the transverse coordinates saturated with δij . In terms of these quantities the recipe

to obtain a Lorentz invariant is particularly simple if we begin with a seed term in which

every transverse field Xi appears with two derivatives, at least. Then the following two

moves are necessary to generate a Lorentz invariant:

i) replace in each scalar product of the worldvolume indices ηab with gab, where

gab = ηab − ηachcdηdb + ηachcdη
dehefη

fb − . . . (1.8)

is the matrix inverse of gab;

ii) replace in each scalar product of the transverse coordinates δij with tij , where

tij = δij − ∂aXigab∂bX
j . (1.9)

Clearly the first move corresponds to a resummation of an infinite tower of terms. If the

seed term contains also transverse coordinates with more than two derivatives there is a

third rule to be added which allows to lower the order of the derivatives. It turns out that

these three rules are sufficient to yield Lorentz invariants formed by simple combinations

of these resummed quantities multiplied by
√
−g.

Notice that, at variance with what is generally made in this context, we use neither

field redefinitions nor equations of motion or integrations by parts, thus in the derivative

expansion of our Lorentz invariants the first few (sometimes all) terms may vanish on shell,

at least at the perturbative level. For instance, at scaling two we find two Lorentz invariants

obtained by applying the above rules to the two terms ∂a∂bX
k∂a∂bXk and �Xk�Xk, which

are both vanishing on shell. The two moves i) and ii) yield the following two invariants

I1 =
√
−g
(
∂2
abX

k∂2
cdXk g

acgbd − ∂2
abXk∂

2
cdXi∂eX

k∂fX
i gacgbdgef

)
, (1.10)

I2 =
√
−g
(
∂2
abX

k∂2
cdXkg

abgcd − ∂2
abXk∂

2
cdXi∂eX

k∂fX
i gabgcdgef

)
. (1.11)

In particular we recover the Hilbert-Einstein Lagrangian

I1 − I2 =
√
−gR , (1.12)
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where R is the scalar curvature of the induced metric

R =(∂2
abX · ∂2

cdX)(gacgbd − gabgcd)
− (∂2

abX · ∂eX)(∂2
cdX · ∂fX)gef (gacgbd − gabgcd) .

(1.13)

Although in the case of the effective string the Hilbert-Einstein Lagrangian is a total

derivative (there are no handles in the present description of the worldsheet), it is no so

for a generic p−brane. This observation illustrates the fact that our recipe can generate

non-vanishing invariants starting from terms which are zero on shell.

In the case of the p−branes we can assume that the massless modes propagating

through the extended object are not only the Goldstone modes, i.e. the transverse coor-

dinates Xi (i = p + 1, p + 2, . . . D − 1) but also a p−dimensional abelian gauge field Aa
(a = 0, 1, . . . p). It is easy to extend our Lorentz invariants to this more general case by ex-

ploiting the fact that the way of transforming of the field strength Fab = ∂aAb−∂bAa under a

non-linear Lorentz transformation is exactly the same as the induced metric gab [17, 32, 33],

hence it suffices to replace in our Lorentz invariants the induced metric gab and/or gab with

the combination eab = gab + λFab and/or its inverse eab, defined by eacecb = δab , to obtain

these more general invariants.

The outline of the paper is as follows. In the next section we describe a new way to

deal with the scaling zero invariant and introduce a useful diagrammatic representation. In

section 3 we derive the first two rules which are necessary to obtain Lorentz invariant ex-

pressions and describe the scaling two invariants obtained with this new method. In section

4 we discuss higher scaling invariants, describe the third rule and apply it to write explicitly

a set of invariants of scaling four. Finally in the last section we draw some conclusions.

2 Scaling zero

It is convenient to introduce a diagrammatic representation of the terms contributing to

derivative expansion of the effective action. Each term is associated to a graph where

the nodes represent the fields Xi, and there are two kind of links connecting the nodes.

They represent the two types of saturation; solid lines represent saturation of worldvolume

indices while wavy lines are associated to the saturation of transverse indices.

At scaling zero there is just one possible structure. A graph at any order in the

derivative expansion is a product of rings, i.e. polygons with an even number of vertices,

while the links alternate solid and wavy lines as shown in figure 1.

It is useful to write the non-linear infinitesimal Lorentz transformation [13] in a co-

variant form

δXi = −εajδijσa − εajXj∂aX
i , (2.1)

so that

δ
(
∂bX

i
)

= −εajδijηab − εaj∂bXj∂aX
i − εajXj∂a∂bX

i . (2.2)

As a consequence, a variation of a ring is shown in figure 2. The first two addends provide

the recurrence relation. They must cancel order by order independently from other terms

that could be multiplied with the ring under consideration. Therefore, if we could neglect
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Figure 1. Possible structures with first derivatives of the fields. Solid lines stand for worldvolume

indices, wavy lines for scalar products in the bulk. The generic term at scaling zero is a product of

rings of different sizes.

Figure 2. Variation of a ring at order 2k. The dot represents the matrix εaj of parameters of the

transformation.

Figure 3. Graph required to sweep out the Xi contribution coming from a term containing neither

the last ∂aX · ∂aX factor nor the 1
2 coefficient.

the third addend, we would sum up the series associated with a ring, and this would be

enough. The third variation, on the contrary, must be cancelled adding the missing terms

to form a total derivative. We get a total derivative by moving the solid link of the dot

around from one vertex to the other. In the case of a product of rings, the variation of

every ring provides the right contribution, and the total derivative is found adding one

more graph (see figure 3). So this request forces us to add a new minimum ring, and with

it the whole tower of growing rings to cancel the first two addends in figure 2. However, the

situation is kept simple by the fact that linearity allows us to sum up the series associated

with a ring, and then add to the result the new ring to form the total derivative.

Let us concentrate on a single ring. Referring again to figure 2, the compensation of
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the first two addends order by order leads to the recurrence relation

(k + 1)ak+1 = −k ak, (2.3)

where the coefficient ak is associated with the ring with 2k vertices. The solution is

ak = (−1)k+1 1

k
a1. (2.4)

So we get the series

a1

∞∑
k=1

(−1)k+1 1

k

[
(∂X · ∂X)k

]a
b
δba = a1Tr [log (1 + ∂X · ∂X)ab ]

= a1 log
{

det (1 + ∂X · ∂X)ab
}

= a1 log
{

det [ηac (η + ∂X · ∂X)cb]
}

= a1 log
[
− det (ηab + hab)

]
= log(−g) ,

(2.5)

where we have used the induced metric gab defined in (1.7). To deal with total derivatives,

it is sufficient to consider a sequence bn whose index counts the number of logarithms. The

general addend of the series is then bn
[

log(−g)
]n

.

Now consider the derivative expansion of the logarithms again. At order n there are

n rings, and if we choose a size for each of them, the corresponding graph appears in the

expansion n! times. To build a total derivative we must add a graph with the same n rings,

plus one ring with just two vertices. This new graph comes from the order bn+1 with a

multiplicity factor (n + 1)!. There is no other numerical factor from the Taylor series of

the logarithms to deal with, as we normalised all a1’s of (2.4) to one. Taking into account

the 1
2 factor from figure 3, we find the recursion relation

bn+1 =
1

2(n+ 1)
bn, (2.6)

whose solution is

bn =
1

2n n!
b0. (2.7)

Now we can write the Lagrangian density at scaling zero

L0 = b0

∞∑
n=0

1

n!

[
1

2
log(−g)

]n
− b0 = b0

√
−g − b0 . (2.8)

Choosing c0 = −b0 we recover Equation (1.4) quoted in the Introduction.

An apparent weak point in the above calculation is the implicit assumption that all

the rings are algebraically independent, while in a p−brane only the first p + 1 are so. It

would be not difficult to fix this point in the general case [34], however we believe that it

is more useful and instructive to concentrate on the case of the effective string where we

can give a complete, alternative proof. In the latter case there are only two independent

ring terms, namely Trh = haa and Tr(h2) = habh
b
a. For the other rings it is not difficult to

verify that

Trhn =

(
Trh+

√
2Tr(h2)− (Trh)2

2

)n
+

(
Trh−

√
2Tr(h2)− (Trh)2

2

)n
, (2.9)
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thus the most general scaling zero expression is

I0 =

∞∑
m=0

∞∑
n=1

cn,m(Trh)n[Tr(h2)]m =

∞∑
m=0

∞∑
n=0

cn,m(Trh)n[Tr(h2)]m − c0,0 , (2.10)

where we added and subtracted the constant term c0,0 in order to simplify the solution of

the recursion relations dictated by Lorentz invariance. We find

(n+ 1)cn+1,m +

(
n

2
+m− 1

2

)
cn,m + (m+ 1)cn−1,m+1 = 0 , (2.11)

and

(n+ 2)cn+2,m +

(
m− 1

2

)
cn+1,m − (m+ 1)cn−1,m+1 = 0 , (2.12)

with the initial conditions

cn,m = 0 for n < 0 or m < 0 ; c0,0 = −c0 . (2.13)

Actually it is not necessary to explicitly solve these recursion relations: it is sufficient

to calculate the first few coefficients and realise that they coincide with those of the Taylor

expansion of

− c0

√
1 + Trh+

1

2
(Trh)2 − 1

2
Tr(h2) = −c0

√
−g . (2.14)

Combining this simple fact with the observations that the solution of the above recurrence

relations is unique, that
∫
d2ξ
√
−g is Lorentz invariant since [17]

δ
√
−g = −εaj∂a(Xj√−g) , (2.15)

and that of course any constant σ is Lorentz invariant, we are led to conclude that the

most general invariant of scaling zero is the one quoted in the Introduction in eq. (1.4).

3 Scaling two

At higher scaling graphs with vertices with more than one solid link appear. We call seed

graphs those of them without vertices of scaling zero, i.e. vertices associated with ∂aXi.

Even in this case, things do not complicate too much, because of the same two features

of the variations. First of all, Lorentz variations which involve non derived fields have the

same role as above in forming total derivatives. Once more, one should add a ring with

two vertices to complete the total derivative. This new ring takes with it the whole tower

of graphs already considered at scaling zero. It is straightforward to conclude (and verify)

that all variations involving non derived fields are exactly compensated by multiplying

every graph by the scaling zero Lagrangian density. In other words, a Lorentz invariant

of scaling n > 0 should have the form
√
−g Fn, where Fn =

∑
α t

α
n is a suitable linear

combination of terms of scaling n. We have

δtαn = −εaj (Xj∂at
α
n + terms involving only field derivatives) ; (3.1)

– 8 –
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combining the first term of this transformation with the way of transforming of
√
−g given

in (2.15) we obtain a total derivative; thus, from now on, we will concentrate on that part

of Lorentz variation involving only field derivatives and describe a general method to find

the linear combination Fn where this Lorentz variation is cancelled, i.e.

δFn = −εajXj∂aFn . (3.2)

The Lorentz variation of a vertex with n derivatives is

δ
(
∂na1a2...anXi

)
= −εbj

(∑
k

∂akXj ∂
n
b a1a2...anXi + ∂bXi ∂

n
a1a2...anXj+

+
∑
k

∑
l

∂2
akal

Xj∂
n−1
b a1a2...an

Xi + . . .
) (3.3)

The variations of vertices in seed graphs can be divided into two categories: those which

generate a vertex of scaling zero (the first two terms of (3.3)) and the others. The latter will

in general make different seed graphs communicate, and will lead just to new combinatorial

factors, as we shall see later. However, to deal with scaling two corrections it is sufficient

to consider the former.

There are two general cases to deal with. These are the first term of (3.3) whose

effect can be disposed of by a modification of the solid link stretched between two non-zero

vertices, and the second term of (3.3) which requires a modification of a wavy link. In

figure 4 the variation induced by the first term is shown. Once this first step is made, the

chain must grow in order to cancel variations which add a dot and a scaling zero vertex.

The only difference with the ring is that now we can establish an order among the vertices.

This is sufficient to reduce all multiplicities to one, and to obtain the recurrence relation

ak+1 = −ak. (3.4)

So every solid link contributes a factor

∞∑
k=0

[(
− h
)k]

ab
=
(
η + h

)−1

ab
= gab , (3.5)

where gab is the matrix inverse of the induced metric gab, with gabgbc = δac . We omitted

the arbitrary constant, as it could be absorbed in a unique constant in front of the graph.

In conclusion, the variation generated by the first term of (3.3) is cancelled if we replace

the Minkowski contraction of every solid link with the induced metric, namely,

ηab → gab . (3.6)

The fact that the infinite tower of graphs generated by (3.5) cancels those Lorentz

variations which insert zero scaling vertices can also be verified a posteriori by studying

the way of transforming of gab. Since [17]

δgab = −Λefabgef − ε
cjXj∂cgab , (3.7)
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Figure 4. In the first line, a variation of the vertex of scaling n. In the second line, the variation

of the vertex of scaling 0 on the left, which equals the first one.

���
�

���
�

+

+

....

....n n

nn

Figure 5. In the first line, a variation of the vertex of scaling n. In the second line, the variation

of the vertex of scaling 0 on the left, which equals the first one.

with

Λefab = εcj
(
∂aXjδ

e
cδ
f
b + ∂bXjδ

e
cδ
f
a

)
(3.8)

we obtain

δgab = +Λabefg
ef − εcjXj∂cg

ab . (3.9)

If the seed graph is given by a term of the form Tabcd...η
abηcd . . . , it has to be replaced

with Tabcd...g
abgcd . . . . The variation of vertices of T generates factors of the type −Λefab ,

like in (3.7), that are cancelled by terms of opposite sign generated by the variation of the

gab’s. Note that the last term of (3.9) contributes to the total derivative and is taken into

account in (3.2).

The effect of the second term of (3.3) on the vertex Xi is shown in figure 5, where it is

also shown how to cancel this variation by a modification of the wavy line associated with

this vertex. The rule is to replace the simple contraction of the wavy line with

δij → tij = δij − ∂aXigab∂bX
j . (3.10)

In this way the mentioned variation is compensated by the variation of ∂aX
i. This move

generates a truly new graph only if it is applied to wavy lines connecting vertices of non

zero scaling. In any other case the second move can be reabsorbed by the first move. For

the same reason we cannot iterate this second move more than once for each wavy link.
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Figure 6. In the first line, a seed graph of scaling two. In the second line, the sum of graphs which

cancel its variation.

As already mentioned in the Introduction, if we apply (3.6) and (3.10) to the two seed

terms (∂2
abX ·∂2

cdX)ηacηbd and (∂2
abX ·∂2

cdX)ηabηcd we obtain at once the two Lorentz invari-

ants I1 and I2 of scaling two quoted in (1.10) and (1.11). Again we note that we can check

their invariance immediately by resorting to the transformation law of gab given in (3.9).

We found no other invariant of scaling two. In particular we can prove there is no

Lorentz invariant term of scaling two of the form
√
−gRF0. For, note that Lorentz invari-

ance, without eliminating terms proportional to the equations of motion, implies that F0

transforms according to (3.2) and the only solution with n = 0 is F0 = constant. This may

be seen either directly by solving the associated recursion relations, or indirectly by noting

that if F0 is a solution of (3.2), then any power (F0)k is also a solution, hence if F0 were not

a constant one would generate an infinite sequence of independent Lorentz invariants of

scaling two. In conclusion, the only Lorentz invariant of the form
√
−gRF0 is proportional

to I1 − I2 =
√
−gR. Note that this does not contradict the claim of [16], where it was

shown that a specific term of scaling two has a Lorentz transformation that is proportional

to the equations of motion (we do not allow such a transformation in our analysis).1

What is the first non vanishing contribution of I1 and I2 to the effective action? Con-

sider the seed graph in figure 6 which generates the invariant I1. It is a total derivative,

being proportional, after integrating by parts, to the free e.o.m.. However, its first correc-

tion, according with the rules established so far, is a combination of six-derivative terms

which — in the case of a p−brane with p > 1 — does not form a total derivative. There-

fore the combination of graphs drawn in figure 6 represents the first bulk correction of the

Dirac-Born-Infeld action, the multidimensional generalisation of the Nambu-Goto action.

In the case of the effective string this combination is instead a total derivative. This can

be understood by observing that I1 − I2 =
√
−gR is a total derivative (at least locally)

and that the first terms of I2, up to eight derivatives, are proportional to the free e.o.m,

hence are vanishing at six-derivative order. On the other hand the only term of scaling

four with six derivatives, namely ∂3
abcX · ∂3

defXη
adηbeηcf , is a total derivative modulo free

e.o.m., thus we are led to conclude that in the effective string action in any space-time

dimensions there are no six-derivative corrections of the Nambu Goto action.

1We benefited by an exchange of e-mails with O. Aharony about this point.
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Figure 7. Splitting a vertex of scaling two.

4 Higher scaling

The number of Lorentz invariants increases rapidly with the scaling. A first class of invari-

ants is formed by the ring of polynomials of the invariants of lower scaling. In fact, if Fn
and Gm are two functions of scaling n and m obeying (3.2), then (Fn)p(Gm)q for any pair

of integers p and q fulfils the same transformation law, so it defines the Lorentz invariant√
−g(Fn)p(Gm)q of scaling pn + qm. Thereby the two invariants of scaling two generate

four invariants of scaling four of the form IαIβ/
√
−g (α, β = 1, 2). A combination of them

gives the geometric invariant
√
−gR2, of course. The first non-vanishing contribution is an

eight-derivative term that comes from I2
1/
√
−g.

In addition to this polynomial class of invariants there are many others which can

be constructed ex novo starting from seed graphs and repeating the steps described in the

previous section. For instance, starting from the seed term (∂a∂
bX ·∂b∂cX)(∂c∂

dX ·∂d∂aX)

and applying the two moves (3.6) and (3.10) we get at once the Lorentz invariant

I3 =
√
−g tijtkl∂2

abXi∂
2
cdXj∂

2
efXk∂

2
ghXl g

hagbcgdegeg , (4.1)

which is related, when added to a suitable combination of IαIβ/
√
−g, with the geometric

invariant
√
−gRabRab, where Rab is the Ricci tensor. In our notation we have simply

Rab = gef tij
(
∂2
aeXi∂

2
fbXj − ∂2

abXi∂
2
efXj

)
. (4.2)

In the case of the effective string the equality R2 = RabR
ab holds, so I3 is not a

new invariant.

When in the seed graph there are vertices with scaling n > 1, i.e. transverse coordinates

with more than two derivatives, we have to add a third move in order to compensate the

effect of that part of the variation of dnXi which creates vertices of scaling n > 0, like the

third term of (3.3). Analysing the structure of this variation it is easy to see that the rule

that compensates this kind of variation is to add to each vertex with n > 1 all possible

splittings of it in a pair of vertices of lower scaling. In particular a vertex of scaling two is

replaced by

∂3
abcXi → ∇abcXi = ∂3

abcXi− (∂2
abXj∂dXk∂

2
ecXig

deδjk + cyclic permutations of abc) . (4.3)

This is the third move we need to complete the construction of Lorentz invariants. Its

diagrammatic representation is drawn in figure 7. The generalisation of the last move to

vertices with more legs is straightforward. The crucial point is that the split vertex is a

– 12 –
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Figure 8. In the first line a seed graph with two vertices of scaling two. In the other two lines

the Lorentz invariant obtained by applying the moves (3.6), (3.10) and (4.3). The dotted lines

represent the saturation with gab and the lines with arrows represent saturation with tab. Note that

not all the saturations in the transverse indices (wavy lines) can be promoted to tab, but only those

connecting vertices of scaling larger than zero. In order to obtain the complete Lorentz invariant

we have to multiply this combination with
√
−g.

sort of covariant derivative, in the sense that under a non-linear Lorentz transformation

its variation is

δ (∇a1a2a3Xi) = −εbj
[
∂bXi∂

3
a1a2a3Xj +

(
∂a1Xj ∂

3
b a2a3Xi + cyclic perm. of a1a2a3

) ]
. (4.4)

Comparing it with (3.3) we notice that the problematic part of the variation has disap-

peared: the split vertex transforms like vertices of lower scaling, where the steps (3.6)

and (3.10) suffice to build up an invariant expression.

If we apply this third move to the seed graph ∂a∂b∂cX · ∂a∂b∂cX we obtain a new

invariant of scaling four which is represented in figure 8. It can be written in a compact

way as

I4 =
√
−g∇abcXi∇efgXjt

ijgaegbfgcg . (4.5)

If one is interested in writing it in an explicit form in terms of transverse coordinates it

suffices to use an explicit form of the inverse induced metric. In the case of the effective

string we have

gab =
hab − (1 + Trh)ηab

g
. (4.6)

On the contrary the explicit form of gab is not necessary to check directly the Lorentz

invariance of the set of expressions one obtains by applying the above three moves. It

suffices to know its way of transforming under an infinitesimal Lorentz transformation,

described by (3.9). This remark suggests a further generalisation of the p−brane action.

In this context it is customary to assume that among the massless excitations which can

propagate in such extended object there is, besides the D − p − 1 scalars Xi, also a U(1)

gauge field. It has been pointed out that its field strength Fab transforms exactly as gab
under a Lorentz variation [17]. Thus, if we take the linear combination eab = gab + λFab it

– 13 –
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follows that its matrix inverse eab, with eacecb = ebce
ca = δab , transforms exactly as gab. As

a consequence, if we replace in our invariants gab with eab we obtain more general Lorentz

invariants describing the dynamics of this gauge field. Similarly, in those invariants that can

be written only in terms of the induced metric and its inverse, like the geometric invariants,

we could do the same replacement gab → eab without spoiling the Lorentz invariance of the

action. Notice that this way to add higher order terms involving Fab was proposed years

ago with a different motivation [35].

5 Conclusion

In this paper we described a simple and general method to explicitly construct higher

order Lorentz invariant expressions contributing to the effective action which describes the

dynamic behaviour of effective strings or p−branes. We do not know whether the list of

invariants constructed this way is complete, however the method is so general and the

resulting invariant forms are so simple that it would be very surprising the discovery of

invariants with a different structure.

Summarising the results of the last two sections, we found three simple rules which

transform a seed term — a term invariant with respect the stability group ISO(D − p −
1)× SO(1, p) made with derivatives of the transverse coordinates of order higher than one

— into an expression which is invariant under the whole Poincaré group. They consist in

replacing the Minkowski metric ηab of worldvolume indices with gab, the Euclidean metric

δij on the transverse indices with the metric tij defined in (3.10) and the derivatives of order

higher than two with covariant derivatives, defined in the simplest case in (4.3). Once these

replacements have been made the Lorentz transformation of the field derivatives is exactly

compensated by the transformation law of gab. We found in this way two invariants of

scaling two which can be combined to form the Hilbert-Einstein Lagrangian
√
−gR which

is the first non vanishing higher derivative contribution of the effective action of a p−brane

with p > 1, while for the effective string this term is a total derivative. In the latter case the

first non vanishing correction of the Nambu-Goto action is the term of scaling four
√
−gR2.

We can associate a Lorentz invariant to every seed graph, i.e. an arbitrary graph with

an even number of vertices subject to the only condition that the coordination number of

each vertex is larger than two. Different choices of wavy links may give different invariants.

Thus we are led to conclude that the number of Lorentz invariants is much larger than

those that can be written in terms of local geometric expressions as functions of the induced

metric and its derivatives. Note however that we work in the static gauge and there is no

obvious reason to believe that all the Lorentz invariants that can be found with the present

method could be rewritten in a reparametrization invariant form.
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[1] M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the free loop wave equation in the

WKB approximation, Nucl. Phys. B 173 (1980) 365 [INSPIRE].

[2] M. Caselle, R. Fiore, F. Gliozzi, M. Hasenbusch and P. Provero, String effects in the Wilson

loop: a high precision numerical test, Nucl. Phys. B 486 (1997) 245 [hep-lat/9609041]

[INSPIRE].
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[18] M. Lüscher, G. Munster and P. Weisz, How thick are chromoelectric flux tubes?, Nucl. Phys.

B 180 (1981) 1 [INSPIRE].
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