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Abstract: Research Highlights: Protected natural areas are a reservoir of Phytophthora species and

represent the most suitable sites to study their ecology, being less disturbed by human activities

than other environments. Background and Objectives: The specific objective of this study was

to correlate the diversity and distribution of Phytophthora species with the vegetation in aquatic,

riparian and terrestrial habitats within a protected area in Eastern Sicily, Southern Italy. Materials and

Methods: Environmental samples (water and soil) were sourced from two streams running through the

reserve and six different types of vegetation, including Platano-Salicetum pedicellatae, the Sarcopoterium

spinosum community, Myrto communis-Pistacietum lentisci, Pistacio-Quercetum ilicis, Oleo-Quercetum

virgilianae and a gallery forest dominated by Nerium oleander (Natura 2000 classification of habitats).

Phytophthora species were recovered from samples using leaf baiting and were classified on the

basis of morphological characteristics and sequencing of internal transcribed spacer (ITS) regions

of ribosomal DNA (rDNA). Results: As many as 11 Phytophthora species, within five different ITS

clades, were identified, including P. asparagi, P. bilorbang, P. cryptogea, P. gonapodyides, P. lacustris,

P. multivora, P. nicotianae, P. oleae, P. parvispora, P. plurivora and P. syringae. No Phytophthora species were

found in the Sarcopoterium spinosum comm. Phytophthora asparagi, P. lacustris and P. plurivora were

the prevalent species in the other five plant communities, but only P. plurivora was present in all of

them. Overall aquatic species from clade 6 (100 out of 228 isolates) were the most common; they were

recovered from all five types of vegetation, streams and riparian habitats. Phytophthora populations

found in the Platano-Salicetum pedicellatae and Oleo-Quercetum virgilianae show the highest diversity,

while no correlation was found with the physicochemical characteristics of the soil. Conclusions:

The vegetation type and the aquatic or terrestrial habitat were identified as major environmental

factors correlated with the diversity of Phytophthora communities in this reserve.

Keywords: leaf baiting; rDNA ITS regions; soil; water; ITS clades; Mediterranean vegetation; ecology;

soil inhabitants; aquatic species
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1. Introduction

The genus Phytophthora (Pythiaceae, Peronosporales, Oomycota, Chromista) comprises to date

over 180 described species while, according to a conservative estimate, the actual number of species in

this genus is at least double, if not triple [1,2]. Many Phytophthora species, such as Phytophthora infestans,

P. cinnamomi and P. ramorum, are destructive plant pathogens causing severe crop losses and tree

decline worldwide [3–10]. Most plant pathogenic Phytophthora species are polyphagous, with a host

range encompassing plants of different families [11–15], and are typically soil inhabitants, although a

number of them that produce deciduous sporangia have partially or temporarily adapted to an aerial

lifestyle [16]. A more restricted number of species in the phylogenetic ITS clade 6 recovered from water

courses, lakes and irrigation basins are functionally more adapted to aquatic habitats [17–21]. In general,

these aquatic Phytophthora species are weakly aggressive as plant pathogens and, consequently, it has

been assumed they behave as saprotrophs in plant debris in water and as opportunistic pathogens in

riparian habitats. However, their ecological role in ecosystems is not fully understood.

Human-mediated transport, mainly the trade of nursery plants, has been identified as a major

pathway for the introduction of non-native Phytophthora species into new areas [22–26]. It was

demonstrated, e.g., that there is a causal link between the ornamental plant industry and the

introduction of the destructive oak pathogen P. ramorum in the wildland in North America [27].

The use of nursery plants for forest restoration and afforestation is a way to introduce and spread

exotic Phytophthora species in natural habitats and forests [28–30]. In a survey of protected natural

areas in Sicily, 13 out of 20 Phytophthora recovered species were putatively exotic and only seven

could be considered endemic to Europe [31]. In many cases, Phytophthora species found in forests

and natural or naturalized ecosystems included aggressive plant pathogens of cultivated plants,

suggesting that these ecosystems may act, in turn, as potential sources and reservoirs of Phytophthora

inoculum for agricultural crops [32]. As a consequence, monitoring of forest and natural ecosystems

should be included in Phytophthora species surveillance and biosecurity schemes. The establishment

of alien invasive Phytophthora species in natural ecosystems has destabilizing effects as it affects the

ecosystem homeostasis and resilience. The invasion of natural and semi-natural ecosystems by these

pathogens may endanger native and rare plant species and are a threat to the diversity of plant

communities [27,32–34]. Hence, the knowledge of resident Phytophthora populations should be a

prerequisite for a rational management strategy of protected natural areas (PNAs).

The refinement of baiting and sampling methods, together with rapid advances in molecular

diagnostics and DNA-sequencing technology [35–54], facilitated the detection of Phytophthora in

environmental samples and stimulated the study of Phytophthora communities in forest and natural

ecosystems all over the world, including watercourses and still unexplored areas [55–67]. These surveys

revealed the richness of Phytophthora diversity in these ecosystems and led to the discovery of an

impressive number of cryptic new species in this genus. They contributed to a better understanding of

the global diversity of Phytophthora, the geographic radiation pathways of single Phytophthora species

and clades from their centers of origin, their lifestyle and, in particular, their reproductive behavior

and adaptation to different environments [2]. Despite numerous surveys, the environmental factors

shaping the Phytophthora populations and conditioning their compositional changes in the wild have

been poorly investigated. However, PNAs, being less disturbed by human activities, are the most

suitable context for studying the ecology of Phytophthora species. The main objective of this study was

to investigate whether the diversity of Phytophthora species and their frequency and spatial distribution

across a small nature reserve in Sicily (Southern Italy) are correlated with the type of vegetation and

the preferential habitat.
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2. Materials and Methods

2.1. Sampling Area

Sampling activities were carried out in the “Complesso Speleologico Villasmundo—S. Alfio”

regional nature reserve (strict nature reserve), part of the Special Areas of Conservation (SAC)

(ITA090024) “Cozzo Ogliastri” in the municipality of Melilli (Sicily, Italy) (Figure 1). The reserve is

managed by the CUTGANA (University of Catania) and was established in 1998 in order to protect one

of the most important karst systems of the Hyblean area. The reserve covers a surface of 72 hectares

in the north-eastern sector of the Climiti Mountains, between the “Belluzza” and “Cugno di Rio”

streams. Along the river “Cugno di Rio”, there are cave entrances (A zone, the core zone of the reserve).

The buffer zone of the reserve (B zone) hosts several natural ecosystems of great importance.

 

 
Figure 1. Geographical location of “Complesso Speleologico Villasmundo—S. Alfio” regional nature

reserve (RNR) and plant communities within the reserve.

The plant communities and their respective habitats (according to the Habitats of Directive

92/43/EEC) where samples were collected are located in the B zone of the reserve and are described

herein. (i) Platano-Salicetum pedicellatae Barbagallo, Brullo and Fagotto (Nature CODE 92C0 I): forests

and woods, prevalently riparian, dominated by oriental plane (Platanus orientalis L.) and willow

(Salix pedicellata Desf.), probably a relic of a more extended plane tree wood. (ii) Sarcopoterium spinosum

community (Nature CODE 5420): low, thorny formations of hemispherical shrubs of the coastal

thermo-Mediterranean zone of Aegean islands, of mainland Greece and the Ionian islands, of coastal

Anatolia, much more widespread and diverse than the Western Mediterranean formations. (iii) Myrto



Forests 2020, 11, 853 4 of 21

communis-Pistacietum lentisci (Molinier) Rivas-Martínez (Nature CODE 9320): thermo-Mediterranean

woodland dominated by arborescent mastic (Pistacia lentiscus L.) and myrtle (Myrtus communis L.).

(iv) Pistacio-Quercetum ilicis Brullo and Marcenò (Nature CODE 9340): Mediterranean oak stand

characterized by holm oak (Quercus ilex L.). (v) Oleo-Quercetum virgilianae Brullo (Nature CODE:

91AA): mature climax community typified by southern live oak (Quercus virgiliana (Ten.) Ten.) in

association with cork oak (Q. suber L.), holm oak (Q. ilex L.), carob (Ceratonia siliqua L.), wild olive

(Olea europaea L. subsp. sylvestris (Mill.) Hegi)) and mastic (P. lentiscus L.). (vi) Gallery forest

dominated by oleander (Nerium oleander L.) (Nature CODE 92CO I): thermo-Mediterranean community

dominated by oleander (N. oleander L.) in association with willows (Salix spp.) and poplars (Populus spp.).

Sampling activities were carried out during the autumn of 2015/2016 and 2017/2018. Plant nomenclature

follows Pignatti [68], while the syntaxa classification follows Biondi et al. [69]. For the correlation

between plant communities and habitat types, we referred to the Italian Interpretation Manual for the

Habitats of Directive 92/43/EEC [70].

2.2. Sampling and Phytophthora Isolation

Twenty rhizosphere soil samples, including fine roots, were collected randomly from 20 mature

trees and shrubs growing in all six plant communities (Table S1).

Soil sampling and isolation were performed in accordance with Jung et al. [31]: four soil cores

were collected under each tree or shrub, 50–150 cm away from the stem base, and rhizosphere soil

from all four cores was bulked together (about 1 L).

For each sample, subsamples of 400 mL were used for baiting tests that were performed in

a walk-in growth chamber with 12 h natural daylight at 20 ◦C. Young leaves of C. siliqua and

Quercus spp. floated over flooded soil were used as baits. After 24–48 h incubation, necrotic segments

(2 × 2 mm) from symptomatic leaves were plated in Petri dishes onto selective PARPNH agar medium

which consisted of 100 mL V8 juice (Campbell Grocery Products Ltd., Ashford, UK), 15 g agar, 3 g

CaCO3, 200 mg ampicillin, 10 mg rifampicin, 25 mg pentachloronitrobenzene (PCNB), 50 mg nystatin,

50 mg hymexazol, and 1 L of deionised water [71]. Petri dishes were incubated at 20 ◦C in the dark.

Outgrowing Phytophthora hyphae were transferred onto V8 juice agar (V8A) under the stereomicroscope.

All the Phytophthora isolates were maintained on V8 agar in the dark at a temperature of 6 ◦C.

Additional isolations were performed directly from river water by using an in situ baiting

technique. To this end, 10 non-wounded young leaves of C. siliqua and Quercus spp. were arranged

in a mesh-bag styrofoam raft (25 × 30 cm) fixed to float on the water surface (Figure 2). In total, five

mesh-bag-styrofoam rafts were placed: two on the surface of the Belluzza stream and three on the

Cugno di Rio river, the two water courses crossing the reserve. The rafts were collected after 3 days.

All obtained isolates were maintained on V8A and stored at 6 ◦C in the dark.

 

 

Figure 2. Mesh-bag styrofoam raft: (A) raft placed in Cugno di Rio river; (B) raft floating on the water

surface of the Belluzza river.
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2.3. Morphological Characterization of Isolates

Cultures of seven days, grown on V8A at 20 ◦C in the dark, were used to group all isolates into

morphotypes on the basis of their colony growth patterns. For each host plant and plant community,

the different morphological types have been labeled with progressive numbering (Roman numbering);

then, isolates belonging to the same sampling hosts have been tagged with the relative type number.

Moreover, morphological features of chlamydospores, sporangia, oogonia, antheridia and hyphal

swellings were carefully analyzed and compared with species descriptions in the literature [17,72].

2.4. Molecular Identification of Isolates

The DNA of the pure cultures of isolates obtained from soil and rafts was extracted by using

PowerPlant® Pro DNA isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA), following

the manufacturer’s protocol. The DNA was preserved at −20 ◦C. The identification of Phytophthora

species was performed by the analysis of internal transcribed spacer (ITS) regions of ribosomal DNA

(rDNA). DNA was amplified using forward primers ITS6 (5′-GAAGGTGAAGTCGTAACAAGG-3′) [73]

and reverse primer ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [74]. The PCR amplification mix and

thermocycler conditions were in accordance with Cooke et al. [73]. All PCRs were carried out in a

25 µL reaction mix containing PCR Buffer (1×), dNTP mix (0.2 mM), MgCl2 (1.5 mM), forward and

reverse primers (0.5 mM each), Taq DNA Polymerase (1 U) and 100 ng of DNA. The thermocycler

conditions were as follows: 94 ◦C for 3 min; followed by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C

for 30 s and then 72 ◦C for 10 min.

Amplicons were detected in 1% agarose gel and sequenced in both directions by an external

service (Amsterdam, The Netherlands). Derived sequences were analyzed using FinchTV v.1.4.0

(Geospiza Inc., Seattle, WA, United States) [75]. For species identification, blast searches [76] in the

Phytophthora Database [77], GenBank [78] and in a local database containing sequences of ex-type or

key isolates from published studies were performed. Isolates were assigned to a species when their

sequences were at least 99–100% identical to a reference isolate.

2.5. Analysis of Phytophthora Diversity

The Phytophthora diversity of soil samples sourced from the six plant communities was assessed

by using the Shannon diversity (H = −Σpiln(pi)), the Pielou evenness (J = H/lnS) and the Simpson

dominance (λ = 1/Σpi2) indices, where pi represents the frequency of each species and S the number

of different species per plant community. Since the assumption of normal distribution was violated

(the Shapiro–Wilk test was applied), the statistical differences in the diversity among sampling areas

were assessed by the chi-square non-parametric test of Kruskal–Wallis followed by Dunn’s multiple

comparison post-hoc test (the R software [79] was used).

2.6. Soil Analysis and USDA Classification

An additional twenty rhizosphere soil samples were collected from plants within the selected

sampling areas. The soil analysis was performed by a private laboratory (Progetto Ambiente & C. s.a.s.,

Catania, Italy) following the “official method of soil chemical analysis”, in accordance with standard

protocols defined by D.M. 13/09/1999, G.U. n◦248, 21/10/99 and D.M. 25/03/2002, G.U. n◦84, 10/04/2002.

The following characteristics of the soil were determined: pH-H2O, electrical conductivity at 25 ◦C,

active limestone, organic matter content, nitrates and soil texture.

To define the soil texture of each sample, the USDA classification method [80] was used.

The percentage of each soil component (sand, clay and silt) has been used in order to assign each

sample to a textural class.



Forests 2020, 11, 853 6 of 21

3. Results

Molecular analyses were performed on 228 isolates, of which there were 45 from rivers and 183 from

the soil of the reserve. These isolates represented all morphotypes recovered in soil samples and baiting

rafts. Morphological and ITS sequence analyses revealed the occurrence of multiple Phytophthora species

in each type of plant community with the only exception of the Sarcopoterium spinosum vegetation,

where no Phytophthora species was detected. ITS sequence analyses showed that all 228 isolates (65.9%)

matched with 99–100% identity reference sequences of 11 known Phytophthora species belonging to

five different ITS clades. The ITS sequences of isolates of this study were deposited at GenBank, and,

since isolates of the same species were all the same, only some sequences were deposited in GenBank.

The Phytophthora species recovered in the reserve, the host species and the accession numbers are given

in Table S2.

Among the isolates, 100 belonged to species in ITS clade 6 (i.e., P. bilorbang, P. asparagi, P. lacustris

and P. gonapodydes), 72 to species in ITS clade 2 (i.e., P. multivora, P. oleae and P. plurivora), 20 to species

in ITS clade 8 (i.e., P. cryptogea and P. syringae) and 36 to P. parvispora and P. nicotianae, in ITS clades

7 and 1, respectively. The distribution of each Phytophthora species in each plant community type is

shown in Table 1.
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Table 1. Diagrammatic representation of the diversity and distribution of Phytophthora species recovered from six plant communities in the “Complesso Speleologico

Villasmundo—S. Alfio” RNR. The proportion of isolates of each Phytophthora species recovered from each plant community is reported on the same row. The color

intensity indicates the frequency of each species in each plant community (see legend).

Plant Community

Phytophthora Species Recovered in the Reserve

Clade 1 Clade 2 Clade 6 Clade 7 Clade 8

NIC MUL OLE PLU ASP LAC GON BIL PAR CRY SYR

Platano-Salicetum pedicellatae 16.7% 6.7% 3.3% 36.7% 3.3% 3.3% 6.7% 23.3%

Sarcopoterium spinosum comm.

Myrto communis-Pistacietum lentisci 34.4% 59.4% 6.25%

Pistacio-Quercetum ilicis 81.8% 4.5% 13.6%

Oleo-Quercetum virgilianae 48% 8.7% 4.3% 35% 4.3%

Gallery forest dominated by N. oleander 14.3% 71.4% 14.3%

ASP = P. asparagi; BIL = P. bilorbang; CRY = P. cryptogea; GON = P. gonapodyides; LAC = P. lacustris; MUL = P. multivora; NIC = P. nicotianae; OLE = P. oleae; PAR = P. parvispora;
PLU = P. plurivora; SYR = P. syringae. Underlined, the species that are considered native to Europe; in bold, species regarded as exotic [20,25,31]; the origin of P. oleae has not been established

yet. % isolated species in each plant community: <25% 25–50% 50–75% >75%.
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3.1. Phytophthora Diversity and Distribution in Different Plant Communities

With the only exception of the Sarcopoterium spinosum community, Phytophthora species from

ITS clade 6 were isolated from all the plant communities (Figure 3). The most common Phytophthora

species were aquatic species from ITS clade 6, such as P. lacustris, which were recovered from all

river and riparian systems. P. gonapodyides and P. bilorbang were isolated from rhizosphere soil of

willow while P. lacustris was recovered from river water and rhizosphere soil of mastic. With regard to

species from clade 2, P. oleae, P. multivora and P. plurivora, they were detected in five out of six surveyed

plant communities. In particular, P. oleae was recovered from rhizosphere soil of southern live oak,

P. multivora from river water and P. plurivora from river water and rhizosphere soil of mastic, cork

oak, southern live oak and holm oak. The clade 8 species P. cryptogea and P. syringae were found

in three out of six plant communities. P. cryptogea was recovered from rhizosphere soil of willow,

plane tree and southern live oak, while P. syringae was recovered only from rhizosphere soil of mastic.

Phytophtora parvispora (ITS clade 7) was isolated exclusively from rhizosphere soil of mature willow

trees in the Platano-Salicetum pedicellatae plant community. Finally, the ITS clade 1 species P. nicotianae

was found in the Platano-Salicetum pedicellatae and Oleo-Quercetum virigilianae plant communities

and was isolated from rhizosphere soil of plane, willow, southern live oak and cork oak (Table 1).

Phytophthora plurivora, P. asparagi, P. lacustris and P. nicotianae were the prevalent species, accounting

for 28%, 25%, 17% and 14% of all the isolates, respectively. Conversely, P. syringae, P. gonapodyides,

P. bilorbang, P. multivora, P. oleae and P. parvispora were represented by less than 3% of isolates.

The structure of the community of Phytophthora species in soil samples differed significantly

between the vegetation types. Among 11 Phytophthora species detected, only P. plurivora was found in

all five plant communities. By contrast, P. oleae was detected exclusively in the Oleo-Quercetum virgilianae,

P. syringae in the Myrto Communis-Pistacietum lentisci; P. gonapodyides, P. bilorbang and P. parvispora in the

Platanum-Salicetum pedicellatae.

 

 
Figure 3. Plant communities: (A) Platano-Salicetum pedicellatae; (B) gallery forest dominated by

Nerium oleander; (C) Sarcopoterium spinosum community; (D) Myrto communis-Pistacietum lentisci;

(E) Pistacio-Quercetum ilicis; (F) Oleo-Quercetum virgilianae.

Overall, the sets of Phytophthora species from different plant communities strongly overlapped

(Figure 4).
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Figure 4. Venn diagram showing the distribution of Phytophthora species in six different plant

communities in the “Complesso Speleologico Villasmundo—S. Alfio” RNR.

Comparing the different environments from which the species have been isolated, it can be

observed that P. cryptogea, P. lacustris, P. nicotianae and P. plurivora were recovered from both terrestrial

and aquatic or semi-aquatic environments, while P. asparagi, P. oleae and P. syringae were found

exclusively in terrestrial environments and P. bilorbang, P. gonapodyides, P. multivora and P. parvispora

only in aquatic or semi-aquatic environments. Overall, the sets of species from terrestrial habitats and

from aquatic or semi-aquatic (riparian) habitats were distinct (Figure 5).
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Figure 5. Venn diagram showing the distribution of Phytophthora species in terrestrial and aquatic or

semi-aquatic environments in the “Complesso Speleologico Villasmundo—S. Alfio” RNR.

3.2. Analysis of Soil

Results of soil analyses are schematically summarized in Table 2. Values of soil pH from all

plant communities were above 7.5 and not significantly different from each other. Concerning

the electrical conductivity at 25 ◦C, moderately high values were found in soil samples from the

Platano-Salicetum pedicellatae (1100 ± 48 µS/cm), Sarcopoterium spinosum comm. (973 ± 45 µS/cm)

and Myrto communis-Pistacietum lentisci (894 ± 43 µS/cm) plant communities, high values in soil

of the Pistacio-Quercetum ilicis (1414 ± 63 µS/cm) and significantly lower values in soil from the

Oleo-Quercetum virgilianae (439 ± 36 µS/cm) plant community. As far as the active limestone is

concerned, a high value was found in soil of the Oleo-Quercetum virgilianae (127 ± 5 g/Kg), while a

relatively low value was recorded in soil from Pistacio-Quercetum ilicis (31 ± 2 g/Kg). The amount of

nitrates was relatively high in soil from Pistacio-Quercetum ilicis and Oleo-Quercetum virgilianae plant

communities (12.8 ± 1 and 11.59 ± 1 mg/Kg, respectively) and significantly lower in soil taken from

Platano-Salicetum pedicellatae, Sarcopoterium spinosum comm. and Myrto communis-Pistacietum lentisci.

Soils from all plant communities were rich in organic matter. The highest content of organic matter

was found in soil from Pistacio-Quercetum ilicis (15%).

According to the USDA soil textural classification, soils from Platano-Salicetum pedicellatae,

Sarcopoterium spinosum comm. and Oleo-Quercetum virgilianae were sandy clay loam; soil from

Pistacio-Quercetum ilicis was clay loam and soil from the Myrto communis-Pistacietum lentisci was sandy

clay. No obvious correlation was found between soil characteristics and Phytophthora species diversity.
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Table 2. Soil characteristics in each plant community type of the “Complesso Speleologico Villasmundo—S. Alfio” RNR.

Soil Properties

Plant Community a

Platano-Salicetum
pedicellatae

Sarcopoterium spinosum
Comm.

Myrto communis-Pistacietum
lentisci

Pistacio-Quercetum ilicis Oleo-Quercetum virgilianae

pH 7.5 ± 0.1 7.4 ± 0.1 7.3 ± 0.1 7.4 ± 0.1 7.6 ± 0.1
Electrical conductivity at 25 ◦C (µS/cm) 1.100 ± 48 973 ± 45 894 ± 43 1.414 ± 63 439 ± 36

Active limestone (g/Kg) 69 ± 3 86 ± 4 81 ± 4 31 ± 2 127 ± 5
Soil texture Sandy clay loam Sandy clay loam Sandy clay Clay loam Sandy clay loam

Nitrates (mg/Kg) 6.7 ± 0.7 6.8 ± 0.6 4 ± 0.5 12.8 ± 1 11.59 ± 1
Organic matter (%) 5 ± 0.3 6 ± 0.5 8.2 ± 0.7 15 ± 2 6.1 ± 0.5

a Only rafts were placed in the gallery forest dominated by Nerium oleander and no soil sample was collected from this vegetation community.
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3.3. Analysis of Phytophthora Diversity

The analysis of the diversity of Phytophthora populations from different plant communities showed

a high variability of evenness (Table 3). Significantly higher values of Shannon and Pielou evenness

diversity indices were observed in the Phytophthora populations from the Platano-Salicetum pedicellatae

and Oleo-Quercetum virgilianae plant communities, while the evenness was moderate to low in

Phytophthora populations from Myrto communis-Pistacietum lentisci, Pistacio-Quercetum ilici and

the gallery forest dominated by N. oleander. In contrast, values of the Simpson dominance

index were significantly higher in Phytophthora populations from the gallery forest dominated

by N. oleander and Pistacio-Quercetum ilicis, intermediate in the Phytophthora population from

Myrto communis-Pistacietum lentisci and significantly lower in the Phytophthora populations from

Platano-Salicetum pedicellatae and Oleo-Quercetum virgilianae plant communities.

Table 3. Values of the diversity indices, Shannon diversity, evenness and Simpson dominance

of Phytophthora populations from six different plant communities in the “Complesso Speleologico

Villasmundo—S. Alfio” RNR. Data were analyzed with the Kruskal–Wallis test. Different letters indicate

significant differences according to Dunn’s multiple comparison test (p ≤ 0.01).

Plant Communities
Diversity Indexes

Shannon Index Pielou Evenness Simpson Dominance

Platano-Salicetum pedicellatae 1.707 a 0.821 a 0.229 c
Sarcopoterium spinosum comm. - - -

Myrto communis- Pistacietum lentisci 0.760 b 0.692 b 0.563 b
Pistacio-Quercetum ilicis 0.652 bc 0.593 c 0.649 a

Oleo-Quercetum virgilianae 1.205 a 0.749 ab 0.361 c
Gallery forest dominated by N. oleander 0.451 c 0.650 b 0.722 a

4. Discussion

As many as 11 Phytophthora species, including putatively endemic and exotic species as well

as pathogens associated prevalently to agriculture, such as P. nicotianae [14,81], were found in the

“Complesso Speleologico Villasmundo—S. Alfio” RNR, a relatively high number compared to the

limited extension of the reserve (0.72 km2). This can be explained with the quite recent establishment

of the reserve (D. ARTA n◦ 616 04/11/1998), which, until 22 years ago, also comprised tree crops

whose relics still survive and a high variability of plant communities included within the boundaries

of the reserve, each occupying a different ecological niche and constituting a distinct ecosystem.

The variability of ecosystems within the reserve is further increased by the presence of two streams,

which favor the settlement of species with aquatic or semi-aquatic habitats along the banks and in the

rhizosphere soil of the riparian vegetation.

Phytophthora plurivora, P. asparagi and P. lacustris were the most widespread species in the

“Complesso Speleologico Villasmundo—S. Alfio” RNR, whereas the other species had a scattered

distribution. Among the species recovered from the RNR, some, such as P. cryptogea, P. gonapodyides,

P. plurivora and P. syringae, are common in natural and forest ecosystems throughout Europe [35,60,61,82],

while others, like P. bilorbang, P. oleae and P. parvispora, occur more sporadically. Both P. plurivora and

P. gonapodyides were reported in a previous survey of protected natural areas in Sicily [31]. In this study,

P. oleae was isolated only from the rhizosphere soil of southern live oak (Q. virgilianae (Ten.) Ten.) in the

Oleo-Quecetum virgilianae plant community. This was the first time that this recently described species

was reported from a host plant other than olive (O. europaea L.) [83,84]. Phytophthora bilorbang is a

prevalently aquatic species, but it has been occasionally reported as an opportunistic, aggressive plant

pathogen [85]. Phytophthora parvispora (formerly P. cinnamomi var. parvispora), a species in clade 7a, is an

aggressive plant pathogen with a prevalently terrestrial habitat. In this survey, it was recovered from

the rhizosphere of willow (S. pedicellata Desf.) in a riparian semi-aquatic environment. In a previous

study, it had been reported as a pathogen of strawberry tree (Arbutus unedo) in Sardinia (central Italy)
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and described as a new species distinct from P. cinnamomi [86]. The first record of this species in Italy

dates back to 2010 and was from ornamental plants in nursery [87].

Phytophthora gonapodyides is a species with a prevalently aquatic lifestyle but may be an aggressive

opportunistic plant pathogen [88]. It inhibits seed germination and causes root rot and stem lesions in

Quercus robur L. and Q. ilex L.; also, in association with other species of Phytophthora, it was recovered

from declining oak stands even in xerophytic environments [71,89,90]. According to Erwin and

Ribeiro [91], the damage caused by this species is underestimated and is overshadowed by that of

other Phytophthora species, since it is traditionally regarded a minor pathogen. Presumably, the role of

this and other Phytophthora species with a prevalently aquatic lifestyle in natural ecosystems is more

complex than that of mere plant pathogens and deserves to be further investigated.

Phytophthora plurivora is a very polyphagous pathogen whose host range encompasses more

than 80 woody host species including oaks (Quercus spp.), willows (Salix spp.), oleander (N. oleander)

and oriental plane (P. orientalis L.) [31,92]. In the “Complesso Speleologico Villasmundo—S. Alfio”

RNR, it was the species with the widest distribution and was isolated from the rhizosphere soil of

mastic (P. lentiscus L.), southern live oak (Q. virgilianae (Ten.) Ten.), holm oak (Q. ilex L.) and cork oak

(Q. suber L.), as well as from river water of Platano-Salicetum pedicellatae. Its polyphagia and the ability

to produce resting spores, such as thick-walled oospores, might explain the cosmopolitan attitude of

this species and its widespread occurrence in Mediterranean natural ecosystems. Interestingly, both

P. plurivora and the other three species found exclusively in terrestrial habitats, i.e., P. asaparagi, P. oleae

and P. syringae, are homothallic and produce oospores with thick walls. This could be a common

adaptive strategy of these species to cope with adverse environmental conditions typical of many

ecosystems in Mediterranean climate, such as long periods of drought alternating with intense rainfall,

mild wet winters, high temperatures in summer, wide excursion of daily temperature and rapid

fluctuation of air and soil humidity. In general, the ability to produce resting structures increases the

competitiveness of Phytophthora spp. in terrestrial environments [93]. All the species isolated from the

rhizosphere soil samples collected from diverse plant communities and streams in the “Complesso

Speleologico Villasmundo—S. Alfio” RNR, with the only exception of P. lacustris, produce at least one

kind of resting structure. However, only P. asparagi, P. bilorbang, P. multivora, P. plurivora and P. syringae

are homothallic. In addition, P. nicotianae, P. oleae, P. parvispora and possibly P. syringae are able to

produce chlamydospores.

Phytophthora lacustris is a ubiquitous species in riparian ecosystems, such as reed belts and riparian

alder stands, throughout Europe and North America [20,94]. Like other species in clade 6, this

species tolerates high temperatures, is sexually sterile and produces a great amount of zoospores [20].

For the clade as a whole, this combination of characters has been interpreted as an adaptation to

riparian environments [17,95]. However, although P. lacustris is significantly less aggressive than other

Phytophthora spp. with a terrestrial habitat, it can seriously infect fine roots of trees stressed by episodes

of flooding or drought [20]. Accordingly, in the present study, P. lacustris was isolated prevalently from

the stream crossing the gallery forest plant community, which is dominated by oleander (N. oleander),

and from the rhizosphere soil of willow (S. pedicellata) trees in the Platano-Salicetum pedicellate riparian

plant community, but P. lacustris was recovered even from the rhizosphere soil of southern live oak

(Q. virgilianae) in the xerophytic Pistacio-Quercetum ilicis plant community.

Phytophthora asparagi, another species included in clade 6 but in a separate subclade [96],

was recovered exclusively from terrestrial environments and was common in different

plant communities, including Myrto communis-Pistacietum lentisci, Pistacio-Quercetum ilicis and

Oleo-Quercetum virgilianae. In a previous survey of the National Park of La Maddalena archipelago

(Sardinia), this species was isolated frequently from the rhizosphere soil of typical plants of the

Mediterranean maquis vegetation, showing symptoms of decline, including white asparagus

(Asparagus albus L.), Phoenician juniper (Juniperus turbinata Guss.) and mastic (P. lentiscus L.) [65].

In the “Complesso Speleologico Villasmundo—S. Alfio” RNR, P. asparagi was recovered from the

rhizosphere soil of mastic as well as from the rhizosphere soil of evergreen oaks, including southern
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live oak (Q. virginiana (Ten.) Ten.), holm oak (Q. ilex L.) and cork oak (Q. suber L.). As a result, the list

of known host plants with which this species is associated has expanded.

In the present survey, two other species from clade 6, P. gonapodiydes and P. bilorbang, were detected.

They were found exclusively in the riparian ecosystem and rivers, confirming a prevalently aquatic

lifestyle [20,65,95,97]. Very probably, the high number of isolates of clade 6 species obtained in

this study and their widespread occurrence is related to the high adaptability of these species to

different environmental conditions and their ability to produce numerous zoospores, which in natural

ecosystems are easily transported and spread by water courses.

The diversity and species richness of Phytophthora populations associated with different

plant communities—as measured using three distinct indexes, Shannon diversity, Pielou evenness

and Simpson dominance—were significantly higher in Platano-Salicetum pedicellatae and

Oleo-Quercetum virgilianae, very probably reflecting the richness of host plant species and the complexity

of these termo-mesophilous communities. Moreover, the higher richness and diversity of species in

the Platano-Salicetum pedicellatae might be explained by the presence of both aquatic and terrestrial

environments within this plant community. The Pielou evenness index value also suggests that

the Phytophthora community in the Platano-Salicetum pedicellatae was more balanced than in the

Oleo-Quercetum virgilianae, due to the dominance of P. nicotianae, an aggressive and polyphagous plant

pathogen, in the latter community. Considering the proportions of isolates recovered from each of the

abovementioned plant communities regarded together as an ecological succession, it can be supposed

that the progressive decrease in complexity causes both the reduction in the diversity of Phytophthora

communities and the progressive unbalance in their composition, resulting in the dominance of the

most aggressive Phytophthora species. In accordance with this hypothesis, the very low complexity of

the garrigue of Sarcopoterium spinosum (L.) Spach is the extreme ecological limit for the establishment

of Phytophthora communities.

Nevertheless, the sets of Phytophthora species in each plant community, as represented by

the Venn diagram, showed a tendency to cluster together, probably due to both the dominant

presence of two invasive species (i.e., P. plurivora and P. asparagi) and the proximity of different

ecosystems. The strong overlapping of Phytophthora species sets also indicates that environmental

conditions are conducive to these oomycetes in all types of plant communities examined in this

study. In particular, no obvious correlation was observed between the diversity of distribution of

Phytophthora populations and some physicochemical soil properties that may influence the ecology of

Phytophthora species, their aggressiveness and ability to survive, such as pH, salinity, textural class,

active limestone, nitrates and organic matter content [98–104]. In all plant community types, the content

of organic matter was relatively high, but this was particularly true for the Pistacio-Quercetum ilicis.

This might explain the occurrence of P. lacustris in the rhizosphere soil of trees in this vegetation

community. Phytophthora species, in fact, including several aggressive plant pathogens, have the

ability to either survive or complete their lifecycle as saprobes, despite their poor ability to compete

with other saprophytic organisms. This saprophytic attitude is more pronounced in clade 6 species,

like P. lacustris [20]. Therefore, higher levels of organic matter favor the establishment and survival of

Phytophthora spp., in general, and of clade 6 species, in particular.

Moreover, other soil parameters, with the only exception of the high level of active limestone in

the Oleo-Quercetum virgilianae, which could be a limiting factor, can be considered within the optimum

range in all plant community types, including the Sarcopoterium spinosum comm., where no Phytophthora

species was found. This indicates that the aforementioned physicochemical soil properties were

not a limiting factor for the settlement and survival of Phytophthora spp. in this xerophytic plant

community type. Other major environmental factors conditioning the ecology of soilborne Phytophthora

species are soil moisture and temperature [91]. The effects of soil water status, generally expressed

in terms of matric potential, on the ability of Phytophthora species to sporulate and cause disease

have been extensively investigated in agricultural systems [91,105]. The geographical range of many

soilborne Phytophthora species or their ability to thrive and survive at high altitudes depend on their
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extreme and optimum temperatures for growth [7,57,106] and many aquatic Phytophthora species are

thermophilic [19,20,107], suggesting that this is an adaptive functional trait of this group of species.

However, the values of these two soil parameters, matric potential and temperature, are not constant

and, in the Mediterranean climate, they vary considerably and suddenly across the seasons or even the

same day, so they were not considered in this study.

Overall, comparing Myrto communis- Pistacietum lentisci, Pistacio-Quercetum ilicis and Sarcopoterium

spinosum comm., with Platano-Salicetum pedicellatae and Oleo-Quercetum virgilianae, the Phytophthora

diversity shows a trend that could be related to the degree of maturity of plant communities. Results of

this study are in agreement with those of a similar study carried out in forests of South Africa [108].

Conversely, the geographic distribution of P. cinnamomi in the Iberian Peninsula turned out to be

influenced primarily by abiotic factors, including soil texture and climate, followed by land use and

lastly by the presence of main host plant species [109]. However, comparisons with the results of this

last study are impaired by the scale of the survey, the heterogeneity of environments investigated and

the fact that only one Phytophthora species was involved.

When the Phytophthora species found in the “Complesso Speleologico Villasmundo—S. Alfio”

RNR were grouped on the basis of the type of environment from which they were recovered, the Venn

diagram clearly separated them into two distinct sets, including species with a prevalent or exclusive

terrestrial habitat, such as P. asparagi, P. oleae and P. syringae, and species with a prevalent or exclusive

aquatic or semi-aquatic habitat, such as P. bilorbang and P. gonapodyides, respectively. The first group

was characterized by homothallic species, able to produce thick-walled oospores allowing them to

survive adverse soil conditions; the second group comprised species that have adapted to thrive in

aquatic and semi-aquatic environments. The presence of prevalently aquatic species in the first set and

the presence of typically terrestrial species in the second set may be explained by the proximity of

vegetation to water streams, flooding events and runoff of rain water. Consistently with our results,

in a very recent study a correlation was found between the Phytophthora community and both the

type of vegetation and environment in the French Guiana rainforest, which, like other neotropical

forests, is considered a major plant diversity hotspot [110]. However, unexpectedly, the Phytophthora

community in this forest showed a low diversity compared to the richness of species recovered from

the “Complesso Speleologico Villasmundo—S. Alfio” RNR.

5. Conclusions

This study showed a correlation between the vegetation type and the diversity and distribution of

Phytophthora species in a small natural reserve where different types of plant communities typical of the

Mediterranean macroregion were represented. Moreover, it confirmed that Phytophthora species may

be grouped according to an ecological criterion on the basis of their prevalently terrestrial or aquatic

lifestyle. The ecology of these two distinct groups is conditioned by their aggressiveness as well as by

some other biological characteristics, such as high temperature requirement, the ability to produce

resting structures, the prevalence of asexual reproduction and the amount of zoospores that they

produce. The presence of different ecosystems in a restricted area, i.e., in comparable environmental

and climatic conditions, was a unique opportunity to highlight this correlation between the type of

vegetation and the diversity of Phytophthora communities. However, only a more extensive survey of

the same plant community’s types in distant geographic areas would definitely demonstrate that the

type of vegetation is a major driving factor shaping the Phytophthora communities in natural ecosystems.

Other ecological and epidemiological aspects that deserve further attention are the seasonal pattern of

Phytophthora populations in these ecosystems, the selective pressure exerted by invasive Phytophthora

species on natural vegetation and their impact on spontaneous regeneration.
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