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1 Introduction

The first instance of the ODE/IM correspondence dates back to 1998 [1] when a sur-
prising connection between works on spectral determinants for specific Sturm-Liouville
problems [2, 3] and the functional approach to conformal field theories (CFTs) [4–10] was
first established. The correspondence holds its roots in the fact that seemingly different
quantities in the two contexts fulfil the same set of functional relations [1] with identical
analytic and asymptotic properties.

Though initially referring only to the CFT vacuum states, the ODE/IM correspondence
was later generalised to encompass excited states [11, 12] and more recently extended to
massive integrable quantum field theories based on the sl2 algebra [13, 14]. The correspon-
dence was also extended to systems based on higher-rank algebras, both critical [8, 15–17]
and off-critical [18–20]. In this work, we focus on systems based on the sl2 algebra. In the
off-critical extension of the original results [14], the Sturm-Liouville equation is replaced by
the Lax equations of the modified sinh-Gordon model, written as a pair of second-order
differential equations coupled through a field-dependent generalised potential (cf. equa-
tion (3.7), below). In this perspective, we are dealing with two, a priori unrelated systems: a
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classical integrable equation — the modified sinh-Gordon one — and a quantum integrable
model — such as the sine- and sinh-Gordon models. The correspondence can then be
viewed as an equality between the conserved quantities of these two systems. [14, 21, 22].

The second main ingredient, relevant to the current purposes, is the recent discovery that
specific irrelevant perturbations of quantum field theories can be studied using integrable
models tools and hydrodynamics-type flow equations [23, 24]. The observations made
in [23, 24], triggered a considerable amount of research activity, with applications ranging
from simple systems in quantum mechanics to AdS/CFT and nonlinear electrodynamics [25–
31]. The perturbation involving Zamolodchikov’s TT operator [32] is arguably the most
interesting representative of an infinite tower of irrelevant deformations [33–35] (see also [36]
for some early results on irrelevant integrable perturbations). It is related to the Nambu-
Goto string [37–39], quantum JT gravity [40–45], and it possesses compelling interpretation
within the AdS/CFT [46–51] and supersymmetry [52–57] frameworks. While at the quantum
level, an inviscid Burgers’ equation governs the evolution of the TT-deformed spectrum, at
the classical level, the perturbation turns out to be equivalent to a dynamical change of the
space-time coordinates [58–61].

The main objective of this work is to unify these two research strands by proving the
validity of the ODE/IM after TT perturbations of both the classical and the quantum sides
of the correspondence. In order to do so, we will prove that the conserved energy and
momentum of the theory on the TT-deformed classical side of the correspondence satisfy
the same Burgers’ equation as the finite-size spectrum on the TT-deformed quantum side.
This fact ensures that if the ODE/IM is valid for the undeformed systems, it will hold for
an arbitrary TT deformation. We will proceed in steps, first recalling in section 2 how a
TT deformation alters the finite-size spectrum of a quantum integrable field theory and
subsequently reviewing in section 3 the elements of the ODE/IM correspondence relevant
for this work. Section 4 contains the key arguments and result: a proof that the energy and
momentum of a TT-deformed classical field theory satisfy the inviscid Burgers’ equation.

In this work we choose to focus on the specific instance of the ODE/IM correspondence
analysed in [14], involving the quantum sine-Gordon and the classical modified sinh-Gordon
models. Consequently, the arguments of section 4 are adapted to the specificities of the
latter. However, the final result has a much broader validity. In particular, our derivation
can be used — with minimal modifications — to produce a proof of the Burgers’ equation
for the energy and momentum of a generic, not necessarily integrable, TT-deformed classical
field theory. To our knowledge, the only previous appearance of the Burgers’ equation in a
classical theory concerns a very specific class of zero-momentum solutions to the sine-Gordon
model [59].

Finally, our results should be considered as a first step toward the study of irrelevant
deformations using the ODE/IM correspondence as a powerful quantisation tool.

2 The quantum sine-Gordon model at finite volume

Integrable models and their properties have been extensively studied during past decades, and
powerful methods developed to determine the finite-size spectrum of an integrable quantum
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field theory. One of these is the non-linear integral equation (NLIE) approach [5, 62–68],
which we briefly review in this section before discussing the effects of the TT deformation.

2.1 The non-linear integral equation

Consider the sine-Gordon quantum field theory defined on a cylinder of radius R/2π. The
complete information on its spectrum can be extracted from the counting function fν(θ),
solution to the following NLIE [63–65, 67, 68]

fν(θ) = ν(R, k | θ)−
∫
C1
dθ′K(θ − θ′) log

(
1 + e−fν(θ′)

)
+
∫
C2
dθ′K(θ − θ′) log

(
1 + efν(θ′)

)
, (2.1)

where
ν(R, k | θ) = 2πı k − ımR sinh(θ) , (2.2)

is the so-called driving term. In equations (2.1) and (2.2), m denotes the sine-Gordon
soliton mass and k ∈ [−1/2, 1/2] is the quasi-momentum, also known as the twist, whose
role is to select the vacuum [14, 69]. In (2.1), the convolution kernel K(θ) is

K(θ) =
∫
R

dp

2π cos(p θ)
sinh

(
πp1−α

2α

)
2 cosh

(
π p2
)

sinh
(
π p

2α
) , (2.3)

where α = β−2− 1 and β2 < 1 is the sine-Gordon coupling. For technical reasons, as in [14],
in the following we shall limit our attention to the range β2 < 1/2, which corresponds to
the region α > 1.

The information on the specific energy eigenstate state under consideration is encoded
in the choice of the integration contours C1 and C2. For the ground state C1 = R + ı0+ and
C2 = R − ı0+ = C∗1 . For the excited states the contours C1 and C2 encircle a number of
singularities {θi} of log

(
1 + efν(θi)

)
. See [67, 68, 70, 71] for more details.

Energy and momentum can be obtained from the counting function from the following
expression

E = m

(∫
C1

dy

2πı sinh(y) log
(
1 + e−fν(y)

)
−
∫
C2

dy

2πı sinh(y) log
(
1 + efν(y)

))
,

P = m

(∫
C1

dy

2πı cosh(y) log
(
1 + e−fν(y)

)
−
∫
C2

dy

2πı cosh(y) log
(
1 + efν(y)

))
.

(2.4)

In particular, the momentum can be computed exactly via the so-called dilogarithm trick.
Using this, one easily checks that P (R) = 2πk/R with k ∈ Z (see for example the Lemma
in section 7 of [66]).

Finally, in the following we shall adopt the following specific parametrization [14]

mR = 2
√
πsα+1

Γ
(
1 + 1

2α

)
Γ
(

3
2 + 1

2α

) , (2.5)

where s is a dimensionless scaling constant.
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2.2 The TT deformation

At the level of the non-linear integral equation (2.1), the TT perturbation is introduced by
implementing the following modification of the convolution kernel [24]

K(θ) TT7−−→ K(θ)− τ m
2

2π cosh(θ) . (2.6)

Inserting (2.6) into equation (2.1), after simple manipulations, one finds that f (τ)
ν (θ), the

counting function of the deformed theory, still satisfies (2.1), up to a redefinition of the
driving term

ν(τ) = ν(R0, k | θ − θ0) , (2.7)

with

R2
0 = (R+ τE(R, τ))2 − τ2P 2(R, τ) , (2.8)

tanh θ0 = τ
P (R)

R+ τE(R, τ) . (2.9)

The redefinition (2.7) implies the famous inviscid Burgers’ flow equation for the finite-volume
quantum spectrum of TT-deformed field theories [23, 24]:

∂

∂τ
E(R, τ) = E(R, τ) ∂

∂R
E(R, τ) + P (R)2

R
. (2.10)

3 The modified classical sinh-Gordon model

In this section, we will follow very closely [14] in the definition of the quantities of interest.
Let us consider the modified sinh-Gordon (mShG) model, with equation of motion (EoM)

∂z∂z̄η(z)− e2η(z) + p(z, s)p(z̄, s)e−2η(z) = 0 , (3.1)

where the complex coordinates z = (z, z̄) are dimensionless. The function

p(z, s) = z2α − s2α , (3.2)

is characterized by the pair of parameters α and s ∈ R>0. Introducing polar coordinates,

z = ρ eıϕ , z̄ = ρ e−ıϕ , (3.3)

we can describe the field configurations η(ρ, ϕ) relevant to the ODE/IM correspondence as
those that satisfy the following requirements

– e−η(ρ,ϕ) is a single-valued, non-zero complex function on the cone Cπ/α with apex
angle π/α and L+ L̄ punctures;

– the ρ→∞ asymptotic behaviour is e−η(ρ,ϕ) ∼ ρ−α;

– the ρ→ 0 asymptotic behaviour is e−η(ρ,ϕ) ∼ ρ−l, with l ∈ [−1/2, 1/2].
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Through the ODE/IM correspondence, the conserved quantities of the classical mShG
model, evaluated on the above field configurations, are identified with the quantum ones of
the sine-Gordon model, such as its energy and momentum (2.4). The parameter l is then
related to the quasi-momentum in (2.2) as l = 2|k| − 1/2. The number and positions of
the L+ L̄ punctures determine the specific energy eigenstate on the quantum side of the
correspondence and are constrained by a system of algebraic equations, the monodromy-free
conditions of [12, 72], also described in [22]. In this section we will describe more in detail
the construction of the classical conserved charges of the mShG model. These charges
can be understood geometrically as integrals along specific contours. We will leverage this
perspective in the following section to apply the TT deformation on the classical side of the
ODE/IM correspondence.

3.1 Second order linear differential equations

As it is well known, the mShG equation (3.1) can be interpreted as the compatibility
condition of the linear problem

∂zΨ = L1Ψ , ∂z̄Ψ = L2Ψ , (3.4)

which involves the Lax pair

L1 = −1
2∂zη(z)σ3 + eϑ

(
σ+eη(z) − σ−p(z, s)e−η(z)

)
,

L2 = 1
2∂z̄η(z)σ3 + e−ϑ

(
σ−eη(z) − σ+p(z̄, s)e−η(z)

)
.

(3.5)

Here σ3 and σ± are the Pauli matrices and ϑ is the spectral parameter while Ψ in (3.4) is a
two-dimensional vector.

One can write the general solution of the linear problem (3.4) as

Ψ =
(

e
ϑ
2 e

η
2ψ

e−
ϑ
2 e−

η
2 (∂z + ∂zη)ψ

)
=
(
e
ϑ
2 e−

η
2 (∂z̄ + ∂z̄η)ψ̄
e−

ϑ
2 e

η
2 ψ̄

)
, (3.6)

where the auxiliary fields ψ and ψ̄ solve the Schrödinger-type equations(
∂2
z − u(z)− e2ϑp(z, s)

)
ψ(z) = 0 ,(

∂2
z̄ − ū(z)− e−2ϑp(z̄, s)

)
ψ̄(z) = 0 .

(3.7)

The function u(z) depends on the field η appearing in (3.1) as:

u(z) = (∂zη(z))2 − ∂2
zη(z) , ū(z) = (∂z̄η(z))2 − ∂2

z̄η(z) . (3.8)

3.2 Integrals of motion

The modified sinh-Gordon equation (3.1) is related to the unmodified one by a simple
change of variables. In terms of the new coordinates w = (w, w̄),(

dw

dw̄

)
=
(√

p(z, s)dz√
p(z̄, s)dz̄

)
, (3.9)
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the field

η̂(w) = η(z(w))− 1
4 ln p(z(w), s)p(z̄(w̄), s) , (3.10)

satisfies the sinh-Gordon equation

∂w∂w̄η̂ − e2η̂ + e−2η̂ = 0 . (3.11)

From a WKB-type analysis of (3.7) [73, 74], one can find the expressions for the integrals
of motion (IMs) J2n−1 and J̄2n−1 with n ∈ N>0. Explicitly:

J2n−1 = 1
2(2n− 1) sin

(
π(2n−1)

2α

) ∫
Γ1

(
dwP̂2n + dw̄R̂2n−2

)
,

J̄2n−1 = 1
2(2n− 1) sin

(
π(2n−1)

2α

) ∫
Γ̄1

(
dw̄ ˆ̄P2n + dw ˆ̄R2n−2

)
.

(3.12)

The specification of the integration contours Γ1 and Γ̄1 is of primary importance and will
be discussed in a moment. The integrands appearing in (3.12) are closed 1-forms, meaning
that they satisfy a continuity equation

∂w̄P̂2n = ∂wR̂2n−2 , ∂w
ˆ̄P2n = ∂w̄

ˆ̄R2n−2 . (3.13)

The expressions for P̂2n and R̂2n−2, in terms of η̂, are known for generic n and can be found
in [14], however the following analysis will only involve P̂2 and R̂0:

P̂2 = û

2 , R̂0 = e−2η̂ − 1 ,

ˆ̄P2 =
ˆ̄u
2 ,

ˆ̄R0 = e−2η̂ − 1 .
(3.14)

The potentials û and ˆ̄u are defined as in (3.8) with η substituted for η̂ and z for w.
As a consequence of the continuity equation (3.13), these densities may be written in

terms of the stress-energy tensor components T2, T̄2 and Θ0 of the sinh-Gordon model in
dimensionless coordinates:

T2(w) = P̂2(w) , T̄2(w) = ˆ̄P2(w) ,

Θ0(w) = R̂0(w) = ˆ̄R0(w) .
(3.15)

Finally, the total energy E and the total momentum P can be expressed as

E = E + Ē , P = E − Ē , (3.16)

where

E = M4

∫
Γ1

(dw T2(w) + dw̄Θ0(w)) ,

Ē = M4

∫
Γ̄1

(
dwΘ0(w) + dw̄ T̄2(w)

)
.

(3.17)

The dimensionful constant M is the equivalent of the soliton mass m, appearing on the
ODE/IM correspondence’s quantum side.
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Figure 1. The z-plane with Γ2 in blue. The solid rays ϕ = ±π/(2α) in black and the dashed rays
ϕ = ±π/(2α+ 2) in gray.

3.3 The integration countours Γ1 and Γ2

While the analysis of the modified sinh-Gordon equation (3.1) is more easily performed
in the coordinates w, we need to keep in mind that the properties of the relevant field
configurations are established in the coordinates z. Hence, we need to consider Γ1 as the
image, through the map w(z) of a fundamental contour Γ2. Roughly speaking, this is a
regularization of the contour γ2 introduced in [14] by a pair of arches around z =∞ (in the
following denoted as c±2 ) starting just above and just below the positive real axis and ending
on the anti-Stokes lines with directions ϕ = π/(2α+ 2) and ϕ = −π/(2α+ 2). The original
contour γ2 in [14] started from +∞ just below the real z axis, wound around the turning
point z = s and went back to +∞ just above the real axis, thus encircling the branch
cut of

√
p(z, s) clockwise. As we will mention momentarily, the regularization provided by

Γ2 is necessary to ensure the convergence of certain quantities relevant for the ODE/IM
correspondence. Notice that, this simple contour-type regularization works well only in the
regime α > 1 considered in this paper. We shall return to this issue in section 3.4 below.

The contour Γ2 is represented in figure 1, where the limit ρ → +∞ for the arches’
radius is implicitly assumed. Points on the contour Γ1 are defined as

w(P )− w(A) =
∫ P∈Γ2

A
dz
√
p(z, s) . (3.18)

The qualitative form of the contour Γ1, obtained through the map (3.18), is represented in
figure 2. Note that, Γ̄2 = Γ∗2 and Γ̄1 = Γ∗1. It is important to notice that, in the absence of
singularities in the upper part of the w-complex plane, Γ1 can be straightened to a segment
joining the point w(A) to w(A′).

Finally, for integrands with a sufficiently fast vanishing asymptotics for ρ→ +∞ in the
sector | arg(z)| ≤ π/(2α+ 2), the contours Γ2 (Γ̄2) and γ2 (γ̄2) become totally equivalent.
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Figure 2. The complex w-plane with (pictorial) Γ̄1 in orange. w(A′)− w(A) = w̄(A)− w̄(A′) > 0
is fixed at ρ→ +∞ (the points w(B) and w(B′) are pushed to infinity).

In particular, given the asymptotic requirements for the field η(z, z̄), in the definition of
the IMs J2n−1, J̄2n−1 one can safely trade the contour Γ1 with the image of γ2 under the
map w(z).

3.4 The circumference of the cylinder

We shall now introduce the classical equivalent MR of the dimensionless quantity mR

appearing in (2.2). The former is written in terms of simple integrals over Γ2 and Γ̄2

MR =MR(s) = 2
tan

(
π
2α
) ∫

Γ̄2
dz
√
p(z, s) = 2

tan
(
π
2α
) ∫

Γ2
dz̄
√
p(z̄, s) , (3.19)

where Γ2 = c−2 ∪ γ2 ∪ c+
2 is represented in figure 1. In (3.19) we purposefully definedMR as

either an integral of
√
p(z, s) over Γ̄2 or of

√
p(z̄, s) over Γ2. At this stage this distinction

might seem moot, since the two integrals are identical. However, as we are going to see
later, they will not transform in the same way under a TT deformation, so it is in our
interest to keep the two quantities in (3.19) separate from the start. These objects can be
explicitly computed. First, let us consider the integral appearing in [14]

∫
γ̄2
dz
√
p(z, s) = 2 lim

ρ→+∞

∫ s

ρ
dt
√
p(t, s)

= 2 lim
ρ→+∞

(∫ s

ρ
dt

(√
p(t, s)− tα

)
+ sα+1

α+ 1 −
ρα+1

α+ 1

)

= tan
(
π

2α

)√
πsα+1

Γ
(
1 + 1

2α

)
Γ
(

3
2 + 1

2α

) − 2 lim
ρ→+∞

ρα+1

α+ 1 , (3.20)

where the factor two is due to the discontinuity on the square root type branch cut. This
integral is obviously divergent. We choose to regularize it by altering the integration contour.
In fact, we calculate the limiting behaviour

lim
ρ→+∞

∫
c̄+

2 (ρ)∪ c̄−2 (ρ)
dz
√
p(z, s) =

(
2− 2 cos(Ω(α+ 1))

)
lim

ρ→+∞

ρα+1

α+ 1 . (3.21)
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Now, if we set Ω = π/(2α + 2), the above quantity exactly cancels the divergent term
in (3.20) and we obtain the following finite expressions

MR(s) = 2
√
πsα+1

Γ
(
1 + 1

2α

)
Γ
(

3
2 + 1

2α

) , (3.22)

establishing a match with the quantity defined in (2.5) on the quantum IM-side of the
correspondence: MR = mR or, equivalently, s = s.

This same result could be obtained by more standard regularization schemes, for
example by subtracting the ρ → +∞ divergent part appearing on the right-hand side
of (3.20), or by replacing √

p(z, s)→ (p(z, s))a , (3.23)
with Re(a) < −1/(2α) and analytically continuing the outcome to a = 1/2. However, our
contour type regularization is more natural, especially in view of the introduction of the
TT perturbation as a field dependent change of coordinates.

The same computation in the w complex plane yields the following simple expression

MR tan
(
π

2α

)
= 2

(
w̄(A)− w̄(A′)

)
= 2

(
w(A′)− w(A)

)
. (3.24)

According to the previous definitions (3.17) and to the above expression, the total energy
and momentum associated to a given field configuration should depend on both R andM.
However, an explicit calculation shows that the momentum is independent ofM: P = P (R)
(see also the discussion in appendix A).

4 Adding the TT

At the classical level, the simplest way to introduce the TT perturbation is through a
dynamical change of coordinates that involves the components of the stress-energy tensor [60].
Since we will repeatedly switch from one set of coordinates to the other, we take a moment
to fix the notations. The set of coordinates w will always be that in which the EoMs (3.11)
and, consequently the current densities, look like the unperturbed ones. In these coordinates,
the effect of the TT perturbation is implicitly hidden in the integration contour Γ(t)

1 , which
is (equivalent to) the image of Γ1, under a dynamical change of coordinates [60]. On the
other hand, in the set of coordinates x, the effect of the TT perturbation will be visible as a
modification of both the EoMs and the current densities. One of the main results of [60] is
that these two alternative descriptions of a TT-perturbed theory are in fact equivalent. This
will allow us to prove that the energy of the TT-deformed, classical mShG model satisfies
the Burgers’ equation (2.10), thus proving the validity of the ODE/IM correspondence for
TT-deformed integrable quantum field theories.

4.1 The dynamical change of coordinates

The dynamical change of space-time coordinates [60] is defined as the following differential
map: (

dw

dw̄

)
= JT

(
dx

dx̄

)
. (4.1)

– 9 –
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The Jacobian and its inverse are

JT (x) = 1
∆(w(x), 0)

(
1 + 2tΘ0(w(x), 0) −2tT̄2(w(x), 0)
−2tT2(w(x), 0) 1 + 2tΘ0(w(x), 0)

)
,

(
JT
)−1

(w, 0) =
(

1 + 2tΘ0(w, 0) 2tT̄2(w, 0)
2tT2(w, 0) 1 + 2tΘ0(w, 0)

)
,

(4.2)

where t is a dimensionless coupling trivially related to τ in (2.6), as we will see shortly, while

∆(w, 0) = (1 + 2tΘ0(w), 0)2 − 4t2T2(w, 0)T̄2(w, 0) . (4.3)

The explicit form of (4.1) is

dw = 1
∆(w(x), 0)

(
dx+ 2tΘ0(w(x), 0)dx− 2tT̄2(w(x), 0)dx̄

)
,

dw̄ = 1
∆(w(x), 0)(dx̄+ 2tΘ0(w(x), 0)dx̄− 2tT2(w(x), 0)dx) .

(4.4)

Now, after a TT deformation, all the quantities introduced in the previous sections will
depend on the two independent parameters R and t. So for a generic value of t, and in
agreement with the previous discussions, we can write:

E(R, t) = M4

∫
Γ(t)

1

(dw T2(w, 0) + dw̄Θ0(w, 0)) ,

Ē(R, t) = M4

∫
Γ̄(t)

1

(
dwΘ0(w, 0) + dw̄ T̄2(w, 0)

)
,

(4.5)

where, according to (3.16):

E(R, t) = E(R, t) + Ē(R, t) , P (R, t) = E(R, t)− Ē(R, t) . (4.6)

Let us stress again that in equations (4.5) it is the deformation of the integration contours
which drives the evolution in t of the conserved charges. Notice also how the map (4.1)
implies that the contours Γ̄(t)

1 and Γ(t)∗
1 are not necessarily equivalent, since in general

(T2(w), 0)∗ − T̄2(w, 0) 6= 0 . (4.7)

We shall now shift to the alternative point of view, from which the current densities evolve
in t while the contours remain untouched. Using the invariance of 1-forms under coordinate
transformations, we can write

T2(w, 0) dw + Θ0(w, 0) dw̄ = T2(x, t) dx+ Θ0(x, t) dx̄ ,
Θ0(w, 0) dw + T̄2(w, 0) dw̄ = Θ0(x, t) dx+ T̄2(x, t) dx̄ ,

(4.8)

so that

E(R, t) = M4

∫
Γ1

(dxT2(x, t) + dx̄Θ0(x, t)) ,

Ē(R, t) = M4

∫
Γ̄1

(
dxΘ0(x, t) + dx̄ T̄2(x, t)

)
.

(4.9)
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Using the explicit form of the map (4.4) we obtain

T2(x, t) = T2(w(x), 0)
∆(w(x), 0) , T̄2(x, t) = T̄2(w(x), 0)

∆(w(x), 0) ,

Θ0(x, t) = Θ0(w(x), 0) + 2t(Θ0(w(x), 0)2 − T2(w(x), 0)T̄2(w(x), 0))
∆(w(x), 0) ,

(4.10)

from which we conclude that

dw = dx− 2t
(
Θ0(x, t) dx+ T̄2(x, t) dx̄

)
,

dw̄ = dx̄− 2t(Θ0(x, t) dx̄+ T2(x, t) dx) .
(4.11)

The inverse map is

dx = dw + 2t
(
Θ0(w, 0) dw + T̄2(w, 0) dw̄

)
,

dx̄ = dw̄ + 2t(Θ0(w, 0) dw̄ + T2(w, 0) dw) .
(4.12)

Next, we are going to consider the effect of the TT perturbation on the ‘circumference’
R (3.24). From the explicit form of the coordinate map (4.11), it is clear that the two
expressions in (3.24) change in different ways. It turns out to be useful to introduce the
following parametrization

MR0 e
−θ0 = 2

tan
(
π
2α
) ∫

Γ̄(t)
1

dw , MR0 e
+θ0 = 2

tan
(
π
2α
) ∫

Γ(t)
1

dw̄ , (4.13)

where θ0(t = 0) = 0 and R0(t = 0) = R. These expressions will be useful to make contact
with the TT-deformed theory on quantum side of the correspondence [24]. Using the
map (4.11) we write ∫

Γ̄(t)
1

dw =
∫
Γ̄1

dx− 2t
∫
Γ̄1

(
dxΘ0(x, t) + dx̄ T̄2(x, t)

)

= 1
2 tan

(
π

2α

)
MR− 8

M
tĒ(R, t) , (4.14)

where relations (4.3) and (4.10) were used. Similarly, we obtain∫
Γ(t)

1

dw̄ = 1
2 tan

(
π

2α

)
MR− 8

M
tE(R, t) . (4.15)

Setting
τ = − 8

M2 tan ( π
2α) t , (4.16)

and using relations (4.6) we arrive at{
R0 e

−θ0 = R+ τ(E(R, τ)− P (R, τ))
R0 e

+θ0 = R+ τ(E(R, τ) + P (R, τ))
. (4.17)

– 11 –
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(a) (b)

Figure 3. Pictorial representation of the net effect of the TT perturbation, as a rescaling of the
‘volume’ plus a Minkowski rotation. Figure 3(a) corresponds to equation (4.18), while figure 3(b) to
the inverse relation (4.22).

The previous analysis and the resulting equations (4.17) have the following simple geometric
interpretation: the net effect of the TT perturbation is equivalent to a rescaling of R plus a
Minkowski rotation

(R,R) TT7−−→
(
R0e

−θ0 ,R0 e
+θ0
)
, (4.18)

with rapidity
θ0 = 1

2 log
(R+ τ(E(R, τ) + P (R, τ))
R+ τ(E(R, τ)− P (R, τ))

)
, (4.19)

and
R2

0 = (R+ τE(R, τ))2 − τ2P 2(R, τ) , (4.20)

as pictorially represented in figure 3(a). On the other hand, the dynamical interpretation
is encoded in the dependence of θ0 and R0 on the energy and momentum of the state.
Therefore, the net effect of the TT perturbation corresponds to a doubling/redefinition
of the scaling parameter s → (s−, s+) of the previous sections. For example, at fixed
‘mass-scale’M, it corresponds to(

R0 e
−θ0 ,R0 e

+θ0
)

=
(
R(s−),R(s+)

)
. (4.21)

Notice also that, one might find the interpretation of equations (4.17) more intuitively after
switching to the Euclidean version of the theory, obtained through the formal replacements:
P → ıP and θ0 → ıθ0. The interpretation using complex variables is also helpful to guide
the intuition in the following final steps of our analysis. We now need further, independent
knowledge to close our system of equations and make it equivalent to the Burgers’ equation.
Extra constraints can be obtained by demanding the consistency between (4.12) and (4.11),
encoding exact information on the fundamental invertibility property of the Jacobian
matrix (4.1). Concretely, the idea is to derive the analogue of (4.17), for the inverse
transformation

(R0,R0) 7→
(
Re+θ0 ,R e−θ0

)
, (4.22)

as depicted in figure 3(b), by integrating the r.h.s. of (4.12) along appropriate contours C1
and C̄1 = C∗1 , of a form similar to that of Γ1 and Γ̄1 (see figure 2). The endpoints of C̄1 are
w(Ã) and w(Ã′), with relative distance

w(Ã′)− w(Ã) = 1
2M tan

(
π

2α

)
R0 . (4.23)

– 12 –
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Under the coordinate transformation w → x, C1 and C̄1 are mapped to C(t)
1 and C̄

(t)
1 ,

respectively, with

C̄
(t)
1 : x(w(Ã′))− x(w(Ã)) = 1

2M tan
(
π

2α

)
Re+θ0 ,

C
(t)
1 : x̄(w̄(Ã))− x̄(w̄(Ã′)) = 1

2M tan
(
π

2α

)
Re−θ0 .

(4.24)

Proceeding as above, we arrive at the following equations{
R e+θ0 = R0 − τ(E(R0, 0)− P (R0, 0))
R e−θ0 = R0 − τ(E(R0, 0) + P (R0, 0))

. (4.25)

4.2 The Burgers’ equation

As a final step in our analysis, we shall derive the Burgers’ equation involving only classical
physical quantities.

From equations (4.17) and (4.25), we have

sinh θ0 = τ
P (R, τ)
R0

= τ
P (R0, 0)
R

=⇒ RP (R, τ) = R0P (R0, 0) , (4.26)

implying that P (R, τ) = P (R) ∝ R−1. Alternatively, the exactly-quantised expression

P (R) = 2πk
R

, k ∈ Z , (4.27)

can be obtained through the WKB type analysis reported in appendix A. Putting (4.17)
and (4.25) together, one get{

e+θ0 (E(R, τ)− P (R, τ)) = E(R0, 0)− P (R0, 0)
e−θ0 (E(R, τ) + P (R, τ)) = E(R0, 0) + P (R0, 0)

, (4.28)

that is
E2(R, τ)− P 2(R, τ) = E2(R0, 0)− P 2(R0, 0) . (4.29)

Moreover, (4.17) and (4.25) imply the additional constraint [60]

∂

∂τ
R = −E(R, τ) , (4.30)

at fixed R0. This result together with (4.29) is the solution, in implicit form, of the Burgers’
equation [58]:

∂

∂τ
E(R, τ) = E(R, τ) ∂

∂R
E(R, τ) + P (R)2

R
. (4.31)

In conclusion, assuming the validity of the ODE/IM at τ = 0, i.e.

E(R, 0)quantum = E(R, 0)classical , P (R)quantum = P (R)classical , (4.32)

the fact that the quantum and the classical TT-evolution equations coincide, implies

E(R, τ)quantum = E(R, τ)classical . (4.33)

This equality constitutes the key result of the present work.
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5 Conclusions

The main result of this paper is the extension to TT perturbed models of the classi-
cal/quantum duality associated with the off-critical variant of the ODE/IM correspondence.
Our work links properties of the TT perturbation on quantum and classical levels that
previously stood on separate grounds. The analysis highlights a deep connection between
the classical coordinate transformation, its invertibility, and the factorization property of
the operator TT, which plays an essential role at the quantum level. In this work, attention
was restricted to the modified sinh-Gordon case of [14], however, our result has a much
wider validity. First, we notice that the explicit form of the mShG potential (3.2) does not
appear anywhere in section 4 — except for a few constants. Consequently, the validity of
the result (4.33) can be immediately extended to ODE/IM correspondence based on more
general potentials, e.g. the polynomial ones used in the context of AdS/CFT correspondence
for the computation of polygonal Wilson loops [75, 76]. Similarly, it is not difficult to see
how the arguments of section 4 remain valid for TT deformations of other known instances
of the ODE/IM correspondence [18, 19, 21, 22, 77, 78] and are also easily adaptable to the
study of the Lorentz breaking deformations introduced in [60].

We wish to stress that the Burgers’ equation (4.31) is actually a general property of
TT-deformed classical field theories. In fact, the argument used in section 4 teaches us
that everything we need to prove (4.31) are the differential maps (4.11), (4.12) and an
appropriate choice of Cauchy cycles for both the w and the x coordinates, over which
we integrate the closed 1-forms (4.8) in order to obtain the energy and the momentum.
Integrating (4.11), (4.12) over these cycles we arrive at the equivalent of (4.17), (4.25), from
which the Burgers’ equation (4.31) immediately follows.

Another significant point emerging from our analysis is the link between the dynamical
change of coordinates and the factorization property of TT [32]. This fact suggests the
existence of coordinate transformations also for deformations driven by operators built using
higher spin currents. However, preliminary inspections indicate that spacetime maps exist,
besides TT, only for JT [79, 80] and the TTs Lorentz-breaking models of [60], not for the
generic TsTs′ deformations. Nevertheless, it may be worth investigating the relation between
the latter and maps between the spacetime and more complicated surfaces embedded in
higher dimensional spaces. The additional dimensions would correspond to the higher
times associated to the commuting Hamiltonian flows generated by the higher conserved
charges. A further, natural follow-up would be the extension of the ODE/IM to the recently
discovered

√
TT deformations [61, 81–86].

Finally, it would be nice to use the current framework to understand better the geometric
meaning of the Hagedorn singularity appearing in the deformed quantum spectrum and
explore at a deeper level the consequences of the TT perturbation in the context of minimal
surfaces and polygonal Wilson loops [75, 76] (see also the recent review [87]), and in the
framework of quasi-normal modes of black holes [88, 89].
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A The conformal field theory limit

At the classical level, the ultraviolet limit yielding the conformal field theory behaviour
corresponds to the following (left-moving) scaling limit:

z = y e−
ϑ

1+α , ϑ→ +∞ , |z| ∼ s→ 0+ , (A.1)

with
y = e

ϑ
1+α z E = e2αϑ/(1+α)s2α , (A.2)

kept finite. In this limit, the first equation in (3.7) reduced to the Schrödinger equation
of [1], with the addition of a finite number of regular singularities {ya} [11, 12](

d2

dy2 − V
(
y, {ya}La=1

)
− y2α + E

)
ψCFT(y) = 0 . (A.3)

Here V is the so-called ‘monster potential’ [11],

V
(
y, {ya}La=1

)
= l(l + 1)

y
+ 2 d

2

dy2

L∑
a=1

log
(
y2α+2 − ya

)
, (A.4)

and the additional singularities are defined on the cone ya ∈ Cπ/α \ [E1/(2α),+∞), away
from the apex: ya 6= 0.

In the right-moving sector, the opposite scaling limit

z̄ = y e−
ϑ

1+α , ϑ→ −∞ , |z̄| ∼ s→ 0+, (A.5)

should be implemented. In this sector, a different number of singularities, L̄, will mark the
monster potential.

A.1 WKB analysis and the monster potential

A naive, straightforward WKB analysis of (A.3) runs into problems, due to the presence of
two competing scales E and α. A more refined analysis involves the following change of
variables [90]:

y = E
1

2α ŷ
1

2l+1 , ψCFT(y) = E−
l

2α ŷ−
l

2l+1 ψ̂CFT(ŷ) . (A.6)

In this new set of coordinates, equation (A.3) reads(
−ε2 d

2

dŷ2 + q(ŷ) + ε2ξL(ŷ, ε)
)
ψ̂CFT(ŷ) = 0 , (A.7)
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with

q(ŷ) = 1
4λ2 ŷ

1
λ

(
ŷ
α
λ − 1

)
. (A.8)

The last term in the parenthesis, in equation (A.7), is

ξL(ŷ, ε) = − 1
λ

d2

dŷ2

L∑
a=1

log
(
ŷ
α+1
λ − ε2ya

)

+ 2λ− 1
λ3 (α+ 1)2ŷ

α+1
λ
−2

L∑
a=1

ε2ya(
ŷ
α+1
λ − ε2ya

)2 , (A.9)

with
λ = l + 1

2 , ε = E−
α+1
2α . (A.10)

Now the WKB expansion of ψ̂CFT(ŷ) is naturally organized by the single parameter ε, which
combines the two scales E and α

ψ̂CFT(ŷ) = exp

1
ε

∑
b≥0

εbSb(ŷ)

 , (A.11)

while
ξL(ŷ, ε) = ξL(ŷ, 0) +

∑
c≥1

εcξ(L)
c (x̂) . (A.12)

The first few terms of the solution are easily computed by recursion,

S′0(ŷ) = −
√
q(ŷ) , S′1(ŷ) = − q

′(ŷ)
4q(ŷ) , (A.13)

S
(L)
2
′
(ŷ) = − 1

48

(
q′′(ŷ)
q(ŷ)

3
2

+ 5 d
dŷ

(
q′′(ŷ)
q(ŷ)

3
2

))
− ξL(ŷ, 0)

2
√
q(ŷ)

. (A.14)

From S
(L)
2 (ŷ) we can extract the first IM [87] as

E = M

4

∫
γWKB

dŷ S
(L)
2
′
(ŷ) . (A.15)

Here the WKB integration contour γWKB starts from +∞ just above the real axis, encircles
the turning point ŷ = 1 and goes back to +∞, just below the real axis. The mass M sets
the energy scale. Similarly, for the right-moving sector

Ē = M

4

∫
γWKB

dŷ S
(L̄)
2
′
(ŷ) . (A.16)

Now, we can find the exact expression for the total momentum:

P = E − Ē = −M4

∫
γWKB

dŷ
ξL(ŷ, 0)
2
√
q(ŷ)

+ M

4

∫
γWKB

dŷ
ξL̄(ŷ, 0)
2
√
q(ŷ)

= M

ε
L(α+ 1)

∫ +∞

E
1

2α

dy

y2
1√

y2α −E
− M

ε
L̄(α+ 1)

∫ +∞

E
1

2α

dy

y2
1√

y2α −E

= 2π(L− L̄)
R

, (A.17)
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where, in the last equality in (A.17), we used the explicit form of R

R = 2
√
π

M

Γ
(
1 + 1

2α

)
Γ
(

3
2 + 1

2α

) . (A.18)

Therefore, we arrived at the quantization rule for the total momentum

P = 2π k
R

, k ∈ Z . (A.19)

Similarly we can compute the total energy, arriving at the following expression

E = E + Ē = − π

6Rceff , (A.20)

where ceff is the effective central charge:

ceff = 1−
6(l + 1

2)2

α+ 1 − 12(L+ L̄) . (A.21)

The results (A.19) and (A.20) can also be derived following other routes. As an example,
we have checked the scaling limit of [14] (in which sα+1/M = M−1 is kept constant). From
the general assumptions in section 3, the WKB analysis reassures us that (A.19) is a rather
general result. See also [91] on recent interesting developments in the study of excited-states
in the ODE/IM framework.

Finally, it is worth stressing that the total contribution to the momentum P comes
from the region (z, z̄) ∼ (0, 0), therefore the result (A.19) is correct also for the full massive
version, and after the perturbation with TT. This is an expected result as, at both the
classical and the quantum levels, the additions of the sin(h)-Gordon potential and TT do
not modify the original translational properties along the space direction.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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