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Abstract

Deep learning models are nowadays broadly deployed to solve an incredibly
large variety of tasks. However, little attention has been devoted to con-
nected legal aspects. In 2016, the European Union approved the General
Data Protection Regulation which entered into force in 2018. Its main ratio-
nale was to protect the privacy and data protection of its citizens by the way
of operating the so-called “Data Economy”. As data is the fuel of modern
Artificial Intelligence, it is argued that the GDPR can be partly applicable
to a series of algorithmic decision-making tasks before a more structured AI
Regulation enters into force. In the meantime, AI should not allow undesired
information leakage deviating from the purpose for which is created. In this
work, we propose DisP, an approach for deep learning models disentangling
the information related to some classes we desire to keep private, from the
data processed by AI. In particular, DisP is a regularization strategy de-
correlating the features belonging to the same private class at training time,
hiding the information about private class membership. Our experiments on
state-of-the-art deep learning models show the e↵ectiveness of DisP, mini-
mizing the risk of extraction for the classes we desire to keep private.

Keywords: Deep learning, GDPR, regularization, disentangling, artificial
neural networks, private classes
2000 MSC: 68T01,

Email address: enzo.tartaglione@telecom-paris.fr (Enzo Tartaglione)
1Francesca Gennari is with LAST-JD-RIoE consortium, more specifically Mykolas

Romeris University - University of Bologna - University of Turin.

Preprint submitted to Neurocomputing September 5, 2023



2000 MSC: 68P30

1. Introduction

Currently, a significantly large portion of problems is being solved through
the deployment of a deep learning model, considered by most as a “univer-
sal problem-solving tool” [5]. Their fast and uncontrolled spread, however,
requires legal rules that are influencing or are bound to influence the devel-
opment of Artificial Intelligence (AI). There are two main reasons for this.
Firstly, it is of general interest that the algorithmic decision-making systems
that are being described and explained further can be of wide application,
irrespective of the private or public entity of the user. There are tools, avail-
able in the literature, attempting to provide explanations on the AI’s decision
process, like GradCam [6]. However, these tools are limited to input-output
relationships, and do not provide insights on how to open “the black box”.
Secondly, it would be irresponsible and unethical to promote algorithms that
could create damage the privacy of people whose data are used by AI [7]. To
this end, what will be succinctly explained is the legal outlook of the Euro-
pean Union on AI. This is done because the EU has already obtained the role
of the legal influencer as far as the discipline of data protection is concerned
about drafting the General Data Protection Regulation (GDPR) [8] and be-
cause it has started since 2018 in trying to create the conditions to regulate
the AI. It all started with the Ethical Guidelines of the AI [9], the Assessment
list for trustworthy Artificial Intelligence (ALTAI) for self-assessment [10] and
finally the proposal for the regulation of the AI [11]. These two issues will
be dealt with subsequently. It is important to specify that the following two
subsections are not a commentary of the entirety of the two regulations but
a focus on the most problematic aspects which could potentially clash with
the development of an AI described further.

1.1. The GDPR and the AI

The GDPR is the first regulation (an EU mandatory legislative act) that
tries to balance the right to data protection, and, more largely, to privacy in
the EU, with the Big Data economy. The points of contact between AI de-
velopers and the GDPR are mainly two: the concept of personal data (i) and
data processing (ii). Then it is important to understand how the developers
of neural networks and/or companies/research institutes are seen according
to the GDPR (iii) and how the principles of data protection by design and by
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default (iv) could be relevant for the development of trustworthy and ethical
AI models.

Personal data. Whenever one works with data that can be referred to
people (and the AI creation field makes no exception), lawyers but especially
innovators must follow the GDPR not only to check on compliance but also to
ensure that the AI does not infringe on people’s privacy and data protection,
which in the EU are considered fundamental rights and therefore are always
to be considered hierarchically superior to economic rights. Concerning data
relating to a specific individual, Article 4.1 1) GDPR defines personal data
as anything ”relating to an identified or identifiable natural person”. Some
scholars have warned about the dangers that an overly large definition of
personal data might have on the applicability of the raison-d’être of this reg-
ulation [12]. In more technical terms, personal data is information that can
lead to the identification of an individual.

Data processing. Further, GDPR is relevant for the application of
the AI model as its operations can be described as data processing when
performed on personal data. Article 4.2 GDPR describes processing as prac-
tically any operation involving personal data. Therefore, whenever an AI
model uses personal data (to train or to give a specific output autonomously),
there will be a processing activity. The GDPR defines certain categories of
more sensitive personal data in Article 9.1 GDPR. These include biometric,
genetic, and general ‘health data’ (the latter are better described in Article
4.1 15) GDPR). These could also be categories of data used by the model.
Sensitive data in principle should not be processed but some exceptions can
justify such operations. In Article 9.2 h) GDPR increasing the e�ciency of a
medical diagnosis (besides the expressed specific consent of the patient, see
9 2. a)) can be a justification for sensitive personal data processing. In this
model, the function of the data processing is not to identify people but to
create a technology that averts discriminatory results and can increase the
e�ciency of medical diagnosis. This model would also fulfill the respect of
the principle of fairness as set in Article 5 1. a) GDPR.

The stakeholders: accountability and liability. Two main stake-
holders can be involved in the development of AI technologies from a GDPR
perspective. The first one is the controller (Article 4.7 GDPR) which is
the ”natural, legal person or public authority. . . which, alone or jointly with
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others determines the purposes and the means of the processing of personal
data”. In our particular case, the controller should be either the public or
private actor that decides to use the model. However, the subject/entity
which handles concretely the data processing phase is called the processor
(Article 4.8 GDPR) and could be a company to which these processing func-
tions are delegated by the controller. The GDPR, by stating the principle of
accountability (Article 5.2 GDPR) and of responsibility/liability of the con-
troller (Article 24 GDPR and Article 82 GDPR), mandates that the same
controller must implement the technical measures that are requested in order
to ensure the security (Articles 32-35 GDPR) of the data subject (the person
whose data are being processed). This means that the entities responsible
for the training and development of neural networks will not be exempt from
these rules whenever data processing activities involve personal data. Secu-
rity and safety of personal data are expected by the controller as a concrete
application of the principles of fairness, transparency, and lawfulness (Article
5.1 a) GDPR).

Data protection by default and by design as a tool. The GDPR is
a system with a regulatory and compliance function, but, at the same time,
it is open-ended as it envisions the protection of personal data as a result
and does not focus on how to achieve this target, as it depends also by the
technical and economic means available in each specific case. That is why
Article 25 of GDPR sets out the principle of privacy by design and by de-
fault. It means that privacy should be the objective through which all the
processing activities of a data-driven technology must aim from their very
first conceptualisation [13] and, also, privacy should be the default option,
which means that it should revolve around the amount of data that is neces-
sary for the processing and not to exceed that limit (this principle is called
data minimization principle and can be found at Article 5.1 c) GDPR) [14].
The general character of this article also leaves way not only to business
and management methods but also to the technology itself in the task to
find ways that can increase the privacy and security of the data subject [15].
The model could be a concrete application of this principle as it protects the
identity of the subject, hence their privacy, from the first conceptualization
to its concrete application.
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1.2. New perspectives

The proposed regulation for AI by the European Commission adopts two
main views on regulating this technology. On the one hand, the focus is on
the accountability principle which makes the regulation less detailed than
regulations are in general. The scope of that is to make it a piece of legis-
lation that is technologically neutral as much as possible and to resist the
evolution of this kind of technology through time. On the other hand, risk
assessment is the rationale through which this regime works. There are three
main kinds of AI according to the regulation. Firstly, there are the AI algo-
rithms that are forbidden and consist of technologies that allow the surveil-
lance and the subliminal persuasion of people and especially of minorities
and identifiable groups of people. There are specific exceptions that are pro-
vided for public authorities’ surveillance functions. Secondly, there are the
so-called high-risk AI technologies which for the moment are listed in Annex
I of the proposal. They include all kinds of machine learning, logic, and
knowledge-based approaches (including knowledge representation, inductive
and logic programming, inferences and deductive engines, symbolic reason-
ing, and expert), statistical approaches, Bayesian estimation, and search and
optimization methods. These technologies must be evaluated for their objec-
tive and the risk they might entail for EU citizens. To this extent, there will
be an EU database for the high-risk AI algorithms which will be open and
accessible to all EU citizens (Article 60 of the proposal). Each Member state
will have to set up an authority (or confer new competencies to old ones)
in order to check on the work of specific Notified Bodies (Title III, Chap-
ter 4). These bodies will be private, semi-private, or public organizations
with the task of certifying that AI algorithms are state-of-the-art and secure.
There will be a European Artificial Intelligence Board (Title VI) which will
be composed of the national agencies or authorities which will be in charge
of the coordination and monitoring of the algorithms on the market. This
proposal, if voted favorably by the European Parliament and the Council of
the EU, will become bidding in 27 states and there is some reason to believe
that it will serve as a legal model for other countries in the future just as the
GDPR did.

1.3. Technological context

Towards privacy preservation, cryptographic techniques cover a promi-
nent role and have broad applications. In particular, attribute-Based Encryp-
tion (ABE) is a promising cryptographic primitive which is able to implement
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access control for secure data storage, for example, in the cloud [16, 17], or
even probabilistic data structures [18]. Besides, homomorphic-based encryp-
tion involves the necessity to have a secret key to access the data and is one
of the most used approaches to data protection [19]. Classical approaches
like the above-mentioned, however, protect the data entirely, without leak-
age. Nowadays, users are more and more willing to share content to get
services, sharing even personal data in order to get a service. Standard cryp-
tographic techniques are inapplicable in these contexts, especially considering
that most of the data processing approaches involve the utilization of Arti-
ficial Neural Networks (ANNs). Towards this end, the proper design of an
algorithm, which is not entirely encrypting the data but which filters a part
of the information to be kept private, is necessary.
Privacy-aware learning is not a novel concept in machine learning. One of the
very first works in such an area was published in the far 1965 by Warner [20].
In particular, there were suggested privacy-preserving methods for survey
sampling. Following this path, in the 70s many works have been proposed in
di↵erent areas like census taking and analysis of tabular data by Fellegi [21].
Very recently, thanks to the increase in computational capabilities, many
works have been proposed on privacy-preserving in computational frame-
works. A work by Dwork et al. [22] studied how much noise is required
to guarantee “di↵erential privacy” [23] from data. Following these paths,
a more recent work by Duchi et al. [24] formalized convergence boundaries
for training and the trade-o↵ between privacy guarantees and the utility of
the resulting statistical estimators. This knowledge has been also recently
applied to deep learning frameworks, with a work by Abadi et al. [25], by
introducing some tuned noise in the update rule.
A very recent work by Chamikara et al. [26] proposes the insertion of a “ran-
domizing layer” to guarantee anonymization in the features used for training.
While this approach certainly guarantees no locally-sensitive information leak
under some constraints, it is a very limiting approach as it requires random-
ization to happen after convolutional layers. We know nowadays most the
ANNs have few fully-connected layers or they are even fully convolutional,
and the proposed approach is not applicable without the further insertion of
fully-connected layers. Furthermore, it introduces computational overhead,
and full back-propagation on the entire model is not suitable as no assump-
tion on the random sampling can be done (so the entire convolutional part
must be pre-trained in a non-private fashion and is not further modified).
A di↵erent approach to preserving data privacy is the so-called “federated
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learning” approach. In general, private datasets are held by the proprietary
of the data, who is directly training a local neural network model. Now, the
parameters of the models are sent to a master node, which is then propagat-
ing to all the private computational nodes the general configuration of the
parameters. This approach has been proposed by Shokri and Shmatikov [27]
and allows parallel and private computation. However, such an approach
does not take into account any ethical bias, like gender or race: what it guar-
antees is that the original data are not directly shared, but some sensible
information is.
In our framework, we train a deep neural network model on some target
classes, but we desire at the same time to minimize the risk of information
leakage for some classes we desire to keep private. Towards this end, we
propose a regularization strategy to Disentangle Private classes: we define
a bottleneck layer � in our model and we de-correlate features belonging to
the same bias class but having a di↵erent target. We have two contributions
to DisP: a memory term, which keeps track of the average correlation in the
full training set, and a local mini-batch term which orthogonalizes all the
features belonging to the same bias class but di↵erent targets. To the best
of our knowledge, DisP is the first approach in this context having generality
towards the neural network architecture (or in other words, it applies to any
deep learning model), providing insights on the latent space representation
of the information, and practically showing the features’ correlations. With
this work, we move the first steps to “open the black box” ANN models, and
we accomplish this by putting a constraint on the information bottleneck of
our model, making comparisons with other approaches impossible with the
same experimental setup.
The rest of the paper is organized as follows. Sec. 2 provides details about
DisP working principles, Sec. 3 presents two possible attacks to retrieve the
private information, one unsupervised and another one supervised. Sec. 4
introduces biased-MNIST, a dataset where we have full control of spurious
correlations we desire to keep private from the model, providing a theoretical
analysis and observing DisP’s e↵ectiveness compared to the theory. Then,
in Sec. 5 we test the e↵ectiveness of DisP on real datasets, and finally, Sec. 6
concludes.
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Figure 2: Representation for a generic trained model. The features for DisP are extracted
at the output of the encoder (� layer), and then tanh activated and normalized to have a
unitary norm.

2. Methods and procedures

In this section, after introducing the notation, we present DisP, our pro-
posed regularization term, whose aim is to regularize the deep features aim-
ing at reducing the propagation of the chosen private features onward in the
deep model. Towards this end, we are going to support the description of
our proposed technique by introducing a toy dataset, biased-MNIST, where
we have full control over the impact of some private features over the learn-
ing/inference process. Despite such a dataset has been originally designed
for debiasing applications, we can consider the biased features as the private
ones. Then, we will introduce our DisP term and we will observe its impact
during learning.

2.1. Preliminaries

Let us assume we focus our attention on the output of � , which is the
output layer of the encoder for our model (Fig. 2). We say the output of
� for the i-th sample is vi 2 R

N�⇥1. DisP will be a regularization term,
computed over features extracted from � and undergoing proper activation
(tanh and `2 normalization, as displayed in Fig. 2), to be minimized besides
the overall loss of the model, computed at the output of the classifier. The
e↵ect we desire to achieve is to have the part of the deep model before �
to select features that are important to solve the target task, filtering all of
those containing private information. The overall objective function we aim
to minimize with our learning is the classical formulation

J = ⌘L + �R?, (1)
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Table 1: Overview of the notation used in this work.

Symbol Meaning

M minibatch size
Mt,p cardinality of the samples having the same target t

and the same private feature p
C cardinality of targets
N� output size of �
vi i-th sample in the minibatch, after �
v̂i i-th sample in the minibatch, after the normalization layer

T (ai) function which extracts the target class of ai

P(ai) function which extracts the private feature class of ai

�ab Kronecker delta
�̄ab 1 � �ab

ha, bi scalar product between a and b transposed.
P(a) probability of a
H(a) entropy of a
I(a, b) mutual information between a and b

where L is the loss function for the trained task, ⌘ and � are positive hy-
perparameters, and R? is our proposed DisP. A summary of the notation
used through this work is provided in Table 1: as a standard approach, bold
values mark vector quantities.

2.2. Bottleneck layer

To address our regularization term, we need first to decide the layer where
we wish to apply our DisP regularization, whose task is to prevent informa-
tion leakage (or in other words, what � should be). Due to the complexity
of currently-deployed deep neural network architectures with residual lay-
ers [28, 29] and skip connections [30], and consider some theoretical frame-
works analyzing the information flow in a deep learning model [31, 32], a
reasonable choice for our elected information bottleneck layer is the one be-
fore the classification layers, or in other words, between the encoder and the
classifier.
For our purposes, we desire the extracted features v to have unit norm; hence,
we insert in the model a normalization layer :
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(a) (b) (c) (d)

Figure 3: E↵ect of the Rmem
? term. The same arrow’s point represents the same private

class p while the same arrow’s color indicates the same target t. First, the average F k
t,p

for the current mini-batch is computed (a), then the memory term V k
t,p is provided (b).

On the features with the same bias but di↵erent target (c) the penalty Rmem
? is applied

(d).

• First, it takes the pre-activation v 2 R
N�⇥M and a tanh activation

function is applied to it:

ṽij = tanh(vij) (2)

After this, ṽij 2 (�1; +1) 8i, j.

• Then, an `2 normalization is applied to the entire feature vector ṽi:

v̂i =
ṽi

kṽik2
. (3)

The DisP regularization function will be applied to the normalized v̂i val-
ues. The typical ReLU activation function allows feature values in the range
[0; +1). For our purposes, we need the feature values where DisP is applied
to be limited: we will empirically observe that including this activation at the
bottleneck layer does not significantly impact the performance of the model.

2.3. Disentangling the Private information

To disentangle the private features at training time, we are required two
terms:

• the average features for every target t and every private class p, over
all the dataset;
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• the current features for every target t and every private class p, over
the computed minibatch.

What we aim to accomplish here is to disentangle features belonging to the
same private class b but di↵erent target classes. In this way, di↵erently from
other works like [33] and [34], we will minimize the risk of destroying non-
private information in the process, the same time preventing private data
leakage and maintaining the performance high.
For this reason, we first update the average private features by computing
the average features for the current mini-batch:

F k
t,p =

1

Mt,p

X

i

v̂i · �t,T (v̂i) · �p,P(v̂i) (4)

with k as a mini-batch index, and we update the memory term

V k
t,p = (1 � �) · V k�1

t,p + � · F k
t,p, (5)

where � is the momentum coe�cient. Then, we can compute a memory-
based disentangling term for the current mini-batch

Rmem
? =

1

M · (T � 1)

TX

t=1

MX

i=1

��hv̂i,V
k
t,pi

�� · �̄t,T (v̂i). (6)

Minimizing (6) equals minimizing the average of the correlations between
features belonging to the same private class but di↵erent target classes. A
visual representation of the computation of this term is depicted in Fig. 3.
However, minimizing this term is not a su�cient condition to de-correlate
all the features: there can still be formed clusters mapping the private infor-
mation. For example, looking at Fig. 3d, the features in blue and yellow are
de-correlated from V k

t,p, but the two classes are still anti-correlated. Towards
this end, we also have a term that de-correlates all the features within the
same mini-batch, mapped to the same bias but having di↵erent targets:

Rbatch
? =

1

M

MX

i=1

1P
t 6=T (vi)

Mt,P(v̂i)
·
X

j

|hv̂i, v̂ji| · �̄t,T (v̂i) (7)

This term de-correlates all the features belonging to the same private class
but di↵erent target classes within the mini-batch. A visual e↵ect of Rbatch

?
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(a) (b)

Figure 4: E↵ect of the Rbatch
? term. For each i-th example, the others having the same

bias but di↵erent targets are selected - in (a), the yellow vector is out i-th. Then, these
vectors are each-other de-correlated (b).

is shown in Fig. 4. Having this term alone, with no memory term, for a
large dataset, might result in an oscillatory state, where some features might
be re-correlated after a certain number of epochs. Towards this end, the
memory term in (6), despite modeling only the average correlation among all
the private features, helps in a long-range average de-correlation. The two
contributions in (6) and (7) are simultaneously minimized, and together they
constitute the DisP regularization term:

R? = �mem · Rmem
? + �batch · Rbatch

? (8)

where �mem and �batch are two positive hyper-parameters, which have typi-
cally the same value (in such cases, we will refer to those simply as �).

3. Attacks

To assess potential attacks aiming at retrieving the private features, we
assume a potential attacker has access to v̂i.
Here, a typical approach to mining private information is to use an unsu-
pervised approach. Toward this end, a possible attack involves the following
steps:

• Compute the PCA over the set of available data. Through this, it is
possible to reduce the dimensionality of the data. A typical good choice
is to extract the components such that the energy content is at least
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PCA
__

DBSCAN

clusters of
private
classes

(a)

...

(b)

Figure 5: Possible class inference attacks on the regularized v̂: unsupervised attack (a)
and worst-case supervised attack (b).

95% over the total energy. We assume a worst-case scenario where the
attacker has all the possibly available data (hence, the whole of the
training/test sets);

• Run DBSCAN to find data dependencies. Despite an attacker might
know v̂i is normalized over a unitary hyper-sphere and might be tempted
in using special clustering algorithms designed for this scenario like
spherical k-means [35], the typical high-dimensionality of the data
makes more useful to apply first a PCA to reduce such dimensionality.
After the PCA is applied, the spherical constraint typically does not
hold anymore; hence, a more general approach, like DBSCAN, which
can capture non-trivial data dependencies, should be deployed.

Once clusters of data are found, we can look at the content of each of these
clusters: if all of these contain a homogeneous number of data points be-
longing to the same private class, then the private information has not been
extracted, and the attacker failed. On the contrary, if there are clusters con-
taining a high percentage of data points with the same private class, then
the attack has success and the private information has been retrieved. We
call this unsupervised attack.
As an upper-bound case, let us assume the attacker has the training set data
provided with the private class label, which is hence known. In such a case,
the attacker is willing to train a classifier from ỹi, attempting to learn the
relationship between the input ỹi and the private features b. Such an attack
has success if the trained model, which in our case will be a multi-layer per-
ceptron (MLP), can generalize well on the test set data. If the information
about the private classes has been erased, the MLP will be forced in a memo-

rization state, where the training set will necessarily overfit over the training
set, if the number of parameters in it is su�ciently large. We call this su-
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Figure 6: Some samples from biased-MNIST [36]: the background colors (our private
feature) highly correlate with the digit classes (the target).

pervised attack which constitutes an upper bound to the learnable private
information given our testing methods. A graphical summary of the attacks
is provided in Fig. 5.

4. A controlled experiment

In this section we are going to conduct experiments over biased-MNIST,
a dataset where we have direct access and control to parameters directly tun-
ing correlations between input features and some extra features not directly
correlated to the target task we desire to train a model on. This allows us
to address a simplified theoretical framework that gives us insights into the
e↵ect of DisP over the information extracted from the available data.

4.1. The biased-MNIST dataset

This dataset has been recently proposed by Bahng et al. [36] for debiasing
purposes; however, we can consider the biased features of such a dataset as
the features we desire to hide from the classifier. This dataset is constructed
from MNIST [37] by injecting color into the background of the images, as
shown in Fig. 6. In this dataset, we have ten di↵erent targets (hence, C = 10).
Each digit is associated with one of ten pre-defined colors, which will be our
private feature. To assign the background color to an image of a given target
class, the pre-defined color is selected with a probability ⇢, and any other
color is chosen with a uniform probability (1 � ⇢):

(
P(T (x) = i|P(x) = i) = ⇢

P(T (x) 6= i|P(x) = i) = 1
9(1 � ⇢).

(9)

Straightforwardly we can assume

H(T ) = P(t) log10(0.1) = 1 (10)

H(P ) = P(p) log10(0.1) = 1, (11)
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Figure 7: Plot of the mutual information between T and P . We have decorrelation for
⇢ = 0.1.

where T and P are the random variables associated with the target and the
private class, respectively. From this, can write the conditional entropy

H(P |T ) = ⇢ · log10


1 � ⇢

9 · ⇢

�
+ log10


9

1 � ⇢

�
. (12)

Here, we can write the mutual information

I(P, T ) = 1 � ⇢ · log10


1 � ⇢

9 · ⇢

�
+ log10


9

1 � ⇢

�
. (13)

Figure 7 shows the mutual information between the target X and the private
feature Y. Of course, the more the target correlates to the private feature, the
highest the chances of having some information leakage. In the next we are
going to quantitatively analyze the information leakage on a trained model,
introducing the random variable Z which models the output of the model.

4.2. Expected information leakage in biased-MNIST

Let us assume here a real case where the trained model is not a perfect
learner, meaning that

H(Z|T ) 6= 0 (14)
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where Z is the random variable associated with the output z. The model
does not correctly classify the target for two reasons.

• It gets confused by the private features, and it tends to learn to classify
on top of those. We model the tendency of learning private features as
b: the lower this parameter, the more the model learns the features we
desire to keep private, introducing errors in the model.

• Some extra error, unrelated to the bias features, which can be due to
stochastic unbiased e↵ects, underfit, or other high-order dependencies
between data. We are not strictly interested to model such an e↵ect
for our purposes, and we consider this extra error always be zero.

We can now write the joint probability:

P(t, p, z) =
1

10
·

�tpz⇢ + (1 � �tz)�tp

(1 � b)(1 � ⇢)

9
+ (1 � �tp)�tz

b(1 � ⇢)

9

�

(15)
where b 2 [0; 1]. From this, we can compute the marginal probability

P(p, z) =
1

10
·
(

�pz

"
⇢ +

1 � ⇢

9

X

m

b(1 � �pm)

#
+ (1 � �pz)


(1 � b)

1 � ⇢

9

�)
.

(16)
From this, we can plot the mutual information between the neural network
prediction and the source (Figure 8).

We observe that for high ⇢ values the mutual information between the
information the model learns and the private classes is high, independently
from how much the model learns to extract from the private features (b).
Our objective here is to discourage the leakage of private information on
new data: if we keep the value of b ⇡ 0.9, the model still can keep good
performance, but when tested on un-correlated data (⇢ = 0.1), the mutual
information drops. On the contrary, for low values of b, I(Z, P ) remains high,
meaning that there is private information leakage.

4.3. Training with DisP

We use the network architecture proposed by Bahng et al. [36], consisting
of four convolutional layers with 7 ⇥ 7 kernels. As a bottleneck layer here
we choose the average pooling layer, before the fully connected classifier of
the network. We optimize the model using stochastic gradient descent with
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Figure 8: Plot of the mutual information between the private feature and the output of
the model. In this case, all the b are equal for visualization purposes.

a learning rate of 0.1, batch size 100, and weight decay 1e-4, for 50 epochs.
Table 2 shows the experimental results achieved by training 5 models per
configuration. In this case, we are also able to provide an empirical estimation
on b (which is the tendency of the model to learn the private features, as
discussed in Sec. 4.2).
In the case where there is no correlation between the target and private
feature (⇢ = 0.1), and the tendency b is low, also the information relative to
the private feature correlation (R) is typically low, and further minimizing it
is not harming or even improving the generalization capability of the model.
However, when the correlation between the target and private feature is
extremely high (⇢ = 0.99), the tendency value b drops, meaning that the
model is learning the private information in place of the target. This is due
to the very high correlation between the target and private feature, which is
⇢ by definition. In such a case, including the regularization term in the cost
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Table 2: Experiments on biased-MNIST. (*) values rounded to the closest decimal.

⇢ � b R?
Accuracy [%]

(⇢ = 0.1)

0.1

0 0.9* 0.01 98.34

0.1 0.9* 1e-3 98.21

0.2 0.9* 3e-5 98.03

0.99

0 0.21 0.44 89.10

0.1 0.75 0.12 95.01

0.2 0.83 0.07 93.73

function is minimizing the correlation term R and also beneficially impacts
the accuracy of the model itself. Indeed, the tendency b is increasing, meaning
that the model is no longer learning the private feature but is looking at the
correct features to extract.

4.4. Attacks

Considering that in this case, we have a theoretical framework estimating
the upper bound over the private feature which can be extracted, we will here
conduct the unsupervised attack only. We run attacks here for ⇢ = 0.99, with
� = 0 (which is our baseline model) and � = 0.1. We run the attacks over the
models showing the median accuracy over the test set. Figure 9 qualitatively
shows the outcome of the clustering algorithm. In particular, the di↵erent
shape represents the cluster found by the PCA+DBSCAN approach, the
internal color is the target while the border color is the private features. Even
qualitatively, we observe that without applying DisP, there is a significant
part of the clusters which map to the private feature, while applying DisP
this percentage drops dramatically, averagely to 14%.

4.5. Ablation study

Here we propose an ablation study on DisP. In particular, we evaluate the
impact of the two regularization contributes, the memory term Rmem

? (6), and
the mini-batch term Rbatch

? (7). We evaluate this in the challenging scenario
where ⇢ = 0.99. Table 3 shows the ablation study results obtained: even
though in some cases the weight in the regularization loss (�) is zero, we still
measure and report it. While applying singularly the two contributions are
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Figure 9: PCA+DBSCAN output for a model regularized with DisP and trained on biased-
MNIST, with ⇢ = 0.99 and � = 0.1, on the test set. Here the first two principal components
are displayed. A di↵erent symbol is a di↵erent cluster found by DBSCAN, internal color
is the target class while the edge color is the private class.

indeed minimizing the overall R in both cases, the lowest value for R, and in
this case, the highest accuracy is achieved by applying the same regularization
contribution to both. Of the two terms, the largest contribution is overall
provided by Rbatch

? , which disentangles all the feature vectors in the name
minibatch.

5. Experiments on real datasets

In this section, we experiment DisP’s e↵ectiveness over two real datasets.
Our goal here is to train the ANN model on the target classification task ap-
plying our regularization strategy over some features we wish to keep private
(in our case, to maintain consistency over the experiments, we want to keep
private the information over gender). We will show that, in our context, such
information is detectable in more trivial cases (like in face image datasets)
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Table 3: Ablation study on biased-MNIST (⇢ = 0.99).

�mem �batch Rmem
? Rbatch

? R? Accuracy [%]

(⇢ = 0.1)

0.1 0 0.04 0.18 0.22 91.23

0 0.1 0.07 0.09 0.16 92.54

and in less straightforward cases (like in chest X-ray radiographic images).
Our training and inference algorithms are implemented in Python, using Py-
Torch 1.12 and an RTX2080 Ti NVIDIA GPU with 11GB of memory has
been used for training and inference.2 All the used hyper-parameters have
been tuned using grid search.
The results will be presented for two di↵erent datasets: Celeb-A and SIIM-
FISABIO-RSNA COVID-19 (SFR). After training has been completed, the
attacks proposed in Sec. 3 will evidence the possibility of extracting the pri-
vate information from the bottleneck features ŷi. As a chosen architecture,
we select the model which has achieved the lowest validation loss along the
training.

5.1. Datasets and setup

CelebA. This dataset [38] has been designed for face-recognition tasks,
providing 40 attributes for every image. The dataset contains a total of
202.6k images and, following the o�cial train-validation split, we obtain
162.7k images for the training set, 19.9k images for the validation set, and
19.9k images for testing our models. For our training purposes, we use a
ResNet-18 model, choosing the adaptive pooling layer as the bottleneck layer
� . The training has been performed using SGD, with an initial learning rate
of 0.1, decayed by a factor of 10 after no improvement over the validation set
loss has been detected for 10 consecutive epochs. The training stops when
the learning rate drops below 1e-3. We use batch size 100 with a momentum
of 0.9 and weight decay of 1e-5. Images are here re-scaled to 224⇥ 224 reso-
lution.
We select here as classification target the recognition of the Eyeglasses, Blond-
Hair, and Heavymakeup attributes, while the gender is the private class.

2The source code will be made available upon acceptance of the article.
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While the eyeglasses (⇢ = 0.62) and blonde hair (⇢ = 0.58) attributes are rel-
atively easy to disentangle from the gender, disentangling the heavy makeup
attribute is a more challenging choice (⇢ = 0.82), as there is a high corre-
lation between these attributes (most of the women in the dataset have a
heavy makeup).

SIIM-FISABIO-RSNA COVID-19. The currently available dataset3

comprises more than 6k chest X-ray (CXR) scans in DICOM format, anonymized
according to the current GDPR guidelines. For study purposes, however, the
metadata associated with these scans comprises information about the gen-
der, which will be used as our private class. We split the dataset into a
training set comprising 5k scans, a validation set of 300 scans, and a test
set of 600 scans. We train a DenseNet-121 model to classify over the “Neg-
ative for Pneumonia” and “Typical Appearance” classes. As a bottleneck
layer here we choose, similarly to what was chosen for CelebA, the adaptive
pooling layer. The training has been performed using SGD, with an initial
learning rate of 0.1, decayed by a factor of 10 after no improvement over the
validation set loss has been detected for 5 consecutive epochs. The training
stops when the learning rate drops below 1e-3. We use batch size 16 with a
momentum of 0.9 and weight decay of 1e-4. The scans are converted using
the meta-information contained in the DICOM files and re-scaled to 448⇥448
resolution.

5.2. Results

Table 4 shows the achieved results. We report the performance on the
training set, the accuracy in retrieving the private features with the unsu-
pervised attack, and the train/test accuracy when training an MLP model
with one hidden layer of size 300 (1H) or two hidden layers of size 600-300
(2H). Looking at the pure performance at training time (or in other words,
the performance for the given target) we observe that in most cases, the use
of DisP is not significantly harming the performance. Di↵erently from what
was observed in biased-MNIST in Sec. 4.3, there is overall no improvement
in the performance when DisP is applied either. This means that the gender
information is not deteriorating the performance, but on the contrary, it can
be useful for higher generalization. Indeed, we observe a slight deterioration

3
https://www.kaggle.com/c/siim-covid19-detection/data
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Table 4: Results on the trained models with the original train-validation-test split.

Training Attacks

Dataset Target � Rperp Accuracy Unsup. Sup.(1H) Sup.(2H)

[%] [%] [Train%-Test%] [Train%-Test%]

CelebA

Blondhair

0 0.38 95.68 73.1 85.8-79.3 91.2-84.8

0.1 0.04 95.88 57.3 86.3-64.8 93.0-58.4

0.2 0.02 95.32 55.5 83.7-61.4 90.3-55.8

Eyeglasses

0 0.08 99.65 51.3 81.3-52.3 88.9-51.2

0.1 2e-3 99.60 53.2 83.5-53.5 89.1-52.3

0.2 3e-4 99.60 52.6 82.1-51.7 88.3-51.9

Heavymakeup

0 0.39 90.30 84.1 94.6-94.5 94.6-94.6

0.1 0.13 90.33 83.3 94.1-94.1 94.5-94.5

0.2 0.03 89.79 75.1 93.6-93.3 93.7-93.0

SFR Pneumonia/Typical

0 0.47 78.12 75.2 83.2-82.4 85.7-81.9

0.1 0.12 78.43 53.6 67.9-58.4 69.5-60.6

0.2 0.08 78.02 52.9 65.6-58.9 73.7-57.8

of the performance for the blond hair and heavy makeup cases. Indeed, this
can be observed by the higher di�culty in minimizing the Rperp term besides
the loss, indicating that the information we desire to keep private is not only
learned but actively used for the classification task.
Interestingly, we observe a typical trend in all of our experiments: for the
baseline models (or in other words, when � = 0), the maximum value for the
recorded value of R, which results also in the maximum private information
leakage, is recorded nearby the lowest value of the loss for the validation set.
An example of this typical trend we observe in all the conducted experiments
is shown in Fig. 10, which shows the trend of R, the loss on the validation
set, and the loss on the test set for the SFR dataset. Intuitively, we could
infer that the information we wish to keep private is necessary to generalize
on the given task, and as the model starts over-fitting such information is
being obfuscated. However, looking at the performance recorded when ap-
plying DisP, for � 6= 0, we observe that good generalization performance for
low values of R is still possible. This means that in this case there is some
natural tendency for the model to implicitly learn this private information,
which can be discouraged by applying DisP.
For completeness, in Tab. 5 we also propose the same set of experiments with
a 5-fold cross-validation strategy, obtaining similar results as those achieved
with the original validation set proposed in CelebA and SFR.
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(a) (b)

(c)

Figure 10: Training on SFR: validation set loss (a), test set loss (b) and R value (c).

5.3. Attacks

Looking at the unsupervised attacks, we interestingly observe that there
are certain scenarios in which the information is easier to extract. For ex-
ample, when the target is Blondhair in CelebA, the unsupervised attack can
recover 73% of the private information, evidencing a problem of information
leakage. Such a problem is even more evident with the SFR dataset, where
an unsupervised attack recovers the private features with 75% accuracy. Of
course, there are scenarios in which the private feature is not learned, and,
for instance, it is harder to extract: it is the case for the Eyeglasses feature,
in the CelebA dataset. Intuitively, such a feature is naturally de-correlated
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Table 5: Results on the trained models with 5-fold cross-validation (in the upper row train
set performance, in the bottom test set performance).

Training Attacks

Dataset Target � Accuracy Unsup. Sup.(1H) Sup.(2H)

[%] [Train%-Test%] [Train%-Test%] [Train%-Test%]

CelebA

Blondhair

0 95.1 ± 0.1 62.0 ± 0.6 89.8 ± 0.4 90.9 ± 0.3

88.1 ± 0.6 88.4 ± 0.3

0.1 95.0 ± 0.1 58.0 ± 0.1 81.2 ± 0.3 81.8 ± 0.3

80.5 ± 1.0 81.5 ± 0.6

0.2 95.1 ± 0.2 58.0 ± 0.0 81.3 ± 1.5 81.8 ± 1.5

80.6 ± 1.7 80.7 ± 1.2

Eyeglasses

0 99.6 ± 0.0 54.4± 1.3 87.8 ± 0.3 90.2 ± 0.2

85.2 ± 0.3 85.2 ± 0.5

0.1 99.7 ± 0.0 51.2± 0.3 79.0 ± 0.8 79.3 ± 0.9

78.6 ± 1.1 78.7 ± 1.1

0.2 99.7 ± 0.0 50.7± 1.2 78.3 ± 0.5 79.0 ± 0.5

77.6 ± 0.7 78.0 ± 0.5

Heavymakeup

0 90.3 ± 0.0 86.4± 3.8 94.7 ± 0.0 94.7 ± 0.1

94.5 ± 0.1 94.4 ± 0.1

0.1 90.1 ± 0.1 83.2± 0.2 94.5 ± 0.2 94.5 ± 0.2

94.5 ± 0.2 94.5 ± 0.2

0.2 90.1 ± 0.2 80.4± 5.7 94.7 ± 0.0 94.7 ± 0.2

94.6 ± 0.1 94.4 ± 0.2

SFR Pneumonia/Typical

0 77.1± 1.0 77.5± 3.7 85.2 ± 0.2 86.2 ± 0.2

82.3 ± 0.1 84.9 ± 0.2

0.1 78.2± 1.3 57.2± 0.1 70.4± 2.1 70.4± 2.4

62.6± 1.8 60.5± 1.1

0.2 77.5± 0.8 58.0± 0.1 67.5± 0.5 69.1± 3.5

60.0± 1.5 58.7± 1.4

with gender, and for instance, such a piece of information is unlikely to leak
from the bottleneck layer.
Looking at the supervised attack, we observe that the performance is typi-
cally higher than the unsupervised attack, as expected. While for the CelebA-
Eyeglasses scenario, the classifier is (almost) random guessing for all our
experiments, that is not the case for the other scenarios. Focusing on the
baseline models (� = 0), we observe that the generalization performance on
the test set shows a tendency to improve by adding more complexity to the
classifier (comparing H1 to H2). However, using DisP, we observe a decreas-
ing generalization trend when increasing the classifier complexity. We have
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Table 6: Comparison of DisP with other debiasing approaches for the CelebA dataset.

Attacks

Target Approach Accuracy Unsup. Sup.(1H) Sup.(2H)

[%] [Train%-Test%] [Train%-Test%] [Train%-Test%]

Blondhair

Baseline 95.68 73.1 85.8-79.3 91.2-84.8

ReBias [2] 94.56 87.0 89.8–90.2 90.4–90.9

RUBi [3] 83.02 68.5 91.0–91.2 91.5–91.7

Learned-Mixin [4] 50.95 61.6 89.4–89.7 90.0–90.4

DisP (� = 0.2) 95.32 55.5 83.7–61.4 90.3–55.8

Eyeglasses

Baseline 99.65 51.3 81.3-52.3 88.9-51.2

ReBias [2] 99.64 80.8 90.0–90.1 90.5–90.8

RUBi [3] 99.70 76.0 89.5–89.6 90.0–90.2

Learned-Mixin [4] 63.78 61.4 92.4–92.2 92.9–92.9

DisP (� = 0.2) 99.60 52.6 82.1–51.7 88.3–51.9

Heavymakeup

Baseline 90.30 84.1 94.6-94.5 94.6-94.6

ReBias [2] 90.45 84.0 95.0–95.3 94.9–95.5

RUBi [3] 86.71 75.4 94.3–94.5 94.4–94.7

Learned-Mixin [4] 54.93 90.4 94.3–94.5 94.5–94.7

DisP (� = 0.2) 89.79 75.1 93.6–93.3 93.7–93.0

not used any validation/fine-tuning strategy to train the supervised attack:
we have used SGD with a fixed learning rate of 0.1, batch size of 100, and
weight decay of 0.9 for 50 epochs, for all the experiments. Under these con-
ditions, since the training accuracy increases but the test accuracy decreases,
we can say the classifier is driven in a memorization state: this means that
it is simply unable to extract general features to learn the private classes, as
they are disentangled. As the value of � increases (meaning that the weight
of our regularization term in the learning process increases), the performance
achieved by the attacks decreases.

5.4. A comparison to debiasing approaches

Very recent work suggested a parallel between privacy preservation and
debiasing [1]. More specifically, this work suggests the possibility of em-
ploying debiasing approaches for privacy preservation, still preserving the
original setup for which the debiasing approaches are conceptualized. We
hereby propose a comparison, in terms of attacks as already presented in
Table 4, for the CelebA dataset and our specific setup (balanced classes),
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of DisP and three popular debiasing approaches: ReBias [2], RUBi [3] and
Learned-Mixin [4].4 Table 6 reports the results, from which we observe that
the proposed approaches tend to amplify the information related to the pri-
vate classes. This is caused by our specific setup, where the training data
are balanced at the source, which makes it di�cult to these approaches to
properly extract, and consequently weight, the information to keep private.
This leads to some potential fails, like for Learned-Mixin, where the private
information is the one learned in place of the target one. Other approaches,
like ReBias, can achieve close to state-of-the-art performance (beating the
baseline for Heavymakeup), but at the cost of a massive utilization of pri-
vate information. DisP proves to be superior to the compared debiasing
approaches in removing private information.

5.5. Applicability beyond deep learning

DisP proposes itself as a regularization strategy towards a disentangle-
ment of private classes, and as such, it is implicitly bound to gradient-based
optimization techniques. However, its applicability is not necessarily limited
to deep learning models: other machine learning algorithms are compatible
with DisP, like for example Support Vector Machines (SVMs), where the
impact of DisP will be on the class’ separator. Besides, DisP can virtually
be applied isolatedly as a perceptron besides any other machine learning
strategy (like for example, in a compression pipeline after PCA).

6. Conclusion

In this work, we have proposed DisP, a regularization term that dis-
entangles private classes. In particular, we favor the selection of features
correlating with the target class filtering the propagation of features corre-
lating with the private classes. To be more interdisciplinary and to create
a more robust and ethical AI technology, the private features selection was
made by keeping some key concepts of the GDPR in mind. The GDPR is an
important legislative act whose objective is to protect people’s privacy not
only through regulatory and compliance functions but also through principles

4To run these experiments, we use the implementation provided in
https://github.com/EIDOSLAB/bridging-debiasing-privacy-deep-learning with
the default approach-specific hyper-parameters.
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such as the one of privacy by default and by design, which is bound to influ-
ence emerging technologies, AI included. Once the features to be considered
“private” are detected, DisP can disentangle them at some bottleneck layer,
minimizing the risk of extraction for this information. We have shown the
e↵ectiveness of the models trained with DisP attempting both unsupervised
and supervised attacks to retrieve the information. In particular, we have
tested on face images and CXR images, showing that in certain cases there
is unwanted information leakage it can be successfully recovered unless the
models are not DisP regularized. Future work includes the development of a
layer able to handle quantized features on top of which mutual information
can be directly measured and minimized.
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