
08 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Experimenting with PyTorch on RISC-V

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1925291 since 2023-08-07T08:49:55Z



Experimenting with PyTorch on RISC-V
Iacopo Colonnelli∗, Robert Birke and Marco Aldinucci

University of Torino, Computer Science Dept., Corso Svizzera 185, 10149, Torino, Italy

Abstract

RISC-V is an emerging instruction set architecture. Its modular and extensible open-source royalty-free design
is increasingly attracting interest from both research and industry. Nowadays, different RISC-V-based boards
can be bought off the shelf. However, software availability is equivalently vital in guaranteeing the RISC-V
ecosystem’s success. Here we contribute with the first publicly available port of PyTorch. PyTorch is one of the
most popular Deep Learning libraries available today. As such, it is a crucial enabler in running state-of-the-art
AI applications on RISC-V-based systems and a first step towards a fully democratic end-to-end codesign process.

Introduction

Open ISA is a crucial ingredient of a fully democratic
end-to-end codesign process, moving vendors’ mar-
ket competition from compatibility to performance.
However, software availability is equally vital for the
success of the RISC-V ecosystem, as it ensures a broad
and long-lasting adoption from the community. In this
work, we describe how we ported the PyTorch Deep
Learning [1] framework to RISC-V, hoping it will serve
as a practical guide for other similar initiatives in the
future.

Methodologies

Porting PyTorch to RISC-V

We started the porting effort back in early 2022, using
PyTorch v1.11. At that time, at least three inter-
nal dependencies were incompatible with the RISC-V
ISA: the Chromium Breakpad library1, the SLEEF
Vectorized Math Library2, and the PyTorch CPU IN-
FOrmation library (cpuinfo)3. Since then, we have
compiled several versions of PyTorch up to the latest
v2.0 version without further modifying the codebase.
The list of pull requests we opened during the porting
and all the wheel binaries targeting RISC-V architec-
ture are available in our repository4.

Porting Breakpad The Chromium Breakpad li-
brary implements a client-server approach to dis-
tributed crash reporting. A client library is included in
the user application. When it crashes, the client writes
a minidump file capturing system information like
threads’ state (processor registries and stack memory)
or loaded executables and libraries. The minidump is
then read by the Breakpad processor, which produces

∗Corresponding author: iacopo.colonnelli@unito.it
1 https://chromium.googlesource.com/breakpad
2 https://sleef.org
3 https://github.com/pytorch/cpuinfo
4 https://gitlab.di.unito.it/alpha/riscv/torch

a human-readable C/C++ stack trace. The main
effort for porting Breakpad to RISC-V was devoted
to properly treating the state of the processor reg-
istries. Internally, Breakpad reimplements the POSIX
getcontext() function in assembly to retrieve a snap-
shot of the processor register set. Then, architecture-
specific data structures load, store, print, and manipu-
late the processor context across the various Breakpad
modules. All these components have been extended
to handle riscv and riscv64 architectures.

Porting SLEEF The SIMD Library for Evaluat-
ing Elementary Functions (SLEEF) [2] implements a
vectorised version of all C99 real floating-point math
functions with two different levels of accuracy (1 ULP
and 3.5 ULP). Plus, a third implementation guarantees
bit-wise consistent results across all hardware archi-
tectures. The RISC-V V (RVV) extension augments
the base RISC-V architecture with 32 vector registers
and a set of vector instructions. However, the hard-
ware platform we used to develop and compile did not
implement this extension. Therefore, we just ported
the scalar implementation of math functions based on
the Fused Multiply-Add (FMA) optimised instruction.
More recently, SiFive® forked the SLEEF library to
introduce support for RVV intrinsics5.

Porting cpuinfo The PyTorch CPU INFOrmation
library (cpuinfo) provides a uniform cross-platform
layer to access information about the host CPU. Py-
Torch relies on cpuinfo for performance optimisation
when running on a CPU, e.g., to detect support for
SIMD instructions or to pin threads to cores in NUMA
architectures. Porting cpuinfo to RISC-V on a Linux
OS means extracting information on the processor
and the cache hierarchy from a set of sources (e.g.,
/proc/cpuinfo, hwcap, and the manufacturer man-
ual) and exposing them in a coherent way to the user.
The intrinsically dynamic nature of the RISC-V ISA
and the somehow loose coupling between the ISA itself
and the available hardware make it quite complex to

5 https://github.com/sifive/sifive-sleef

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:iacopo.colonnelli@unito.it
https://chromium.googlesource.com/breakpad
https://sleef.org
https://github.com/pytorch/cpuinfo
https://gitlab.di.unito.it/alpha/riscv/torch
https://github.com/sifive/sifive-sleef


Reg
res

sio
n

M
NIS

T

ale
xn

et

de
ns

en
et1

21

de
ns

en
et1

61

de
ns

en
et2

01

res
ne

t15
2

res
ne

t18

res
ne

t50

sq
ue

eze
ne

t1_
0

vg
g1

1
vg

g1
3

vg
g1

6
vg

g1
9

100

101

102

103 Training Inference

R
un

ti
m

e
[s

]

C++
Python

Figure 1: Timing results of selected pytorch/examples4 benchmarks: mean across 5 runs/images. regression and mnist:
training one epoch using C++/Python API. imagenet: single image inference for different popular DNN architectures.

fully port this library. Therefore, we started porting
a minimum set of features to support PyTorch multi-
threading functions, leaving full support for extensions
as future work.

Evaluation

Testbed We compile and evaluate our RISC-V port
on the SiFive® Freedom U740 SoC (4 U74 RV64GCB
1.2 GHz cores, 16GB DDR4 RAM, 1 TB node-local
NVMe storage). The node runs Linux Ubuntu 20.04
with kernel v5.15 for riscv64. As a build environment,
we use Python v3.9, GNU C++ compiler v10.3.0, and
cmake v3.26.0 to compile PyTorch v2.0.
Benchmarks The PyTorch project provides a repos-
itory of curated, short, and high-quality examples4

that we use to test and benchmark our RISC-V port.
We run various programs covering training and in-
ference tasks using Python and C++ PyTorch APIs.
For training, we consider regression and mnist. The
regression code fits a fourth-degree polynomial using
a single fully-connected layer. We modified the code
to train over a fixed number of 32K samples (instead
of using the fitting error as a stopping condition). The
mnist code trains a simple Convolutional Neural Net-
work (CNN) on the MNIST dataset. The C++ and
Python versions differ slightly in the used architecture.
We uniform both to the C++ version, i.e. a CNN of
two convolutional layers followed by one dropout layer
and two fully connected layers. Here we evaluate the
runtime to train one epoch comprising 60K images.
For inference, we use imagenet using different image
classification models provided by the PyTorch Vision
module v0.2. Here we evaluate the inference time for a
single image. Fig. 1 reports the results. The C++ API
runs faster, while the Python API offers the flexibility
to modify the DNN architecture without recompiling.

All tests ran without any issues.

Conclusion

The current PyTorch porting to RISC-V is mature
enough for research and development, and it has al-
ready been used to assess RISC-V hardware readiness
for decentralised Machine Learning [3]. Plus, efforts
to provide a fully-optimised RISC-V implementation
are ongoing in the context of the EUPilot project5.

Acknowledgements

This work has been partially supported by the Spoke
“FutureHPC & BigData” of the ICSC – Centro
Nazionale di Ricerca in “High Performance Comput-
ing, Big Data and Quantum Computing” (NextGenera-
tionEU), and the European PILOT project (EuroHPC-
JU, G.A. n. 101034126).

References

[1] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: Advances in Neu-
ral Information Processing Systems 32. 2019, pp. 8024–
8035.

[2] Naoki Shibata and Francesco Petrogalli. “SLEEF: A
Portable Vectorized Library of C Standard Mathematical
Functions”. In: IEEE Trans. Parallel Distributed Syst. 31.6
(2020), pp. 1316–1327. doi: 10.1109/TPDS.2019.2960333.

[3] Gianluca Mittone et al. “Experimenting with Emerging
ARM and RISC-V Systems for Decentralised Machine
Learning”. In: CoRR abs/2302.07946 (2023). doi: 10 .
48550/arXiv.2302.07946. arXiv: 2302.07946.

4 https://github.com/pytorch/examples
5 https://eupilot.eu

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1109/TPDS.2019.2960333
https://doi.org/10.48550/arXiv.2302.07946
https://doi.org/10.48550/arXiv.2302.07946
https://arxiv.org/abs/2302.07946
https://github.com/pytorch/examples
https://eupilot.eu

	Introduction
	Methodologies
	Porting PyTorch to RISC-V
	Porting Breakpad
	Porting SLEEF
	Porting cpuinfo


	Evaluation
	Conclusion
	Acknowledgements

