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Abstract 12 

We introduced superoxide as potassium superoxide (KO2) to artificial lake water containing 13 

dissolved organic matter (DOM) without or with introduced ferric iron complexes (DOM-Fe), 14 

and monitored the production rate of hydroxyl radicals as well as changes in the absorption and 15 

fluorescence properties of DOM. The introduction of KO2 decreased the absorption by DOM 16 

but increased the spectral slope coefficient of DOM more with complexed ferric Fe than 17 

without it. The introduction of KO2 increased the fluorescence of humic-like components in 18 

DOM without introduced ferric Fe but resulted in the loss of fluorescence in DOM with 19 

introduced ferric Fe. A single introduction of 13 µmol L–1 KO2 produced 10 µmol L–1 and 104 20 

µmol L–1 hydroxyl radicals during a week-long experiment without and with the introduced 21 

DOM-Fe complexes, respectively. The production rate of hydroxyl radicals decreased 22 

exponentially with time but levelled off and continued several days in DOM with introduced 23 

ferric Fe. These findings suggest that in the presence of DOM-Fe complexes, superoxide can 24 

trigger an autocatalytic Fenton reaction that produces hydroxyl radicals and breaks down DOM. 25 

Keywords: dissolved organic matter, iron, superoxide, hydroxyl radicals, production rate, 26 

absorption 27 
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1 Introduction 29 

Dissolved organic matter (DOM) is a heterogeneous mixture of organic compounds and 30 

plays important roles in natural and engineered systems. In soils and freshwaters, the majority 31 

of DOM consists of humic substances that primarily originate from terrestrial plant litter after 32 

biotic and abiotic transformations (Piccolo, 1996; Tranvik, 1988). Humic DOM binds ferric 33 

iron, Fe(III), into complexes, DOM-Fe(III), and keeps poorly soluble Fe(III) in dissolved form 34 

(Fujii et al., 2014). Humic DOM contains aromatic and quinone-like moieties, which occur in 35 

three redox-states (quinones, semiquinones and hydroquinones) and can mediate reactions 36 

between electron donors and acceptors with Fe (Aeschbacher et al., 2010; Chen & Pignatello, 37 

1997; Garg et al., 2018; Yuan et al., 2016).  38 

The enzymatic hydrolysis of humic DOM and its intracellular metabolism is inefficient, 39 

because the large size of molecular aggregates, chemical heterogeneity, and non-hydrolysable 40 

bonds limit the microbial transformation of humic DOM (Arnosti, 2004). Abiotic 41 

photochemical reactions mineralize humic DOM and account for one tenth of CO2 emissions 42 

in freshwaters (Aarnos et al., 2018; Koehler et al., 2014). The remaining 90% of DOM is 43 

mineralized through mechanisms that are poorly known. 44 

Extracellular reactions between DOM and reactive oxygen species (ROS) can explain 45 

a part of DOM transformations (Mostovaya et al., 2017; Page et al., 2012; Trusiak et al., 2018; 46 

Waggoner et al., 2017). The first step in the formation of ROS is a one-electron reduction of 47 

O2 to superoxide (O2
●–). Numerous processes produce O2

●–: (i) photochemical reactions 48 

(Micinski et al., 1993; Fujii & Otani, 2017; Zhang & Blough, 2016; Text SIV in supporting 49 

information (SI)), (ii) abiotic dark oxidation of reduced metals or organic matter (Garg et al., 50 

2018; Gil-Lozano et al., 2017; Page et al., 2012; Yuan et al., 2016) and (iii) biological processes 51 

both in light and dark (Diaz et al., 2013; Diaz & Plummer, 2018; Imlay, 2004; Zhang et al., 52 

2016). O2
●– reacts with the redox-active metals (e.g., Fe and copper) and quinone-like moieties 53 
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of DOM, but it has otherwise limited reactivity with aqueous DOM (Garg et al., 2011, 2018; 54 

Hayyan et al., 2016; Yuan et al., 2016). 55 

O2
●– can be reduced further to hydrogen peroxide (H2O2) and hydroxyl radicals (●OH). 56 

Bimolecular disproportionation and the disproportionation catalyzed by reduced metals or 57 

DOM transform O2
●– to H2O2 (Goldstone & Voelker, 2000; Ma et al., 2010). O2

●– can reduce 58 

DOM-Fe(III) to DOM-Fe(II) (Rose & Waite, 2005). DOM-Fe(II) as well as inorganic Fe(II) 59 

can react with H2O2 through the Fenton reaction and produce highly reactive ●OH that breaks 60 

down DOM (Southworth & Voelker, 2003; Voelker et al., 1997).  61 

H2O2 + DOM-Fe(II) → ●OH + OH– + DOM-Fe(III)  Eq. 1 62 

According to the stoichiometry of the Fenton reaction (Eq. 1), the Fe(III)-catalyzed 63 

production of ●OH requires three O2
●– radicals, two for the formation of H2O2 and one for the 64 

formation of DOM-Fe(II). However, the stoichiometry of the Fenton reaction (●OH-to-O2
●– 65 

ratio = 0.33) ignores a well-known fact that ●OH generates radical species that can regenerate 66 

the Fenton reactants and autocatalyze the Fenton reaction (e.g., Chen & Pignatello, 1997; Gil-67 

Lozano et al., 2017). The degree of autocatalysis is poorly known, although it has high 68 

importance when the efficiency of the Fenton reaction is evaluated in natural or engineered 69 

systems. 70 

The present study estimates the dark production rates of ●OH in artificial lake water 71 

from O2
●– (introduced as potassium superoxide, KO2) in the presence of DOM with or without 72 

introduced Fe(III). The production rates of ●OH were quantified from the reaction between 73 

●OH and coumarin (Louit et al., 2005) and after accounting for the major scavengers of ●OH 74 

in the artificial lake water. In this study we demonstrate that the cumulative production of ●OH 75 

from O2
●– in a-week-long experiment exceeds the ●OH yield of the Fenton reaction by several 76 

folds and extensively modifies the spectroscopic properties of DOM. 77 

 78 



21 
 

2 Materials and methods 79 

2.1 Materials and reagents 80 

DOM was extracted from a water sample collected during the fall turnover of Lake 81 

Valkea-Kotinen in southern Finland. This small headwater lake is acidic (pH 5.4) with high 82 

concentration of DOC (10−12 mg DOC L–1 = 20 mg DOM L-1) and total Fe (5 µM; Einola 83 

et al., 2011; Vähätalo et al., 2003). In Lake Valkea-Kotinen, the mean molecular mass of DOM 84 

is 1130−4000 g mol-1, the content of humic substances and aromatic groups is 75% and 85 

45−67%, respectively (Vogt et al., 2004). 86 

The extraction of DOM followed the method by Dittmar et al. (2008) but included an 87 

addition of 0.01 M sodium fluoride (NaF, Sigma-Aldrich) in filtered (<0.2 µm) and acidified 88 

(pH 2) lake water. At pH 2, Fe(III) binds poorly on DOM and preferentially forms ferric 89 

fluoride complex (Gao & Zepp, 1998). Ferric fluoride and fluoride ions were rinsed out of the 90 

column with 0.01 M HCl (Dittmar et al. 2008) to yield extracted DOM with a very low content 91 

of fluoride and Fe. The extraction removed 96.6% of Fe from lake water and the DOM extracts 92 

contained 8.5 nmol Fe/mg DOM (Table 1). The chemicals (>97% pure) were bought from 93 

Sigma Aldrich. Iron(III) chloride hexahydrate (FeCl3∙6H2O) and KO2 were the sources of 94 

Fe(III) and O2
●–, respectively. Coumarin and 7OH-coumarin were the probes for ●OH (Burgos 95 

Castillo et al., 2018). The aqueous solutions were prepared in ultrapure water (resistivity 18 96 

M·cm; SG ultrapure water system, SG WATER), but were later modified to artificial lake 97 

water by a salt solution mixture (Table S1). Glassware was soaked overnight in 0.1 M HCl and 98 

carefully rinsed with ultrapure water six times prior to use. 99 

2.2 Experimental setup 100 

The experiment consisted of four treatments prepared in triplicates (Table 1): 101 

1) “control” – extracted DOM (8.5 nmol Fe/mg DOM) dissolved in artificial lake water; 102 

2) “KO2” – like (1) but with introduced KO2; 103 
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3) “Fe” – like (1) but Fe(III) was introduced as DOM-Fe(III) (1000 nmol Fe(III)/mg 104 

DOM); 105 

4) “Fe + KO2” – a combination of (2) and (3). 106 

For the preparation of DOM-Fe(III), the acidic (pH 2) DOM solution (50 mg L–1 in 107 

ultrapure water) received 1 mM Fe(III) and was titrated to pH 5 with NaOH and HCl, 108 

approximating the ambient pH of Lake Valkea-Kotinen. During the titration, the binding sites 109 

of DOM suppressed the hydrolysis of ferric Fe and DOM-Fe(III) was formed (Karlsson & 110 

Persson, 2012). According to an equilibrium speciation model (Visual Minteq 3.1), the DOM 111 

extract was able to bind Fe(III) entirely and accordingly visual precipitates were absent at any 112 

phase of the experiment. The “control” and “KO2” treatments were titrated in the same way 113 

but without the introduced Fe. All treatments received the stock solution of coumarin to the 114 

final concentration of 10 µM (Table 1) and inorganic component of artificial lake water (Table 115 

S1). 116 

The “KO2” and “Fe + KO2” treatments received an alkaline solution of KO2 (2 g KO2 117 

in 100 mL 0.05 M NaOH) to a 13 µM final concentration (Table 1). Similar magnitudes of 118 

O2
●– form instantly during the oxidation of reduced organic matter or metals (Liao et al., 2019; 119 

Minella et al., 2015; Page et al., 2013; Trusiak et al., 2018; Zhang & Yuan, 2017), with a few 120 

days of microbial metabolism (Zhang et al., 2016) or with 0.17−few days of solar irradiation 121 

depending on water quality (Cooper & Zika, 1983; Micinski et al., 1993; Text SIV in SI). The 122 

introduction of KO2 increased the pH of non-buffered artificial lake water to 12.2, where the 123 

reduction rate of DOM-Fe(III) to DOM-Fe(II) by O2
●– is faster than bimolecular 124 

disproportionation of O2
●– (see Text SI in SI). The reaction medium was titrated back to pH 5 125 

with HCl. Finally, all treatments were incubated at 20 °C in the dark with a headspace of air. 126 

2.3 UV-Vis spectral analysis 127 

After 26 h and a week (168 h) of incubation, the absorbance of chromophoric DOM 128 
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(CDOM) was measured with a UV-Vis spectrometer (Lambda 850, PerkinElmer) from 200 nm 129 

to 700 nm at 1 nm intervals. The absorption coefficient was calculated as, 130 

aλ = 2.303 × Aλ/L                                 Eq. 2, 131 

where aλ (m
–1) is the absorption coefficient at wavelength λ, Aλ (unitless) is absorbance, and L 132 

is the path length of the cuvette (L = 0.01 m). The changes in aλ were quantified at 410 nm as 133 

a410, an indicator of water color (Hongve et al., 2004). The spectral slope coefficient (S275-295), 134 

which indicates the molecular mass of DOM, was calculated from ln-transformed absorption 135 

coefficient between 275 nm and 295 nm (Helms et al., 2008). 136 

2.4 Fluorescence analysis and PARAFAC 137 

Samples for fluorescence analysis were stored at 4 °C after collection and measured 138 

within 3 weeks. Fluorescence EEMs were measured with a LS 55 luminescence spectrometer 139 

(PerkinElmer). The samples were scanned with an excitation wavelength (Ex) from 240 nm to 140 

450 nm at 5 nm intervals and emission wavelength (Em) from 300 nm to 600 nm with 0.5 nm 141 

intervals. The slit width for both Ex and Em was set to 5 nm. Blank and Raman samples from 142 

ultrapure water were measured prior to actual samples (Murphy et al., 2003). 143 

PARAllel FACtor analysis (PARAFAC) was run in Matlab R2015b (Mathworks, USA) 144 

using the drEEM toolbox (version 0.3.0). The raw EEM dataset (n = 48) was corrected for 145 

spectral bias, inner filter effects and background signals (measured with ultrapure water). In 146 

the end, all EEMs were normalized to the area of Raman peak collected with ultrapure water 147 

at Ex = 275 nm to compensate for daily fluctuations in lamp intensity (Kothawala et al., 2016; 148 

Murphy et al., 2013). The fluorescent components were validated with multiple split-half tests. 149 

The validation was constrained by a Tucker congruence coefficient (TCC >0.95). Finally, the 150 

maximum fluorescence intensities (Fmax, in Raman unit, R.U.) of components were reported. 151 

2.5 Calculations of the cumulative production of ●OH radicals 152 

The samples for the quantification of coumarin and 7OH-coumarin were collected at 0, 153 
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3, 6, 20, 26, and 168 h. These samples were frozen immediately after collection and analyzed 154 

later. Coumarin and 7OH-coumarin were measured by high performance liquid 155 

chromatography (HPLC) equipped with UV-Vis absorbance and fluorescence detectors (Louit 156 

et al., 2005). The quantification of the two compounds was carried out by means of the UV-157 

Vis absorbance detector for coumarin (absorption wavelength = 280 nm) and fluorescence 158 

detector for 7OH-coumarin (excitation wavelength = 320 nm; emission wavelength = 450 nm). 159 

The Text SII in SI reports the details of HPLC technique. 160 

The formation rates of ●OH were quantified from the reaction between coumarin and 161 

●OH. This reaction has a second-order rate constant of 5.6  109 M–1 s–1 and produces a few 162 

hydroxycoumarin isomers, including 7OH-coumarin with a yield of 0.047 (Burgos Castillo et 163 

al., 2018). We calculated the production rates of 
●

OH along the course of the experiment by 164 

quantifying periodically the concentrations of 7OH-coumarin and coumarin as well as 165 

accounting for the scavenging of 
●
OH by DOM, Cl–, HCO3

–, coumarin and 7OH-coumarin. 166 

The calculations assumed a steady-state between the scavenging and the formation rate of ●OH. 167 

The production rates of ●OH radicals were integrated over the course of the experiment for the 168 

cumulative production of ●OH. The detailed procedure for calculations is described in the SI. 169 

2.6 Statistical analyses 170 

The statistical difference between the triplicated treatments and control (DOM alone 171 

treatment) was assessed using paired t tests with two-tailed distributions. The significance level 172 

was set at P < 0.05. 173 

3 Results 174 

3.1 Changes in absorption spectra 175 

The introduction of KO2 did not change the absorption coefficient a410 in an early phase 176 

of the experiment (at 26 h) but decreased it by 25% by the end of the experiment (at 168 h) 177 

compared to DOM in artificial lake water without KO2 (“control” vs “KO2”, Figure 1a). In the 178 
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“Fe” treatment, the introduced DOM-Fe(III) consistently kept a410 at a higher level than in the 179 

control (Figure 1a). When introduced with DOM-Fe(III), KO2 decreased a410 by 18% already 180 

at 26 h and by 66% over the entire experiment compared to the control (“Fe + KO2”, Figure 181 

1a). 182 

In comparison with the control treatment, KO2 increased the spectral slope coefficient 183 

(S275-295), while DOM-Fe(III) decreased it (Figure 1b). When introduced with Fe, KO2 184 

increased S275-295 by 20% at 26 h and by 54% at the end of the experiment (Figure 1b). 185 

3.2 Changes in fluorescent intensities of PARAFAC components 186 

The four components of fluorescent DOM identified by the EEM-PARAFAC 187 

associated with humic substances (Comp 1–2, Figure 2 and Table S2), 7OH-coumarin (Comp 188 

3; Figure S1) and protein-like DOM (Comp 4, Figure 2 and Table S2). After 168 h, the 189 

introduction of KO2 had increased the fluorescence of humic-like components 1 and 2 by 39% 190 

and 18%, respectively, in comparison to the control treatment (“KO2”, Figure 3). The added 191 

associated Fe(III) quenched the fluorescence of humic-like components 1−2 (“Fe”, Figure 3). 192 

In the presence of DOM-Fe(III), KO2 reduced the fluorescence of components 1−2 relative to 193 

the control treatment and decreased the fluorescence of component 4 to negligible level (“Fe + 194 

KO2”, Figure 3). Component 3 was detected in all treatments (Figure 3) indicating that ●OH 195 

radicals transformed coumarin (Table 1) into 7OH-coumarin, as explained in the following 196 

section. 197 

3.3 Production of ●OH 198 

The formation rate of ●OH, 𝑅𝑓
•𝑂𝐻(𝑡), was assessed from the measured concentrations 199 

of coumarin and 7OH-coumarin (Figure SIII-1&2) accounting for the other scavengers of ●OH 200 

as described in the Text SIII in SI. In the beginning of the experiment,  𝑅𝑓
•𝑂𝐻(𝑡0)  was 201 

0.0031−0.0034 nM s–1 in the “Fe” treatment and the control, which did not receive KO2 (Figure 202 
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4; Table SIII-1). The introduction of KO2 resulted in 𝑅𝑓
•𝑂𝐻(𝑡0) of 0.039 nM s–1 and 1.14 nM s–203 

1 in the “KO2” and “KO2 + Fe”-treatments, respectively (Figure 4; Table SIII-1). In the “KO2 204 

+ Fe” treatment, the measured 𝑅𝑓
•𝑂𝐻(𝑡0) was nearly identical to the corresponding rate of 1.05 205 

nM s–1 calculated based on a simple kinetic model (Figure SI-2). Briefly, the calculated rates 206 

are based on the kinetics for the following sequence of reactions: (i) the reduction of DOM-207 

Fe(III) to 13 µM DOM-Fe(II) by O2
●–, (ii) the reduction of O2 to O2

●– by DOM-Fe(II), (iii) the 208 

disproportionation of O2
●– to H2O2 and (iv) the Fenton reaction (Eq. 1) between H2O2 and 209 

DOM-Fe(II). The good match between the measured and the calculated 𝑅𝑓
•𝑂𝐻(𝑡0) in the “KO2 210 

+ Fe” treatment suggest that, (i) O2
●– induced the formation of ●OH in the presence of DOM-211 

Fe(III) and (ii) the reaction stoichiometry (e.g., ●OH-to-O2
●– ratio = 0.33 of Eq. 1) described 212 

the measured initial rates well. 213 

The formation rates of ●OH decreased exponentially with time in all treatments, and 214 

after 10 h levelled at 0.15 nM s–1 in the “KO2 + Fe” treatment (Figure 4, Table SIII-1). In the 215 

“KO2 + Fe” treatment, the prolonged formation of ●OH is consistent with the changes in DOM 216 

that took place mostly after 26 h (Figure 1), but inconsistent with a simple kinetic model (Text 217 

SI-3). The simple kinetic model incorrectly suggests the depletion of 𝑅𝑓
•𝑂𝐻(𝑡) within a few 218 

minutes (Text SI-3) in contrast to the measured 𝑅𝑓
•𝑂𝐻(𝑡), which lasted tens of hours (Figure 4).  219 

The cumulative production of ●OH was computed as the integral of 𝑅𝑓
•𝑂𝐻(𝑡) for the first 220 

10 hours or for the entire length of the experiment (168 h, Table 2, Eq. SIII-1). In all treatments, 221 

the majority of ●OH was produced after 10 h (Table 2). In the treatments with introduced KO2, 222 

the cumulative production of ●OH was 9.9 and 104 µM in the “KO2” and “KO2 + Fe” treatments, 223 

respectively, over the entire length of the experiment (Table 2). The yields of ●OH per 224 

introduced 13 µM KO2 were 0.76 ●OH/O2
●– and 8 ●OH/O2

●– in the “KO2” and “KO2 + Fe” 225 

treatments, respectively. The measured yields exceeded the stoichiometric yield (0.33 226 
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●OH/O2
●– in Eq. 1) by a factor of 2.3 and 24 in the “KO2” and “KO2 + Fe” treatments, 227 

respectively, and indicated an autocatalytic formation of ●OH from O2
●– in the presence of 228 

DOM-Fe. 229 

 230 

4 Discussion 231 

4.1 ●OH production 232 

As explained in the Method-section 2.2, the amount of introduced O2
●– in this study is 233 

environmentally relevant but here we compare the cumulative productions of ●OH (0.23−104 234 

µM) in our week-long experiment to those reported earlier. An oxidation of reduced DOM or 235 

metals produces ●OH. For example, the oxidation of Arctic surface and soil waters produce 236 

0.2–4.5 µM ●OH over 24 hour oxidation (Page et al., 2013); the oxidation of hypolimnetic 237 

water accumulatively produces 0.2–4.5 µM ●OH (Minella et al., 2015); the oxidation of pyrite 238 

can produce 7.5−135 µM ●OH within 7 hours (Zhang & Yuan, 2017); and the oxidation of 239 

river sediments can accumulatively produce 57−1479 µmol kg–1 ●OH within 48 hours (Liao et 240 

al., 2019). Thus, the cumulative productions of ●OH in this study are broadly similar to those 241 

reported earlier from various environmental processes. 242 

4.2 Stoichiometric production of ●OH from superoxide and DOM-Fe(III) 243 

In this study, the production of ●OH is orders of magnitude larger in the presence than 244 

the absence of introduced KO2, therefore, O2
●– is responsible for the extensive production of 245 

●OH. The reaction pathway from O2
●– to ●OH is beyond the scope of the present study, because 246 

we did not measure the intermediates such as DOM-Fe(II) or H2O2. Our simple kinetic model, 247 

however, successfully predicts the measured 𝑅𝑓
•𝑂𝐻(𝑡0) in the “KO2 + Fe” treatment and may 248 

provide a mechanistic explanation for the initial ●OH production rates (Text SI). According to 249 

this simple model, the reaction pathway starts with the reduction of DOM-Fe(III) to DOM-250 
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Fe(II) by O2
●– (Eq.3, Text SI). Later, bimolecular disproportionation generates H2O2 (Eq.4). 251 

At this stage, the reduction of O2 by DOM-Fe(II) is the source of O2
●– (Text SI). Finally, H2O2 252 

reacts with DOM-Fe(II) (Eq.1, Text SI). The reactive oxygen species can maintain the redox 253 

cycling of the iron catalyst and the production of ●OH from the oxidant (H2O2 = 2[O2
●– + H+]) 254 

according to the stoichiometry of the Fenton reaction (Pignatello et al. 2006; Text SI). 255 

DOM-Fe(III) + O2
●– → DOM-Fe(II) + O2       Eq.3, 256 

O2
●– + HO2

● + H+ → H2O2 + O2                       Eq.4,  257 

DOM facilitates the formation of ●OH through the Fenton reaction in many ways 258 

(Georgi et al., 2007). When DOM makes complexes with Fe(III) at pH > 3.5, it keeps Fe(III) 259 

in soluble reactive form (Zhang & Zhou, 2019). At low pH (e.g., pH = 5 in this study), the 260 

deprotonated carboxylic groups of DOM are favorable ligand for Fe(III) and the concentration 261 

of a major competing ligand, hydroxyl ion (OH–), is low (Bhattacharyya et al., 2019; Lee et al., 262 

2019; Neubauer et al., 2013; Zhang & Zhou, 2019). Mildly acidic conditions (like in the present 263 

study) are favorable for the Fenton reaction, which breaks down humic substances most 264 

efficiently at pH 4−5 rather than in more acidic or basic solutions (Wu et al., 2010). 265 

Additionally, H2O2 reacts faster with DOM-Fe(II) than with inorganic Fe(II) (Voelker & 266 

Sulzberger 1996; Zhang & Zhou, 2019). 267 

4.3 Autocatalysis of the Fenton reaction 268 

In our study, the cumulative production of ●OH is larger (0.76−8 ●OH/O2
●–) than 269 

expected from the introduced O2
●– according to the stoichiometry of the Fenton reaction (0.33 270 

●OH/O2
●–). The reactions between ●OH and the phenolic moieties of DOM can explain the 271 

autocatalysis of the Fenton reaction in this study (Voelker & Sulzberger, 1996, Chen & 272 

Pignatello, 1997). Those reactions generate hydroquinone-like DOM and O2
●– (Voelker & 273 

Sulzberger, 1996, Chen & Pignatello, 1997, Duesterberg & Waite, 2007). The reactions 274 
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between ●OH and phenols have been examined earlier with model compounds (phenol and 275 

hydroxybenzoic acid) that mimick the aromatic moieties of DOM (Chen & Pignatello, 1997; 276 

Duesterberg & Waite, 2007). Firstly, an addition of ●OH to phenol (PhOH) generates a 277 

dihydroxycyclohexadienyl radical (HO-(C6H5)
•-OH, Eq.5), which transforms into 278 

hydroquinone (HO-Ar-OH) in a reaction that consumes O2 and generates O2
●– (Eq.6, Chen & 279 

Pignatello, 1997; Voelker & Sulzberger, 1996). Secondly, the transformation of hydroquinone 280 

to semiquinone radical (HO-Ar-O•) reduces DOM-Fe(III) to DOM-Fe(II) (Eq.7, Chen & 281 

Pignatello, 1997; Duesterberg & Waite, 2007). Finally, a semiquinone radical reduces another 282 

DOM-Fe(III) when undergoing oxidation to quinone (O=Ar=O) (Eq.8, Chen & Pignatello, 283 

1997; Duesterberg & Waite, 2007).  284 

PhOH + •OH → HO-(C6H5)
•-OH                                                    Eq.5, 285 

HO-(C6H5)
•-OH + O2 → HO-Ar-OH + O2

●– + H+                          Eq.6, 286 

HO-Ar-OH + DOM-Fe(III) → HO-Ar-O• + DOM-Fe(II) + H+      Eq.7, 287 

HO-Ar-O• + DOM-Fe(III) → O=Ar=O + DOM-Fe(II) + H+          Eq.8, 288 

2 DOM-Fe(II) + 2 O2 → 2 DOM-Fe(III) + 2 O2
●–                           Eq.9, 289 

The four consecutive reactions (Eq.5-8) described above produce three reducing 290 

equivalents (O2
●– and/or DOM-Fe(II)) that re-generate the Fenton reactants and thus the 291 

production of •OH gets autocatalyzed through the Fenton reaction and DOM oxidation. Note 292 

that the net reaction of this process (from Eq.1 to Eq.9, with the exception of Eq.2) is the 293 

oxidation of phenol to quinone (Eq.10). 294 

PhOH + O2 → O=Ar=O + H2O             Eq.10, 295 

 This autocatalysis can continue as long as water contains O2 and DOM contains 296 

aromatic moieties that ●OH can transform into hydroquinones. In this study, the headspace of 297 

air serves as a source of dissolved O2 to our solutions like the atmosphere is a source of O2 to 298 
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surface waters. The high (45−67%) aromaticity of DOM used in this study (Vogt et al., 2004) 299 

provides a large reservoir of aromatic moieties that ●OH can transform into hydroquinones. 300 

Because highly aromatic humic substances and Fe are abundant in soils and freshwaters, the 301 

potential for the autocatalyzed Fenton reaction is high in these environments. 302 

4.4 Fenton reaction without introduced O2
●– 303 

Our experiments show that even without introduction of O2
●–, DOM-Fe can produce 304 

hydroxyl radicals at low amounts that are similar to < 0.5 µM ●OH produced during aeration 305 

of Artic surface waters (Page et al., 2012; Trusiak et al., 2018). Since Lake Valkea-Kotinen has 306 

typically anoxic hypolimnion in late summer and it is surrounded by peaty soils, the DOM 307 

extract used in the present study may contain Fe or quinone-like moieties in a reduced state. 308 

The reduced hydroquinone-like moieties or reduced metals (e.g., Fe(II)) associated to DOM 309 

can reduce O2 to O2
●– and initiate the sequence of reactions leading to the Fenton reaction (Garg 310 

et al., 2018; Page et al., 2013, 2014). In this study, the external supply of DOM-Fe(III) doubled 311 

the ●OH production compared to DOM extract alone with low content of Fe and further 312 

emphasizes the Fenton reaction as a source of ●OH. Although an abiotic dark formation of ●OH 313 

is low in oxic surface waters without external source of O2
●– (Trusiak et al., 2018; this study), 314 

an episodic mixing of reduced DOM or redox sensitive metals to an oxic environment can 315 

promote an extensive production of ●OH (Minella et al., 2015; Page et al., 2012, 2013; Trusiak 316 

et al., 2018). 317 

4.5 Effects of O2
●– and Fe on the absorption spectra of CDOM 318 

In this study, the introduction of external O2
●– eventually led to a CDOM break down 319 

and increased the value of S275-295 (Figure 1). These changes in CDOM are related to the 320 

produced amount of ●OH radicals and indicate that ●OH rather than O2
●– breaks down DOM 321 

(Goldstone et al., 2002; Pignatello et al., 2006; Rush & Bielski, 2005; Waggoner et al., 2017; 322 
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Wu et al., 2010; this study). The changes in CDOM found in this study indicate a breakdown 323 

of DOM into smaller less aromatic molecules (Helms et al., 2008) as found earlier in the 324 

reactions between DOM and ●OH (Goldstone et al., 2002; Pignatello et al., 2006).  325 

4.6 Effects of O2
●– and Fe on the fluorescence spectra of CDOM 326 

In our study, the introduction of KO2 without external supply of Fe(III) increases the 327 

fluorescence of humic-like components (Figure 3), which agrees with the involvement of 328 

hydroquinones in the autocatalysis of the Fenton reaction (Chen & Pignatello, 1997; 329 

Duesterberg & Waite, 2007). The hydroxylation of aromatic moieties into hydroquinones by 330 

●OH can explain the increase in fluorescence and no change in absorption in the first 26 h 331 

(Figure 1a and 3), because hydroquinone-moieties have high fluorescence and absorption 332 

(Cory et al., 2005). Additionally, the breakdown of DOM by ●OH decreases the molecular size 333 

of DOM and increases the spectral slope coefficient (Figure 1b), which are both related to an 334 

increase in the quantum yield of fluorescence (Boyle et al., 2009; Senesi, 1990). The 335 

complexation of Fe quenches fluorescence of DOM (Cabaniss, 1992; Du et al., 2018; Poulin 336 

et al., 2014; Pullin et al., 2007; Figure 3), because Fe promotes internal conversion and 337 

intersystem crossing of the first excited singlet state as well as a ligand to metal charge transfer, 338 

i.e., processes that compete with fluorescence (Senesi, 1990). The reduction in fluorescence in 339 

the “Fe + KO2” treatment (Figure 3) is, instead, attributed to the breakdown of DOM by the 340 

extensive amount of ●OH, suggesting that there is an optimum in fluorescence emission as a 341 

function of DOM molecular weight or aromaticity. 342 

 343 

5 Conclusions 344 

This study shows that O2
●– can induce the production of ●OH in the presence of complexes 345 

between Fe and humic DOM. The production of ●OH can exceed the stoichiometry of Fenton 346 

reaction by 2−24 folds. The autocatalysis of Fenton reaction observed in the present study 347 
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emphasizes the role of O2
●– as an efficient transformer of organic matter. As numerous 348 

processes (photochemistry, abiotic dark oxidation, and biology) can produce O2
●–, superoxide-349 

driven Fenton reactions likely transform natural organic matter and contaminants in diverse 350 

terrestrial and freshwater environments. 351 
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Tables 593 

Table 1. Experimental design. The initial concentrations of DOM, complexed Fe, KO2, and 594 

coumarin in the treatments made in artificial lake water (Table S1). 595 

Treatments 
DOM 

(mg L–1) 

Fe 

(µM) 

KO2 

(µM) 

Coumarin 

(µM) 

control 20 0.17* -- 10 

KO2
*** 20 0.17* 13 10 

Fe 20 20** -- 10 

Fe + KO2
*** 20 20** 13 10 

--, no addition of KO2. 
*residual Fe in extracted DOM (8.5 nmol Fe/mg DOM), **introduced 596 

as DOM-Fe complex. ***In the treatments “KO2” and “Fe + KO2”, the introduction of 13 µM 597 

KO2 increased pH to 12.2, which was soon titrated with HCl back to the same pH 5 as in the 598 
other treatments. 599 
  600 
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Table 2. Cumulative production of ●OH radicals (µM) in the treatments. 601 

 602 

Time 

Interval 
control Fe KO2 Fe + KO2 

0–10 h 0.09 0.11 1.32 16.3 

0–168 h 0.23 0.57 9.88 103.5 

  603 
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Figure captions 604 

Figure 1. Absorption coefficient of CDOM at 410 nm (a410) and spectral slope coefficient (S275-605 

295) after 26 h and 168 h incubations in the three treatments and the control. Table 1 explains 606 

the treatments. Stars indicate a significant difference between the treatments and the control, * 607 

P < 0.05 and ** P < 0.01. Error bars show standard deviations of three replicated treatments. 608 

 609 

Figure 2. Overlaid spectra of four components (PARAFAC model). The figure shows six 610 

unique splits vs. the overall model. Dot lines indicate excitation spectra and solid lines indicate 611 

emission spectra. The excitation and emission maxima of each components are shown in Table 612 

S2. The loadings in the Y-axis indicate the normalized component intensity in the PARAFAC 613 

modeling. 614 

 615 

Figure 3. Fluorescent intensities at 168 h of four components obtained from EEM-PARAFAC 616 

modeling (Figure 2). The fluorescence of component 4 was negligible in the “Fe+KO2” 617 

treatment. Stars indicate a significant difference between treatment and the control, * P < 0.05 618 

and ** P < 0.01. Error bars show standard deviations of three replicated treatments. 619 

 620 

Figure 4. Computed formation rate of ●OH in the treatments at selected times (■). The blue 621 

lines represent the fitting functions from which the cumulative production of ●OH radicals were 622 

calculated. The R2 parameter shows the goodness of the fit. See SI for the fitting functions. 623 

Note the orders of magnitude differences in the scales of Y-axes. 624 

 625 


