
21 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Gevrey well-posedness for 3-evolution equations with variable coefficients

Published version:

DOI:10.2422/2036-2145.202202_011

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1934850 since 2024-04-03T10:48:07Z



GEVREY WELL-POSEDNESS FOR 3-EVOLUTION EQUATIONS WITH
VARIABLE COEFFICIENTS

ALEXANDRE ARIAS JUNIOR, ALESSIA ASCANELLI, AND MARCO CAPPIELLO

Abstract. We study the Cauchy problem for a class of third order linear anisotropic evolution
equations with complex-valued lower order terms depending both on time and space variables.
Under suitable decay assumptions for |x| → ∞ on these coefficients, we prove a well-posedness
result in Gevrey-type spaces.
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1. Introduction and main result
In this paper we deal with well-posedness of the Cauchy problem in Gevrey-type spaces for a
class of linear anisotropic evolution operators of the form

(1.1) P (t, x,Dt, Dx) = Dt + a3(t,Dx) + a2(t, x,Dx) + a1(t, x,Dx) + a0(t, x,Dx),

with (t, x) ∈ [0, T ]×R, where aj(t, x,Dx) are pseudodifferential operators of order j, j = 0, 1, 2, 3
with complex-valued symbols and the symbol a3 is independent of x and real-valued. The
latter condition guarantees that the operator P satisfies the assumptions of the Lax-Mizohata
theorem (see [29, Theorem 3 page 31]), since the principal symbol of P has the real characteristic
τ = −a3(t, ξ). Operators of the form (1.1) can be referred to as 3-evolution operators since
they are included in the general class of p-evolution operators

P (t, x,Dt, Dx) = Dt + ap(t,D) +

p−1∑
j=0

aj(t, x,Dx)

introduced by Mizohata, cf. [30], where aj are operators of order j, j = 0, . . . , p, p being a
positive integer, and ap(t, ξ) is real-valued. Sufficient conditions for the well-posedness of the
Cauchy problem in H∞ = ∩m∈RH

m for p-evolution operators have been proved in [5, 11] for
arbitrary p, whereas in the realm of Gevrey classes the results are limited to the case p = 2,
corresponding to Schrödinger operators, cf. [8, 12,22].

In this paper we consider the case p = 3 in the Gevrey setting. Third order linear evolution
equations have a particular interest in mathematics since they can be regarded as lineariza-
tions of relevant physical semilinear models like KdV and KdV-Burgers equation and their
generalizations, see for instance [21, 25–27, 34] . There are some results concerning KdV-type
equations with coefficients not depending on (t, x) in the Gevrey setting, see [16–18]. Our aim
is to propose a general approach for the study of the Gevrey well-posedness for general linear
and semilinear 3-evolution equations with variable coefficients. Moreover, we want to consider
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the case when the coefficients of the lower order terms are complex-valued. In this situation
it is well known that suitable assumptions for |x| → ∞ on the coefficients of the lower order
terms are needed to obtain well-posedness results, cf. [6, 19]. In this paper we establish the
linear theory for the Cauchy problem associated to an operator of the form (1.1) whereas the
semilinear case is treated in [2] where we adapt to the Gevrey framework the method proposed
in [13] for hyperbolic equations and in [4] for p-evolution equations in the H∞ setting. There,
well-posedness for the semilinear Cauchy problem is studied first by considering a linearized
problem and then by deriving well-posedness for the semilinear equation using Nash-Moser
inversion theorem. Hence, the results obtained in this paper, apart their interest per se for the
linear theory, are also a preliminary step for the study of the semilinear case.

Let us consider for (t, x) ∈ [0, T ]× R the Cauchy problem in the unknown u = u(t, x):

(1.2)

{
P (t, x,Dt, Dx)u(t, x) = f(t, x),

u(0, x) = g(x),

with P defined by (1.1).
Concerning the functional setting, fixed θ ≥ 1,m, ρ ∈ R, we set

Hm
ρ;θ(R) = {u ∈ S ′(R) : ⟨D⟩meρ⟨D⟩

1
θ u ∈ L2(R)},

where ⟨D⟩m and eρ⟨D⟩
1
θ are the Fourier multipliers with symbols ⟨ξ⟩m and eρ⟨ξ⟩

1
θ respectively.

These spaces are Hilbert spaces with the following inner product

⟨u, v⟩Hm
ρ;θ

= ⟨⟨D⟩meρ⟨D⟩
1
θ u, ⟨D⟩meρ⟨D⟩

1
θ v⟩L2 , u, v ∈ Hm

ρ;θ(R).

We want to investigate the well-posedness of the problem (1.2) in the space

H∞
θ (R) :=

⋃
ρ>0

Hm
ρ;θ(R).

This space is related to Gevrey classes in the following sense: it is easy to verify the inclusions

Gθ
0(R) ⊂ H∞

θ (R) ⊂ Gθ(R),

where Gθ(R) denotes the space of all smooth functions f on R such that

(1.3) sup
α∈N

sup
x∈R

h−|α|α!−θ|∂αf(x)| < +∞

for some h > 0, and Gθ
0(R) is the space of all compactly supported functions contained in

Gθ(R).
The terms aj(t, x,Dx) are assumed to be pseudodifferential operators with Gevrey regular
symbols; of course differential operators aj(t, x)Dj

x, with aj(t, x) continuous on t and Gevrey
regular on x, are a particular case. Let us introduce a suitable symbol class.

Definition 1. For fixed m ∈ R, µ ≥ 1, ν ≥ 1 and A > 0, we shall denote by Smµ,ν(R2n;A) (re-
spectively S̃mµ,ν(R2n;A)) the Banach space of all functions a ∈ C∞(R2n) satisfying the following
estimate

∥a∥A := sup
α,β∈Nn

0

sup
(x,ξ)∈R2

A−|α|−|β|α!−µβ!−ν⟨ξ⟩−m+|α||∂αξ ∂βxa(x, ξ)| < +∞,

(respectively

|a|A := sup
α,β∈Nn

0

sup
(x,ξ)∈R2n

A−|α|−|β|α!−µβ!−ν⟨ξ⟩−m|∂αξ ∂βxa(x, ξ)| < +∞).
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We set Smµ,ν(R2n) =
⋃
A>0

Smµ,ν(R2n;A) and S̃mµ,ν(R2n) =
⋃
A>0

S̃mµ,ν(R2n;A) endowed with the

inductive limit topology. In the case µ = ν we simply write Smµ (R2n) and S̃mµ (R2n) instead of
Smµ,µ(R2n) and S̃mµ,µ(R2n).

The main result of the paper reads as follows.

Theorem 1. Let s0 > 1 and σ ∈ (1
2
, 1) such that s0 < 1

2(1−σ) . Let moreover P (t, x,Dt, Dx) be
defined by (1.1). Assume that

(i) a3(t, ξ) ∈ C([0, T ];S3
1(R2)), a3(t, ξ) is real-valued, and there exists Ra3 > 0 such that

|∂ξa3(t, ξ)| ≥ Ca3ξ
2, t ∈ [0, T ], |ξ| > Ra3 ;

(ii) aj ∈ C([0, T ];Sj1,s0(R
2)) for j = 0, 1, 2;

(iii) there exists Ca2 > 0 such that

|∂αξ ∂βxa2(t, x, ξ)| ≤ Cα+β+1
a2

α!β!s0⟨ξ⟩2−α⟨x⟩−σ, t ∈ [0, T ], x, ξ ∈ R, α, β ∈ N0;

(iv) there exists Ca1 such that

| Im a1(t, x, ξ)| ≤ Ca1⟨ξ⟩⟨x⟩−
σ
2 , t ∈ [0, T ], x, ξ ∈ R.

Then given θ ∈
[
s0,

1
2(1−σ)

)
, ρ > 0, m ∈ R, and given f ∈ C([0, T ], Hm

ρ;θ(R)) and g ∈ Hm
ρ;θ(R),

there exists a unique solution u ∈ C1([0, T ], Hm
ρ′;θ(R)) of (1.2) for some 0 < ρ′ < ρ, and u

satisfies the energy estimate

(1.4) ∥u(t, ·)∥2Hm
ρ′;θ

≤ C

(
∥g∥2Hm

ρ;θ
+

∫ t

0

∥f(τ, ·)∥2Hm
ρ;θ
dτ

)
.

Moreover, for θ ∈ [s0,
1

2(1−σ)) the Cauchy problem (1.2) is well-posed in H∞
θ (R).

Remark 1. We notice that the solution u exhibits a loss of regularity with respect to the initial
data in the sense that it belongs to Hm

ρ′;θ for some ρ′ < ρ. Moreover, the decay rate σ of
the coefficients imposes restrictions on the values of θ for which the Cauchy problem (1.2) is
well-posed. Such phenomena are typical of this type of problems and they appear also in the
papers [12, 22]. In the recent paper [1] we proved the existence of a solution with no loss of
regularity with respect to the initial data and no upper bound for θ provided that the Cauchy
data also satisfy a suitable exponential decay condition.

Remark 2. Let us make some comments on the decay assumptions (iii) and (iv) in Theorem
1. For p = 2 we know from [22] that the decay condition Im ap−1(t, x) ∼ ⟨x⟩−σ, σ ∈ (0, 1),
leads to Gevrey well-posedness for s0 ≤ θ < 1/(1 − σ). Here we prove that for p = 3 the
decay condition ap−1(t, x) ∼ ⟨x⟩−σ, σ ∈ (1/2, 1), together with a weaker decay assumption on
the (lower order) term Im ap−2(t, x) ∼ ⟨x⟩−σ/2 is sufficient to obtain Gevrey well-posedness for
s0 ≤ θ < 1/(2(1 − σ)). Comparing these results, we point out that in the present paper we
need to assume that also Re a2 ∼ ⟨x⟩−σ in order to control the term appearing in (4.4). This
assumption is crucial in the argument to obtain our result. In the recent paper [3] we proved
that for σ ∈ (0, 1/2] the Cauchy problem (1.2) is not well-posed in H∞

θ (R) for any θ.

To prove Theorem 1 we need to perform a suitable change of variable. In fact, if we set

iP = ∂t + ia3(t,D) +
2∑
j=0

iaj(t, x,Dx)︸ ︷︷ ︸
=:A

,
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since a3(t, ξ) is real-valued, we have
d

dt
∥u(t)∥2L2 = 2Re ⟨∂tu(t), u(t)⟩L2

= 2Re ⟨iPu(t), u(t)⟩L2 − 2Re ⟨ia3(t,D)u(t), u(t)⟩L2 − 2Re ⟨Au(t), u(t)⟩L2

≤ ∥Pu(t)∥2L2 + ∥u(t)∥2L2 − ⟨(A+ A∗)u(t), u(t)⟩L2 .

However, A + A∗ is an operator of order 2, so we cannot derive an energy inequality in L2

from the estimate above. The idea is then to conjugate the operator iP by a suitable invertible
pseudodifferential operator eΛ(t, x,Dx) in order to obtain

(iP )Λ := eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,Dx) + {a2,Λ + a1,Λ + a 1
θ
,Λ + r0,Λ}(t, x,Dx),

with aj,Λ(t, x, ξ) of order j but with Reaj,Λ ≥ 0, for j = 1
θ
, 1, 2, and r0,Λ(t, x,D) has symbol

r0,Λ(t, x, ξ) of order zero. In this way, applying Fefferman-Phong inequality to a2,Λ (see [14]) and
sharp Gårding inequality to a1,Λ and a 1

θ
,Λ (see Theorem 1.7.15 of [31]), we obtain the estimate

from below
Re ⟨(a2,Λ + a1,Λ + a 1

θ
,Λ)(t, x,Dx)v(t), v(t)⟩L2 ≥ −c∥v(t)∥2L2 ,

and therefore for the solution v of the Cauchy problem associated to the operator PΛ we get
d

dt
∥v(t)∥2L2 ≤ C(∥(iP )Λv(t)∥2L2 + ∥v(t)∥2L2).

Gronwall inequality then gives the desired energy estimate for the conjugated operator (iP )Λ.
By standard arguments in the energy method we then obtain that the Cauchy problem associ-
ated with PΛ is well-posed in any Sobolev space Hm(R).

Finally we turn back to our original Cauchy problem (1.2). The problem (1.2) is in fact
equivalent to the auxiliary Cauchy problem

(1.5)

{
PΛ(t, x,Dt, Dx)v(t, x) = eΛ(t, x,Dx)f(t, x), (t, x) ∈ [0, T ]× R,
v(0, x) = eΛ(0, x,Dx)g(x), x ∈ R,

in the sense that if u solves (1.2) then v = eΛ(t, x,Dx)u solves (1.5), and if v solves (1.5)
then u = {eΛ(t, x,Dx)}−1v solves (1.2). In this step the continuous mapping properties of
eΛ(t, x,Dx) and {eΛ(t, x,Dx)}−1 play an important role.

The operator eΛ(t, x,Dx) will be the composition of two pseudodifferential operators of infi-
nite order, namely

(1.6) eΛ(t, x,Dx) = ek(t)⟨Dx⟩
1
θ
h ◦ eΛ̃(x,Dx)

where Λ̃ = λ2 + λ1 ∈ S
2(1−σ)
µ (R2), k ∈ C1([0, T ];R) is a positive non increasing function to be

chosen later on and ⟨ξ⟩h :=
√
h2 + ξ2 with h > 0 a large parameter. Now we briefly explain

the main role of each part of the change of variables. The transformation with λ2 will change
the terms of order 2 into the sum of a positive operator of order 2 plus a remainder of order
1; the transformation with λ1 will not change the terms of order 2, but it will turn the terms
of order 1 into the sum of a positive operator of the same order plus a remainder of order not
exceeding 1/θ. Finally the transformation with k will correct this remainder term. We also
observe that since 2(1− σ) < 1/θ the leading part is k(t)⟨ξ⟩

1
θ
h , hence the inverse of eΛ(t, x,Dx)

possesses regularizing properties with respect to the spaces Hm
ρ;θ, because k(t) has positive sign.

The paper is organized as follows. In Section 2 we introduce a class of pseudodifferential
operators of infinite order which includes the operator eΛ(t, x,D) mentioned above and its
inverse and state a conjugation theorem. To introduce quickly the reader to the core of the
paper, we report in this section only the main definitions and results and postpone long proofs
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and collateral results to the Appendix at the end of the paper. In Section 3 we introduce the
operator eΛ̃(x,D) and prove its invertibility. In Section 4 we treat the conjugation of iP with
eΛ(t, x,D) and its inverse and transform the Cauchy problem (1.2) into (1.5). Finally in Section
5 we prove Theorem 1.

2. Pseudodifferential operators of infinite order
In this section we recall some basic properties of pseudodifferential operators with symbols
as in Definition 1. Moreover, we introduce the pseudodifferential operators of infinite order
which will be used to define the change of variable mentioned in the Introduction and state a
conjugation theorem. Our approach follows the same ideas used in [23] but with some minor
modifications due to the fact that we need a more explicit Taylor expansion of the symbol
of the conjugated operator (iP )Λ, cf. Remark 6 below. Wanting to direct the reader to the
main results of the article as soon as possible, we prefer to dedicate an Appendix at the end
of the paper to discuss these technical facts. Notice that from now on we shall use the simpler
notation D instead of Dx when denoting pseudodifferential operators since time derivatives are
not involved in the expression of eΛ.

In addition to the symbols defined in Definition 1, fixed θ > 1, 1 ≤ µ ≤ θ and A, c > 0, we
will also consider the following Banach spaces:

p(x, ξ) ∈ S∞
µ;θ(R2n;A, c) ⇐⇒ ∥p∥A,c := sup

α,β∈Nn0
x,ξ∈Rn

|∂αξ ∂βxp(x, ξ)|A−|α+β|α!−µβ!−µ⟨ξ⟩|α|e−c|ξ|
1
θ < +∞;

p(x, ξ) ∈ S̃∞
µ;θ(R2n;A, c) ⇐⇒ |p|A,c := sup

α,β∈Nn0
x,ξ∈Rn

|∂αξ ∂βxp(x, ξ)|A−|α+β|α!−µβ!−µe−c|ξ|
1
θ < +∞.

We set
S∞
µ;θ(R2n) :=

⋃
c,A>0

S∞
µ;θ(R2n;A), S̃∞

µ;θ(R2n) :=
⋃
c,A>0

S̃∞
µ;θ(R2n;A),

endowed with the inductive limit topology.
Unlike Definition 1, the classes above have been defined for simplicity’s sake assuming the

same Gevrey regularity in x and ξ (µ = ν). This choice is justified by the fact that taking µ ̸= ν
would not improve significantly the results here below. Since in several parts of the paper we
shall need more precise estimates for the x-derivatives of symbols, it is important to introduce
also Gevrey regular SG symbols, cf. [10]. Namely, given m1,m2 ∈ R, µ ≥ 1 and A > 0, we say
that p ∈ SGm1,m2

µ (R2n;A) if and only if

|||p|||A := sup
α,β∈Nn0

(x,ξ)∈R2n

|∂αξ ∂βxp(x, ξ)|A−|α+β|α!−µβ!−µ⟨ξ⟩−m1+|α|⟨x⟩−m2+|β| < +∞.

We set SGm1,m2
µ (R2n) =

⋃
A>0

SGm1,m2
µ (R2n;A) endowed with the inductive limit topology.

Remark 3. We have the inclusions Smµ (R2n) ⊂ S∞
µ;θ(R2n) for every m ∈ R and θ > 1 and

SGm1,m2
µ (R2n) ⊂ Sm1

µ (R2n) if m2 ≤ 0.

Denote by γθ(Rn) the space of all functions f ∈ C∞(Rn) such that

(2.1) sup
α∈Nn

sup
x∈Rn

h−|α|α!−θ|∂αf(x)| < +∞
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for every h > 0, and by γθ0(Rn) the space of all compactly supported functions contained in
γθ(Rn). For a given symbol p ∈ S̃∞

µ;θ(R2n) we denote by p(x,D) or by op(p) the pseudodiffer-
ential operator defined by

(2.2) p(x,D)u(x) =

∫
eiξxp(x, ξ)û(ξ)d−ξ, u ∈ γθ0(Rn),

where d−ξ = (2π)−ndξ. Arguing as in [33, Theorem 3.2.3] or [35, Theorem 2.4] it is easy to verify
that operators of the form (2.2) with symbols from S̃∞

µ;θ(R2n), with µ < θ, map continuously
γθ0(Rn) into γθ(Rn). However, it is convenient to work in a functional setting which is invariant
under the action of these operators. This is represented by Gelfand-Shilov spaces of type S ,
cf. [15].

Definition 2. Given θ ≥ 1 and A > 0 we say that a function f ∈ C∞(Rn) belongs to Sθ,A(Rn)
if there exists C > 0 such that

|xβ∂αx f(x)| ≤ CA|α|+|β|α!θβ!θ,

for every α, β ∈ Nn
0 and x ∈ Rn. We define

Sθ(Rn) =
⋃
A>0

Sθ,A(Rn), Σθ(Rn) =
⋂
A>0

Sθ,A(Rn).

The norm
∥f∥θ,A = sup

x∈Rn
α,β∈Nn

0

|xβ∂αx f(x)|A−|α|−|β|α!−θβ!−θ, f ∈ Sθ,A(Rn),

turns Sθ,A(Rn) into a Banach space, which allows to equip Sθ(Rn) (resp. Σθ(Rn)) with the
inductive (resp. projective) limit topology coming from the Banach spaces Sθ,A(Rn).

Remark 4. We can also define, for M, ε > 0, the Banach space Sθ(Rn;M, ε) of all functions
f ∈ C∞(Rn) such that

∥f∥M,ε := sup
x∈Rn
α∈Nn

0

M−|α|α!−θeε|x|
1
θ |∂αx f(x)| <∞,

and we have (with equivalent topologies)

Sθ(Rn) =
⋃

M,ε>0

Sθ(Rn;M, ε), Σθ(Rn) =
⋂

M,ε>0

Sθ(Rn;M, ε).

It is easy to see that the following inclusions are continuous (for every ε > 0)

γθ0(Rn) ⊂ Σθ(Rn) ⊂ Sθ(Rn) ⊂ Gθ(Rn), Sθ(Rn) ⊂ Σθ+ε(Rn),

for every θ ≥ 1. We shall denote by (Sθ)′(Rn), (Σθ)
′(Rn) the respective dual spaces. Concerning

the action of the Fourier transform we have the following isomorphisms

F : Sθ(Rn) → Sθ(Rn), F : Σθ(Rn) → Σθ(Rn).

Proposition 1. Let p ∈ S̃mµ (R2n;A). Then for every θ ≥ µ (resp. θ > µ), the operator
p(x,D) maps continuously Sθ(Rn) into Sθ(Rn) (resp. Σθ(Rn) into Σθ(Rn)), and it extends to
a continuous map from (Sθ)′(Rn) (resp. (Σθ)

′(Rn)) into itself. Moreover, there exists δ̃ > 0

such that p(x,D) maps continuously Hm+m′

ρ;θ (Rn) into Hm′

ρ;θ(Rn) for every m′ ∈ R and for |ρ| <
δ̃A−1/θ.

Proof. The first assertion can be proved following readily the argument in the proof of [10,
Theorem 2.2]. The second one is the content of [23, Proposition 6.3]. □
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By [23, Proposition 6.4], given p ∈ Smµ (R2n;A) and q ∈ Sm
′

µ (R2n;A), the operator p(x,D)q(x,D)
is a pseudodifferential operator with symbol s given for every N ≥ 1 by

s(x, ξ) =
∑
|α|<N

(α!)−1∂αξ p(x, ξ)D
α
xq(x, ξ) + rN(x, ξ),

where rN satisfies

|∂αξD
β
ξ rN(x, ξ)| ≤ CN,A(CNA)

|α+β|(α!β!)µ⟨ξ⟩m+m′−N−|α|

for every x, ξ ∈ Rn, α, β ∈ Nn
0 , with CN independent of A,α, β.

We shall not develop a complete calculus for pseudodifferential operators of infinite order
here since for our purposes we can limit to consider some particular examples of such operators,
namely defined by a symbol of the form eλ(x,ξ) for some λ ∈ S

1/κ
µ (R2n), κ > 1. In fact, let λ be

a real-valued symbol satisfying the following condition:

|∂αξ ∂βxλ(x, ξ)| ≤ ρ0A
|α+β|(α!β!)κ⟨ξ⟩

1
κ
−|α|,(2.3)

It is easy to verify that e±λ ∈ S∞
κ;κ(R2n). Let

e±λ(x,D)u(x) = op(e±λ)u(x) =
∫
Rn

eiξx±λ(x,ξ)û(ξ) d−ξ.

We also consider the so-called reverse operator R{e±λ(x,D)}, introduced in [24, Proposition
2.13] as the transposed of e±λ(x,−D), see also [23]. Namely, R{e±λ(x,D)} is defined as an
oscillatory integral by

R{e±λ(x,D)}u(x) = Os−
∫∫

eiξ(x−y)±λ(y,ξ)u(y) dyd−ξ

= lim
ε→0

∫∫
R2n

eiξ(x−y)±λ(y,ξ)χ(εy, εξ)u(y) dyd−ξ

for some χ ∈ Sκ(R2n) such that χ(0, 0) = 1.
The following continuity result holds for the operators eλ(x,D) and R{eλ(x,D)}:

Proposition 2. Let λ be a symbol as in (2.3), ρ,m ∈ R, 1 < θ ≤ κ. Then:
i) If κ > θ, the operators eλ(x,D) and R{eλ(x,D)} map continuously Hm

ρ;θ(Rn) into Hm
ρ−δ;θ(Rn)

for every δ > 0;
ii) If κ = θ, there exists δ̃ > 0 such that the map eλ(x,D) : Hm

ρ;θ(Rn) −→ Hm
ρ−δ;θ(Rn) is

continuous for every |ρ− δ| < δ̃A−1/θ and

δ > C(λ) := sup{λ(x, ξ)/⟨ξ⟩1/θ : (x, ξ) ∈ R2n}.

Moreover, R{eλ(x,D)} : Hm
ρ;θ(Rn) −→ Hm

ρ−δ;θ(Rn) is continuous for every |δ| < δ̃A−1/θ and
δ > C(λ).

For the proof, see [23, Proposition 6.7].

Definition 3. Let r > 1. We denote by Kr the space of all p ∈ C∞(R2n) satisfying an estimate
of the form

(2.4) |∂αξ ∂βxp(x, ξ)| ≤ C |α+β|+1α!rβ!re−c|ξ|
1/r

for some positive constants C, c.
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Remark 5. Operators with symbols in Kr possess regularizing properties in the sense that they
extend to linear and continuous maps from (γθ0)

′(Rn) into γθ(Rn) if θ > r. This can be easily
proved taking into account that the estimate (2.4) implies that for every ε > 0 there exists
Cε > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ CεC
|α+β|α!rβ!re−ε|ξ|

1
θ , x, ξ ∈ Rn, α, β ∈ Nn

0 .

Moreover the Fourier transform of an element of (γθ0)′(Rn) is a function which can be bounded
by Cec|ξ|

1/θ for some C, c > 0. Hence we can prove the continuity using the same argument
of the proof of [33, Lemma 3.2.12]. We shall often refer to these operators as r-regularizing
operators in the sequel.

In the next result we shall need to work with the weight function ⟨ξ⟩h = (h2 + |ξ|2)1/2 where
h ≥ 1. We point out that we can replace ⟨ξ⟩ by ⟨ξ⟩h in all previous definitions and statements,
and this replacement does not change the dependence of the constants, that is, all the previous
constants are independent of h. Moreover, we also need the following stronger hypothesis on
λ(x, ξ) :

(2.5) |∂αξ ∂βxλ(x, ξ)| ≤ ρ0A
|α+β|α!κβ!κ⟨ξ⟩−|α|

h ,

whenever |β| ≥ 1. This means that if at least an x−derivative falls on λ, then we obtain a
symbol of order 0(< 1

κ
).

Theorem 2. Let p be a symbol satisfying

|∂αξ ∂βxp(x, ξ)| ≤ CAA
|α+β|α!κβ!κ⟨ξ⟩m−|α|

h ,

and let λ satisfy

(2.6) |∂αξ λ(x, ξ)| ≤ ρ0A
|α|α!κ⟨ξ⟩

1
κ
−|α|

h

and (2.5) for β ̸= 0. Then there are δ̃ > 0 and h0 = h0(A) ≥ 1 such that if ρ0 ≤ δ̃A− 1
κ and

h ≥ h0, then

(2.7)

eλ(x,D)p(x,D)R{e−λ(x,D)} = p(x,D)+op

 ∑
1≤|α+β|<N

1

α!β!
∂αξ {∂

β
ξ e

λ(x,ξ)Dβ
xp(x, ξ)D

α
xe

−Λ(x,ξ)}


+ rN(x,D) + r∞(x,D),

where
|∂αξ ∂βxrN(x, ξ)| ≤ Cρ0,A,κ(CκA)

|α+β|+2Nα!κβ!κN !2κ−1⟨ξ⟩m−(1− 1
κ
)N−|α|

h ,

|∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,κ(CκA)
|α+β|+2Nα!κβ!κN !2κ−1e−cκA

− 1
κ ⟨ξ⟩

1
κ
h .

In particular, r∞(x,D) is κ-regularizing.

Remark 6. Notice that the operator eλ(x,D)p(x,D)R{e−λ(x,D)} has been already treated in
[23, Theorem 6.12] (see also [32, Theorem 2.1]). Namely, Theorem 2 and Theorem 6.12 in [23]
only differ in the form of the asymptotic expansion of the symbol of eλ(x,D)p(x,D)R{e−λ(x,D)}.
Nevertheless, having an asymptotic expansion of the form (2.7) is crucial to perform the compu-
tations in Section 4 and formula (2.7) cannot be easily derived from the statement of [23, The-
orem 6.12]. This is the reason why we prefer to state the result in the form above. On the
other hand, the proof of Theorem 2 follows the same argument of the proof of Theorem 6.12
in [23] and the different forms of the asymptotic expansions are obtained just by applying Tay-
lor’s formula at different stages of the proofs. For this reason, in the Appendix at the end of
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the paper we propose just a sketch of the proof of Theorem 2 where we just emphasize the main
differences from the proof of Theorem 6.12 in [23].

3. Change of variables

In this section we introduce the main ingredients which define the change of variable that we
need for the analysis of problem (1.2).
For M2,M1 > 0 and h ≥ 1 a large parameter, we define

(3.1) λ2(x, ξ) =M2w

(
ξ

h

)∫ x

0

⟨y⟩−σψ
(

⟨y⟩
⟨ξ⟩2h

)
dy, (x, ξ) ∈ R2,

(3.2) λ1(x, ξ) =M1w

(
ξ

h

)
⟨ξ⟩−1

h

∫ x

0

⟨y⟩−
σ
2ψ

(
⟨y⟩
⟨ξ⟩2h

)
dy, (x, ξ) ∈ R2,

where

w(ξ) =

{
0, |ξ| ≤ 1,

−sgn(∂ξa3(t, ξ)), |ξ| > Ra3 ,
ψ(y) =

{
1, |y| ≤ 1

2
,

0, |y| ≥ 1,

|∂αξ w(ξ)| ≤ Cα+1
w α!µ, |∂βyψ(y)| ≤ Cβ+1

ψ β!µ, with µ > 1. Notice that thanks to assumption (i) in
Theorem 1, the function w is constant for ξ ≥ Ra3 and for ξ ≤ −Ra3 .

Lemma 1. Let λ2(x, ξ) as in (3.1). Then the following estimates hold:

(i) |λ2(x, ξ)| ≤ M2

1−σ ⟨ξ⟩
2(1−σ)
h ;

(ii) |∂αξ λ2(x, ξ)| ≤ Cα+1α!µ⟨ξ⟩2(1−σ)−αh , for α ≥ 1;
(iii) |∂αξ λ2(x, ξ)| ≤ Cα+1α!µ⟨ξ⟩−αh ⟨x⟩1−σ, for α ≥ 0;
(iv) |∂αξ ∂βxλ2(x, ξ)| ≤ Cα+β+1α!µβ!µ⟨ξ⟩−αh ⟨x⟩−σ−(β−1), for α ≥ 0, β ≥ 1.

Proof. We denote by χξ(x) the characteristic function of the set {x ∈ R : ⟨x⟩ ≤ ⟨ξ⟩2h}. Now
note that

|λ2(x, ξ)| ≤M2

∫ |x|

0

⟨y⟩−σχξ(y)dy =M2

∫ min{|x|,⟨ξ⟩2h}

0

⟨y⟩−σdy,

hence

|λ2(x, ξ)| ≤
M2

1− σ
min{⟨ξ⟩2(1−σ)h , ⟨x⟩1−σ}.
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For α ≥ 1 we have

|∂αξ λ2(x, ξ)| ≤M2

∑
α1+α2=α

α!

α1!α2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣h−α1

∣∣∣∣∫ x

0

χξ(y)⟨y⟩−σ∂α2
ξ ψ

(
⟨y⟩
⟨ξ⟩2h

)∣∣∣∣ dy
≤M2

∑
α1+α2=α

α!

α1!α2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣h−α1

∫ |x|

0

χξ(y)⟨y⟩−σ

×
α2∑
j=1

∣∣∣ψ(j)
(

⟨y⟩
⟨ξ⟩2h

)∣∣∣
j!

∑
γ1+...+γj=α2

α2!

γ1! . . . γj!

j∏
ν=1

⟨y⟩|∂γνξ ⟨ξ⟩−2
h |dy

≤M2

∑
α1+α2=α

α!

α1!α2!
Cα1+1
w α1!

µ⟨ξ⟩−α1
h ⟨Ra3⟩α1

× C̃α2+1
ψ α2!

µ⟨ξ⟩−α2
h

∫ |x|

0

χξ(y)⟨y⟩−σdy

≤M2C
α+1
w,ψ,Ra3

α!µ⟨ξ⟩−αh
∫ |x|

0

χξ(y)⟨y⟩−σdy

≤ M2

1− σ
Cα+1
w,ψ,Ra3

α!µ⟨ξ⟩−αh min{⟨ξ⟩2(1−σ)h , ⟨x⟩1−σ}.

For α ≥ 0 and β ≥ 1 we have

|∂αξ ∂βxλ2(x, ξ)| ≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α1!α2!

(β − 1)!

β1!β2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ |∂β1x ⟨x⟩−σ|
∣∣∣∣∂α2
ξ ∂

β2
x ψ

(
⟨x⟩
⟨ξ⟩2h

)∣∣∣∣
≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α1!α2!

(β − 1)!

β1!β2!
Cα1+1
w α1!

µ⟨Ra3⟩α1⟨ξ⟩−α1
h Cβ1β1!⟨x⟩−σ−β1

× χξ(x)

α2+β2∑
j=1

∣∣∣ψ(j)
(

⟨x⟩
⟨ξ⟩2h

)∣∣∣
j!

∑
γ1+...+γj=α2

λ1+...+λj=β2

α2!β2!

γ1!λ1! . . . γj!λj!

j∏
ν=1

|∂λνx ⟨x⟩||∂γνξ ⟨ξ⟩−2
h |

≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α1!α2!

(β − 1)!

β1!β2!
Cα1+1
w α1!

µ⟨Ra3⟩α1⟨ξ⟩−α1
h Cβ1β1!⟨x⟩−σ−β1

× C̃α2+β2+1
ψ α2!

µβ2!
µ⟨x⟩−β2⟨ξ⟩−α2

h

≤M2C
α+β+1
ψ,w,Ra3

α!µ(β − 1)!µ⟨x⟩−σ−(β−1)⟨ξ⟩−αh .

□

For λ1 we have the following estimates which can be proved via the same arguments used for
λ2. We omit the proof for the sake of brevity.

Lemma 2. Let λ1(x, ξ) as in (3.2). Then
(i) |λ1(x, ξ)| ≤ M1

1−σ
2
⟨ξ⟩1−σh ;

(ii) |∂αξ λ1(x, ξ)| ≤ Cα+1α!µ⟨ξ⟩1−σ−αh , for α ≥ 1;
(iii) |∂αξ λ1(x, ξ)| ≤ Cα+1α!µ⟨ξ⟩−1−|α|

h ⟨x⟩1−σ
2 , for α ≥ 0;

(iv) |∂αξ λ1(x, ξ)| ≤ Cα+1α!µ⟨ξ⟩−|α|
h ⟨x⟩1−σ, for α ≥ 0;
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(v) |∂αξ ∂βxλ1(x, ξ)| ≤ Cα+β+1α!µβ!µ⟨ξ⟩−1−α
h ⟨x⟩−σ

2
−(β−1), for α ≥ 0, β ≥ 1;

(vi) |∂αξ ∂βxλ1(x, ξ)| ≤ Cα+β+1α!µβ!µ⟨ξ⟩−αh ⟨x⟩−σ−(β−1), for α ≥ 0, β ≥ 1.

Remark 7. From Lemmas 1 and 2 we conclude λ2, λ1 ∈ SG0,1−σ
µ (R2), λ1 ∈ S1−σ

µ (R2) and
λ2 ∈ S

2(1−σ)
µ (R2). Hence, setting Λ̃ = λ1 + λ2, we get eΛ̃ ∈ S∞

µ; 1
2(1−σ)

(R2) ∩ SG0,∞
µ; 1

1−σ

(R2), cf. [1].

To construct the inverse of eΛ̃(x,D) we need to use the reverse operator R{e−Λ̃(x,D)}. We
have the following result which expresses the inverse of eΛ̃(x,D) in terms of composition of
R{e−Λ̃(x,D)} with a Neumann series.

Lemma 3. Let µ > 1. For h ≥ 1 large enough, the operator eΛ̃(x,D) is invertible and its
inverse is given by

{eΛ̃(x,D)}−1 = R{e−Λ̃(x,D)} ◦
∑
j≥0

(−r(x,D))j,

for some r = r̃ + r̄, where r̃ ∈ SG−1,−σ
µ (R2), r̄ ∈ Σκ(R2) for every κ > 2µ− 1 and

r̃ −
∑

1≤γ≤N

1

γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) ∈ SG−1−N,−σ−σN
µ (R2), ∀N ≥ 1.

Moreover,
∑

(−r(x,D))j has symbol in SG0,0
µ (R2) + Σκ(R2) for every κ > 2µ− 1. Finally, we

have

(3.3) {eΛ̃(x,D)}−1 = R{e−Λ̃(x,D)} ◦ op(1− i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3),

where q−3 ∈ SG−3,−3σ
µ (R2) + Σκ(R2).

Proof. The proof follows directly from [1, Lemma 4]. □

Remark 8. Since we can choose µ > 1 arbitrarily close to 1, we may assume 2µ − 1 < θ.
Therefore we can take κ < θ in the above lemma.

4. Sobolev well-posedness for the Cauchy problem (1.5)
In this section we will perform the conjugation of iP in (1.1),(1.2) by the operator eΛ(t, x,Dx)
defined by (1.6), where k ∈ C1([0, T ];R) is a positive non increasing function and Λ̃ = λ1 + λ2,
with λ1, λ2 defined by (3.2), (3.1) respectively. Namely, we explicitly compute the operator PΛ

in (1.5) and prove that the Cauchy problem (1.5) is well-posed in Sobolev spaces Hm, m ∈ R.
For this purpose we shall use Theorem 2.
Before performing the conjugation, let us make some remarks. By Lemmas 1 and 2 we get

|∂αξ ∂βx Λ̃(x, ξ)| ≤

{
C

|α+β|+1

Λ̃
α!µβ!µ⟨ξ⟩2(1−σ)−αh ,

C
|α+β|+1

Λ̃
α!µβ!µ⟨ξ⟩−αh , if β > 0,

where CΛ̃ is a constant depending only onM2,M1, Cw, Cψ, µ, σ. Moreover, since we are assuming
2(1− σ) < 1

θ
we also get

|Λ̃(x, ξ)| ≤ CΛ̃⟨ξ⟩
2(1−σ)
h = CΛ̃⟨ξ⟩

2(1−σ)− 1
θ

h ⟨ξ⟩
1
θ
h ≤ h

1
θ
−2(1−σ)CΛ̃⟨ξ⟩

1
θ
h ,

therefore
sup
x,ξ∈Rn

|Λ̃(x, ξ)|⟨ξ⟩−
1
θ

h ≤ h
1
θ
−2(1−σ)CΛ̃,
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which can be assumed as small as we want, provided that h > h0(M2,M1, CΛ̃, θ, σ). Hence we
may use Theorem 2 to compute eΛ̃(x,D) ◦ (iP ) ◦ {eΛ̃(x,D)}−1. First we note that eΛ̃(x,D) ◦ ∂t ◦
{eΛ̃(x,D)}−1 = ∂t, because Λ̃(x, ξ) = λ1(x, ξ) + λ2(x, ξ) is independent of t.

• Conjugation of ia3(t,D): Since a3 does no depend on x, the asymptotic expansion of
Theorem 2 reduces to (omitting (t, x,D) in the notation)

eΛ̃ ◦ a3 ◦ R{e−Λ̃} = a3 + op

( ∑
1≤α<N

1

α!
∂αξ {eΛ̃aDα

xe
−Λ̃}+ rN

)
+ r∞,

and since the x−derivatives of Λ̃ kill the growth in ξ given by the integrals defining Λ̃,
we obtain rN of order 3−N and r∞ ∈ Kθ; with this simplification we get

eΛ̃ ◦ ia3 ◦ R{e−Λ̃} = ia3 + ∂ξ{ia3Dx(−Λ̃)}+ 1

2
∂2ξ{ia3[D2

x(−Λ̃) + (DxΛ̃)
2]}+ r3 + r∞

with r3 of order zero. Composing with the Neumman series we get from (3.3):

eΛ̃(ia3){eΛ̃}−1 = op
(
ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ [a3(∂

2
xΛ̃− (∂xΛ̃)

2)] + r3 + r∞

)
◦ op

(
1− i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

)
= ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ{a3(∂2xΛ̃− {∂xΛ̃}2)}+ a3∂ξ∂xΛ̃− i∂ξa3∂ξ∂

2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2[∂ξ∂xΛ̃]
2}+ r0 + r

= ia3 − ∂ξa3∂xΛ̃ +
i

2
∂2ξ{a3[∂2xΛ̃− (∂xΛ̃)

2]} − i∂ξa3∂ξ∂
2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2(∂ξ∂xΛ̃)
2}+ r0 + r,

where r0 ∈ C([0, T ];S0
µ′(R2)) and r is a new regularizing term. Writing Λ̃ = λ2+λ1 and

observing that Dxλ1 has order −1 we get

eΛ̃(ia3){eΛ̃}−1 = ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 +
i

2
∂2ξ{a3(∂2xλ2 − {∂xλ2}2)} − i∂ξa3∂ξ∂

2
xλ2

+ i∂ξ(a3∂xλ2)∂ξ∂xλ2 −
i

2
a3{∂2ξ (∂2xλ2 + [∂xλ2]

2) + 2[∂ξ∂xλ2]
2}+ r0 + r,

for a new zero order term r0. Setting

d1(t, x, ξ) =
1

2
∂2ξ{a3(∂2xλ2 − {∂xλ2}2)} − ∂ξa3∂ξ∂

2
xλ2

+ ∂ξ(a3∂xλ2)∂ξ∂xλ2 −
1

2
a3{∂2ξ (∂2xλ2 + [∂xλ2]

2) + 2[∂ξ∂xλ2]
2}

we may write

eΛ̃(ia3){eΛ̃}−1 = ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1 + r0 + r,

where d1 is a real valued symbol of order 1 which does not depend on λ1. Moreover, we
have the following estimate

|∂αξ ∂βxd1(t, x, ξ)| ≤ Cα+β+1
λ2

α!µβ!µ⟨ξ⟩1−α⟨x⟩−σ;
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where Cλ2 is a constant dependent of λ1.
• Conjugation of ia2(t, x,D): for N ∈ N such that 2−N(1− 1

θ
) ≤ 0, Theorem 2 gives

eΛ̃ ◦ ia2(t, x,D) ◦ R{e−Λ̃} = ia2(t, x,D) + op

( ∑
1≤α+β<N

1

α!β!
∂αξ {∂

β
ξ e

Λ̃Dβ
x(ia2)D

α
xe

−Λ̃}

)
︸ ︷︷ ︸

=:(ia2)N

+ r̃0(t, x,D) + r̃(t, x,D),

where r̃0 has order zero and r̃ ∈ Kθ. By the hypothesis on a2, we obtain

|∂αξ ∂βx (ia2)N(t, x, ξ)| ≤ Cα+β+1

a2,Λ̃
α!µβ!s0⟨ξ⟩2−[2σ−1]−α⟨x⟩−σ.

Composing with the Neumann series and using the fact that ∂xλ1 has order −1 we get

eΛ̃ ◦ ia2 ◦ {eΛ̃}−1 = (ia2 + (ia2)N + r̃0 + R̃) ◦ (I − i∂ξ∂xλ2 + q−2)

= ia2 + (ia2)N + a2 ◦ ∂ξ∂xλ2 − i(ia2)N ◦ ∂ξ∂xλ2 + r0 + r

= ia2 + (ia2)N − i(ia2)N∂ξ∂xλ2︸ ︷︷ ︸
=:(ia2)Λ̃

+a2∂ξ∂xλ2 + r0 + r,

where r0 has order zero, r ∈ Kθ and (a2)Λ̃ satisfies

|∂αξ ∂βx (ia2)Λ̃(t, x, ξ)| ≤ Cα+β+1

a2,Λ̃
α!µβ!s0⟨ξ⟩2−[2σ−1]−α⟨x⟩−σ,

in particular

(4.1) |(ia2)Λ̃(t, x, ξ)| ≤ Ca2,Λ̃⟨ξ⟩
2−[2σ−1]
h ⟨x⟩−σ.

• Conjugation of ia1(t, x,D):

eΛ̃ ◦ (ia1)(t, x,D) ◦ {eΛ̃}−1 = (ia1 + (ia1)Λ̃ + r1)(t, x,D)
∑
j≥0

(−r)j

= ia1(t, x,D) + (ia1)Λ̃(t, x,D) + r0(t, x,D) + r(t, x,D),

where r0 has order zero, r ∈ Kθ and

(4.2) (ia1)Λ̃ ∼
∑

|α+β|≥1

1

α!β!
∂αξ {∂

β
ξ e

Λ̃Dβ
x(ia1)D

α
xe

−Λ̃} in S2(1−σ)
µ,s0

.

• Conjugation of ia0(t, x,D): eΛ̃ ◦ (ia0)(t, x,D) ◦ {eΛ̃}−1 = r0(t, x,D) + r(t, x,D), where
r0 has order zero and r is a θ−regularizing term.

Gathering all the previous computations we may write (omitting (t, x,D) in the notation)

eΛ̃(iP ){eΛ̃}−1 = ∂t + ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1

+ ia2 + (ia2)Λ̃ + a2∂ξ∂xλ2 + ia1 + (ia1)Λ̃ + r0 + r,

where d1 ∈ S1
1,s0

, d1 is real-valued, d1 does not depend on λ1, (ia2)Λ̃ satisfies (4.1), (ia1)Λ̃
satisfies (4.2), r0 ∈ C([0, T ];S0

µ′,s0
(R2)) and r ∈ Kθ.
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4.1. Conjugation of eΛ̃(iP ){eΛ̃}−1 by ek(t)⟨D⟩
1
θ
h . Let us recall that the function k(t) satisfies

k ∈ C1([0, T ];R), k′(t) ≤ 0 and k(t) > 0 for every t ∈ [0, T ]. In order to apply Theorem 2
with λ(t, x, ξ) = k(t)⟨ξ⟩

1
θ
h , we observe that this function satisfies (2.5) and (2.6) with ρ0 = k(0)

and for some positive A. Hence, there exists δ̃ > 0 such that if k(0) < δ̃A−1/θ, then Theorem
2 applies. Moreover, since in this case λ does not depend on x, the asymptotic expansion of
Theorem 2 simplifies into

(4.3) ek(t)⟨D⟩1/θh p(x,D)e−k(t)⟨D⟩1/θh = p(x,D) + op

 ∑
1≤|β|<N

1

β!
∂βξ e

k(t)⟨ξ⟩1/θh Dβ
xp(x, ξ)e

−k(t)⟨ξ⟩1/θh


+ rN(x,D) + r∞(x,D),

where we can say that rN + r∞ ∈ S̃
m−(1− 1

θ
)N

θ .

• Conjugation of ∂t: ek(t)⟨D⟩
1
θ
h ∂t e

−k(t)⟨D⟩
1
θ
h = ∂t − k′(t)⟨D⟩

1
θ
h .

• Conjugation of ia3(t,D): since a3 does not depend on x, we simply have

ek(t)⟨D⟩
1
θ
h ◦ ia3(t,D) ◦ e−k(t)⟨D⟩

1
θ
h = ia3(t,D).

• Conjugation of op{ia2 − ∂ξa3∂xλ2}:

ek(t)⟨D⟩
1
θ
h ◦ (ia2 − ∂ξa3∂xλ2)(t, x,D) ◦ e−k(t)⟨D⟩

1
θ
h = ia2(t, x,D)

− op(∂ξa3∂xλ2) + (b2,k + r0)(t, x,D)

where r0 has order zero and b2,k(t, x, ξ) ∈ C([0, T ];S
1+ 1

θ
µ,s0 (R2)),

(4.4) |b2,k(t, x, ξ)| ≤ max{1, k(t)}Cs,λ2⟨ξ⟩
1+ 1

θ
h ⟨x⟩−σ, x, ξ ∈ Rn.

• Conjugation of (ia2)Λ̃(t, x,D):

ek(t)⟨D⟩
1
θ
h ◦ (ia2)Λ̃(t, x,D) ◦ e−k(t)⟨D⟩

1
θ
h = {(ia2)k,Λ̃ + r0}(t, x,D),

where r0 has order zero and (ia2)k,Λ̃ ∈ C([0, T ];S
2−(2σ−1)
µ,s0 ),

|∂αξ ∂βx (ia2)k,Λ̃(t, x, ξ)| ≤ (max{k(t), 1}Ca2,Λ̃)
α+β+1α!µβ!s0⟨ξ⟩2−(2σ−1)−α⟨x⟩−σ.

In particular

(4.5) |(ia2)k,Λ̃(t, x, ξ)| ≤ max{k(t), 1}Ca2,Λ̃⟨ξ⟩
2−(2σ−1)
h ⟨x⟩−σ.

• Conjugation of op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2): we have (omitting (t, x,D) in the
notation)

ek(t)⟨D⟩
1
θ
h ◦ op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2) ◦ e−k(t)⟨D⟩

1
θ
h

= ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2 + b1,k + r0,

where r0 has order zero, b1,k(t, x, ξ) ∈ C([0, T ];S
1
θ
µ,s0) and for large h we have

(4.6) |b1,k(t, x, ξ)| ≤ k(t)CΛ̃⟨ξ⟩
1
θ
h , x ∈ R, ξ ∈ R.
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• Conjugation of (ia1)Λ̃(t, x,D):

ek(t)⟨D⟩
1
θ
h ◦ (ia1)Λ̃(t, x,D) ◦ e−k(t)⟨D⟩

1
θ
h = {(ia1)k,Λ̃ + r0}(t, x,D),

where r0 has order zero, (ia1)k,Λ̃ ∈ C([0, T ];S
2(1−σ)
µ,s0 ) and for large h we have

(4.7) |(ia1)k,Λ̃(t, x, ξ)| ≤ CΛ̃⟨ξ⟩
2(1−σ)
h , x, ξ ∈ R.

Finally, gathering all the previous computations we obtain the following expression for the
conjugated opeartor (assuming the parameter h sufficiently large)

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D)

+ op(ia2 − ∂ξa3∂xλ2 + b2,k + (ia2)k,Λ̃)

+ op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2)

+ op(−k′(t)⟨ξ⟩
1
θ
h + b1,k + (ia1)k,Λ̃) + r0(t, x,D)

where b2,k satisfies (4.4), (ia2)k,Λ̃ satisfies (4.5), b1,k satisfies (4.6), (ia1)k,Λ̃ satisfies (4.7) and r0
has order zero.

4.2. Lower bound estimates for the real parts. In this subsection, we will derive some
estimates from below for the real parts of the lower order terms of (iP )Λ and we use them
to achieve a well-posedness result for the Cauchy problem (1.5). We start noticing that for
|ξ| > hRa3 we have

−∂ξa3∂xλ2 = |∂ξa3|M2⟨x⟩−σψ
(

⟨x⟩
⟨ξ⟩2h

)
= |∂ξa3|M2⟨x⟩−σ − |∂ξa3|M2⟨x⟩−σ

[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
,

−∂ξa3∂xλ1 = |∂ξa3|M1⟨ξ⟩−1
h ⟨x⟩−

σ
2ψ

(
⟨x⟩
⟨ξ⟩2h

)
= |∂ξa3|M1⟨ξ⟩−1

h ⟨x⟩−
σ
2 − |∂ξa3|M1⟨ξ⟩−1

h ⟨x⟩−
σ
2

[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
.

We also observe that

−|∂ξa3|M2⟨x⟩−σ
[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
≥ −2σCa3M2⟨ξ⟩2(1−σ)h ,

−|∂ξa3|M1⟨ξ⟩−1
h ⟨x⟩−

σ
2

[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
≥ −2σCa3M1⟨ξ⟩1−σh ,

because ⟨x⟩ ≥ 1
2
⟨ξ⟩2h on the support of (1− ψ)(⟨x⟩⟨ξ⟩−2

h ).
In this way we may write

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D) + ã2(t, x,D) + ã1(t, x,D) + ãθ(t, x,D) + r0(t, x,D),
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where r0 is an operator of order 0 and

Re ã2 = −Ima2 + |∂ξa3|M2⟨x⟩−σ +Re b2,k +Re (ia2)k,Λ̃,

Im ã2 = Rea2 + Im b2,k + Im (a2)k,Λ̃,

Re ã1 = −Ima1 + |∂ξa3|M1⟨ξ⟩−1
h ⟨x⟩−

σ
2 +Rea2∂ξ∂xλ2,

Re ãθ = −k′(t)⟨ξ⟩
1
θ
h +Re b1,k +Re (ia1)k,Λ̃

− |∂ξa3|M2⟨x⟩−σ
[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
− |∂ξa3|M1⟨ξ⟩−1

h ⟨x⟩−
σ
2

[
1− ψ

(
⟨x⟩
⟨ξ⟩2h

)]
.

Now we decompose iIm ã2 into its Hermitian and anti-Hermitian part:

i Im ã2 =
i Im ã2 + (i Im ã2)

∗

2
+
i Im ã2 − (i Im ã2)

∗

2
= HIm ã2 + AIm ã2 ;

we have that 2Re ⟨AIm ã2u, u⟩ = 0, while HIm ã2 has symbol∑
α≥1

i

2α!
∂αξD

α
x Im ã2(t, x, ξ) =

∑
α≥1

i

2α!
∂αξD

α
xRea2︸ ︷︷ ︸

=:c(t,x,ξ)

+
∑
α≥1

i

2α!
∂αξD

α
x{Im b2,k + Im (a2)k,Λ̃}︸ ︷︷ ︸

=:e(t,x,ξ)

.

The hypothesis on a2 implies
|c(t, x, ξ)| ≤ Cc⟨ξ⟩⟨x⟩−σ,

with Cc depending only on Rea2, whereas from (4.4), (4.5) and using the fact that 2(1−σ) ≤ 1
θ

we obtain
|e(t, x, ξ)| ≤ Ce,k,Λ̃⟨ξ⟩

1
θ ⟨x⟩−σ,

with Ce,k.Λ̃ depending on k(t) and Λ̃.
We are ready to obtain the desired estimates from below. Using the above decomposition we

get

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D) +Re ã2(t, x,D) + AIm ã2(t, x,D)

+ (ã1 + c+ e)(t, x,D) + ãθ(t, x,D) + r0(t, x,D).

Note that ⟨ξ⟩2h ≤ 2ξ2 provided that |ξ| > Ra3h. Estimating the terms of order 2 we get

Re ã2 ≥M2
Ca3
2

⟨ξ⟩2h⟨x⟩−σ − Ca2⟨ξ⟩2h⟨x⟩−σ⟨x⟩−σ
(4.8)

−max{1, k(t)}Cλ2⟨ξ⟩
1+ 1

θ
h −max{1, k(t)}CΛ̃⟨ξ⟩

2−(2σ−1)
h ⟨x⟩−σ

≥
(
M2

Ca3
2

− Ca2 −max{1, k(t)}Cλ2h−(1− 1
θ
) −max{1, k(t)}CΛ̃h

−(2σ−1)

)
⟨ξ⟩2h⟨x⟩−σ,

For the terms of order 1 we obtain

Re (ã1 + c+ e) ≥M1
Ca3
2

⟨ξ⟩h⟨x⟩−
σ
2 − Ca1⟨ξ⟩h⟨x⟩−

σ
2 − Ca2,λ2⟨ξ⟩h⟨x⟩−2σ(4.9)

− Cc⟨ξ⟩h⟨x⟩−σ − Ce,k,Λ̃⟨ξ⟩
1
θ
h ⟨x⟩

−σ

≥
(
M1

Ca3
2

− Ca1 − Ca2,λ2 − Cc − Ce,k,Λ̃h
−(1− 1

θ
)

)
⟨ξ⟩h⟨x⟩−

σ
2 .
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Finally, for the terms of order 1
θ

we have

Re ãθ ≥ −k′(t)⟨ξ⟩
1
θ
h − k(t)CΛ̃⟨ξ⟩

1
θ
h − CΛ̃⟨ξ⟩

2(1−σ)
h − 2σCa3M2⟨ξ⟩2(1−σ)h − 2σCa3M1⟨ξ⟩1−σh

≥ −(k′(t) + C1k(t) + C2)⟨ξ⟩
1
θ
h ,

where C2 = C̃2h
−[ 1

θ
−2(1−σ)] and C1, C̃2 depend on Λ̃ but not on h. Setting

k(t) = e−C1tk(0)− 1− e−C1t

C1

C2, t ∈ [0, T ],

we obtain k′(t) ≤ 0 and k′(t) + C1k(t) + C2 = 0. Note that for any choice of k(0) > 0, we can
choose h large enough in order to obtain k(t) > 0 on [0, T ].

From the previous estimates from below we obtain the following proposition.

Proposition 3. Let k(0) be small enough such that (4.3) holds true. Then there exist M2,M1 >
0 and a large parameter h0 = h0(k(0),M2,M1, T, θ, σ) > 0 such that for every h ≥ h0 the
Cauchy problem (1.5) is well-posed in Sobolev spaces Hm(R). More precisely, for any f̃ ∈
C([0, T ];Hm(R)) and g̃ ∈ Hm(R), there exists a unique solution v ∈ C([0, T ];Hm(R)) ∩
C1([0, T ];Hm−3(R)) such that the following energy estimate holds

∥v(t)∥2Hm ≤ C

(
∥g̃∥2Hm +

∫ t

0

∥f̃(τ)∥2Hmdτ

)
, t ∈ [0, T ].

Proof. Let k(0) > 0. Take M2 > 0 such that

(4.10) M2
Ca3
2

− Ca2 > 0,

and after that set M1 > 0 in such way that

(4.11) M1
Ca3
2

− Ca1 − Ca2,λ2 − Cc > 0.

Finally, making the parameter h0 large enough, we obtain k(T ) > 0 and

(4.12) M2
Ca3
2

− Ca2 −max{1, k(t)}Cλ2h−(1− 1
θ
) −max{1, k(t)}CΛ̃h

−(2σ−1) ≥ 0,

(4.13) M1
Ca3
2

− Ca1 − Ca2,λ2 − Cc − Ce,k,Λ̃h
−(1− 1

θ
) > 0.

With these choices Re ã2(t, x, ξ), Re (ã1 + c+ e)(t, x, ξ), Re ãθ(t, x, ξ) are non negative for large
|ξ|. Applying the Fefferman-Phong inequality to Re ã2 we have

Re⟨Re ã2(t, x,D)v, v⟩L2 ≥ −C∥v∥2L2 , v ∈ S (R).

By the sharp Gårding inequality we also obtain that

Re⟨(ã1 + c+ e)(t, x,D)v, v⟩L2 ≥ −C∥v∥2L2 , v ∈ S (R)

and
Re⟨ãθ(t, x,D)v, v⟩L2 ≥ −C∥v∥2L2 , v ∈ S (R).

As a consequence we get the energy estimate
d

dt
∥v(t)∥2L2 ≤ C ′(∥v(t)∥2L2 + ∥(iP )Λv(t)∥2L2),

which gives the well-posedness on L2(R) and onHm(R) for everym ∈ R for the Cauchy problem
(1.5). □
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5. Gevrey well-posedness for the Cauchy problem (1.2)
Finally we are ready to prove Theorem 1.

Proof of Theorem 1. Let us take initial data satisfying f ∈ C([0, T ], Hm
ρ;θ(R)), g ∈ Hm

ρ;θ(R), for
some m ∈ R and ρ > 0. Now choose k(0) < ρ and M2,M1 large enough so that Proposition 3
holds true. We have

eΛ(t, x,D)f ∈ C([0, T ];Hm
ρ−(k(0)+δ);θ(R)), eΛ(0, x,D)g ∈ Hm

ρ−(k(0)+δ);θ(R)

for every δ > 0, thanks to the continuity properties stated in Proposition 2. Since k(0) < ρ and
k(t) is non-increasing, we may conclude eΛ(t, x,D)f is in C([0, T ];Hm(R)) and eΛg ∈ Hm(R).
Proposition 3 gives h0 > 0 large such that for h ≥ h0 the Cauchy problem associated with PΛ

is well-posed in Sobolev spaces. Namely, there exists a unique v ∈ C([0, T ];Hm) satisfying{
PΛv(t, x) = eΛ(t, x,D)f(t, x), (t, x) ∈ [0, T ]× R,
v(0, x) = eΛ(0, x,D)g(x), x ∈ Rn,

and

(5.1) ∥v(t)∥2Hm ≤ C

(
∥eΛg∥2Hm +

∫ t

0

∥eΛf(τ)∥2Hmdτ

)
, t ∈ [0, T ].

Setting u = {eΛ}−1v we obtain a solution for our original problem, that is{
Pu(t, x) = f(t, x), (t, x) ∈ [0, T ]× R,
u(0, x) = g(x), x ∈ R.

Now let us study which space the solution u belongs to. We have

u = {eΛ}−1v = R{e−Λ̃}
∑
j

(−r)j︸ ︷︷ ︸
order zero

e−k(t)⟨D⟩
1
θ
h v,

where v ∈ Hm. Noticing that k(T ) > 0 and k is non-increasing, we achieve

e−k(t)⟨D⟩
1
θ
h v = e−k(T )⟨D⟩

1
θ
h e(k(T )−k(t))⟨D⟩

1
θ
h︸ ︷︷ ︸

order zero

v ∈ Hm
k(T );θ(R).

Hence {eΛ(t, x,D)}−1v ∈ Hm
k(T )−δ;θ for every δ > 0. Moreover, from (5.1) we obtain that u

satisfies the following energy estimate

∥u(t)∥2Hm
k(T )−δ;θ

= ∥{eΛ(t)}−1v(t)∥2Hm
k(T )−δ;θ

≤ C1∥v(t)∥2Hm

≤ C2

(
∥eΛ(0)g∥2Hm +

∫ t

0

∥eΛ(τ)f(τ)∥2Hmdτ

)
≤ C3

(
∥g∥2Hm

ρ;θ
+

∫ t

0

∥f(τ)∥2Hm
ρ;θ
dτ

)
, t ∈ [0, T ].

Summing up, given f ∈ C([0, T ], Hm
ρ;θ(R)), g ∈ Hm

ρ;θ(R) for some m ∈ R and ρ > 0, we find a
solution u ∈ C([0, T ];Hm

ρ′;θ(R)) (ρ′ < ρ) for the Cauchy problem associated with the operator
P and initial data f, g.
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Now it only remains to prove the uniqueness of the solution. To this aim, assume take
u1, u2 ∈ C([0, T ];Hm

ρ′;θ(R)) such that {
Puj = f

uj(0) = g.

For a new choice of k(0) < ρ′ and applying once more Proposition 3, we may find new parameters
M2,M1 > 0 and h0 > 0 such that the Cauchy problem associated to

PΛ = eΛ ◦ P ◦ {eΛ}−1

is well-posed in Hm, where eΛ represents the operator corresponding to the transformation
associated with these new parameters k(0),M2,M1, h0. Since eΛf, eΛg ∈ Hm and uj, j = 1, 2,
satisfy {

PΛe
Λuj = eΛf

eΛuj(0) = eΛg,

we must have eΛu1 = eΛu2 and therefore u1 = u2. This concludes the proof. □

Remark 9. In this paper we present a result in the one space dimensional case. The extension
to higher space dimension requires a more involved choice of the functions λ1, λ2 which must
satisfy certain partial differential inequalities, see for instance [7, 12, 22] in the case p = 2 and
the ideas in [4, Section 4] for the case p ≥ 3. We prefer to not treat this extension for the
moment because our aim in the next future is to apply this result to semilinear equations of
physical interest defined for x ∈ R1.

Remark 10. In Theorem 1 we assume that the symbol of the leading term a3(t,D) is indepen-
dent of x. In the H∞ setting, it is possible to consider also the more general case a3(t, x,D),
assuming for a3 suitable decay estimates, see [4, Section 4]. This is not possible in the Gevrey
setting using our arguments, due to the conjugation with ek(t)⟨D⟩1/θ ; indeed, if a3 depends on x,
even allowing its derivatives with respect to x to decay like ⟨x⟩−m for m >> 0, we obtain

ek(t)⟨D⟩1/θ(ia3(t, x,D))e−k(t)⟨D⟩1/θ = ia3(t, x,Dx) + op
(
k(t)∂ξ⟨ξ⟩

1
θ · ∂xa3

)
+ l.o.t

with k(t)∂ξ⟨ξ⟩
1
θ · ∂xa3(t, x, ξ) ∼ ⟨ξ⟩2+ 1

θ ⟨x⟩−m. This term has order 2 + 1
θ
> 2 and cannot be

controlled by other lower order terms whose order does not exceed 2.

Acknowledgements. The authors are grateful to professor Giovanni Taglialatela for helpful
comments and suggestions. They also wish to express their gratitude to the referee for his/her
valuable criticism which helped us to improve the presentation of the results.

6. Appendix
In this last Section we explain how to obtain Theorem 2 following the steps given in the proof
of Theorems 6.9, 6.10 and 6.12 in [23]. We begin stating the following result, whose proof can
be found in the final example of [28, Section 6, Chapter 1].

Lemma 4. Let a ∈ B∞(Rn). Then for every fixed x ∈ Rn, the function (y, η) 7→ eixηa(y)
belongs to a class of polynomially bounded amplitudes. Moreover

Os−
∫∫

e−iyηeixηa(y)dyd−η = Os−
∫∫

e−iηya(y + x)dyd−η = a(x), x ∈ Rn.
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Theorem 2 is a direct consequence of the two following propositions and of the final Remark
11.

Proposition 4. Under the assumptions of Theorem 2, there exists δ̃ > 0 such that if ρ0 ≤
δ̃A− 1

κ , then

eλ(x,D) ◦ p(x,D) = op
(
eλ(x, ξ)sN(x, ξ)

)
+ qN(x,D) + r∞(x,D),

where

(6.1) sN(x, ξ) =
∑
|α|<N

1

α!
e−λ(x,ξ){∂αξ eλ(x,ξ)}Dα

xp(x, ξ),

(6.2) |∂αξ ∂βxqN(x, ξ)| ≤ Cρ0,A,κ(CκA)
|α+β|+2Nα!κβ!κN !2κ−1⟨ξ⟩m−(1− 1

κ
)N−|α|,

(6.3) |∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,κ(CκA)
|α+β|+2Nα!κβ!κN !2κ−1e−cκA

− 1
κ ⟨ξ⟩

1
κ .

Proof. Arguing as in the proof of [23, Theorem 6.9], we can write the symbol s(x, ξ) of the
composition eλ(x,D) ◦ p(x,D) as

s(x, ξ) = Os−
∫∫

e−iηyeλ(x,ξ+η)p(x+ y, ξ)dyd−η.

Applying Taylor’s formula to eλ(x,ξ+η) and then applying Lemma 4 we obtain

s(x, ξ) =
∑
|α|<N

1

α!
∂αξ e

λ(x,ξ)Dα
xp(x, ξ) + rN(x, ξ) = eλ(x,ξ)sN(x, ξ) + rN(x, ξ),

where

rN(x, ξ) =
∑
|α|=N

1

α!
Os−

∫∫
e−iyηDα

xp(x+ y, ξ)

∫ 1

0

(1− θ)N−1∂αξ e
λ(x,ξ+θη)dθdyd−η.

Therefore

eλ(x,D) ◦ p(x,D) = op
(
eλ(x, ξ)sN(x, ξ)

)
+ rN(x,D),

where sN is given by (6.1). Take now χ(t) ∈ C∞
c (R) such that

|∂jtχ(t)| ≤ Cj+1j!κ
′
(1 < κ′ < κ), χ(t) =

{
1, |t| ≤ 1

4

0, |t| ≥ 1
2

,(6.4)

and set χ(ξ, η) = χ(⟨η⟩⟨ξ⟩−1), ξ, η ∈ Rn. Note that

1

2
⟨ξ⟩ ≤ ⟨ξ + θη⟩ ≤ 3

2
⟨ξ⟩

for every ξ, η ∈ suppχ(ξ, η) and |θ| ≤ 1. We can split the operator rN(x,D) as

rN(x,D)u(x) =
∑
|α|=N

1

α!

∫
eiξx+λ(x,ξ)Os−

∫∫
e−iηy

∫ 1

0

(1− θ)N−1eλ(x,ξ+θη)−λ(x,ξ)

× wα(λ;x, ξ + θη)dθ {Dα
xp}(x+ y, ξ)dyd−η û(ξ)d−ξ

=

∫
eiξx+λ(x,ξ)r′N(x, ξ)û(ξ)d

−ξ +

∫
eixξr

′′

N(x, ξ)û(ξ)d
−ξ,
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where, for α, β ∈ Nn we denote wα(λ;x, ξ) := e−λ(x,ξ)∂αξ e
λ(x, ξ) and

r′N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫∫
e−iηy

∫ 1

0

(1− θ)N−1eλ(x,ξ+θη)−λ(x,ξ)wα(λ;x, ξ + θη)dθ

× {Dα
xp}(x+ y, ξ)χ(ξ, η)χε(y, η)dyd

−η,

r
′′

N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫∫
e−iηy

∫ 1

0

(1− θ)N−1∂αξ e
λ(x,ξ+θη)dθ

× {Dα
xp}(x+ y, ξ)(1− χ)(ξ, η)χε(y, η)dyd

−η,

and χε(y, η) = χ(εy)χ(εη), χ ∈ Σκ′(Rn), χ(0) = 1. It is not difficult to verify that the term
Dα
xp(x + y, ξ)e−λ(x,ξ+θη)∂αξ e

λ(x,ξ+θη) has order m − N(1 − 1
κ
) with respect to ξ. Applying the

same arguments used in [23, Theorem 6.9] to estimate the remainder terms of the composition,
one can split the symbol r′N into the sum of two terms satisfying (6.2) and (6.3) respectively.
The estimate (6.3) for r′′N can be obtained simply integrating by parts and using the fact that
(1− χ)(ξ, η) is supported for ⟨η⟩ ≥ 4−1⟨ξ⟩. We leave the details to the reader. □

Proposition 5. Under the assumptions of Theorem 2, there exist δ̃ > 0 and h0(A) ≥ 1 such
that if h ≥ h0 and ρ0 ≤ δ̃A− 1

κ we may write the product op(eλp) ◦ R{e−λ} as follows

op(eλp) ◦ R{e−λ(x,D)} = sN ′(x,D) + qN ′(x,D) + r∞(x,D),

where

(6.5) sN ′(x, ξ) =
∑

|α|<N ′

1

α!
∂αξ {eλ(x,ξ)p(x, ξ)Dα

xe
−λ(x,ξ)},

(6.6) |∂αξ ∂βxqN ′(x, ξ)| ≤ Cρ0,A,κ(CκA)
|α+β|+2N ′

α!κβ!κN ′!2κ−1⟨ξ⟩m−(1− 1
κ
)N ′−|α|

h ,

(6.7) |∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,κ(CκA)
|α+β|+2N ′

α!κβ!κN ′!2κ−1e−cκA
− 1

κ ⟨ξ⟩
1
κ
h .

Proof. We have

R{e−λ(x,D)}u(x) =
∫∫

eiξ(x−y)e−λ(y,ξ)u(y)dyd−ξ

=

∫
eiξx

∫
e−iξye−λ(y,ξ)u(y)dy d−ξ,

which implies

op(eλp) ◦ R{e−λ(x,D)}u(x) =
∫∫

eiξ(x−y)eλ(x,ξ)−λ(y,ξ)p(x, ξ)u(y)dyd−ξ.

In this way the symbol σ(x, ξ) of the composition op(eλp) ◦ R{e−λ} is given by

σ(x, ξ) = Os−
∫∫

e−iηyeλ(x,ξ+η)−λ(x+y,ξ+η)p(x, ξ + η)dyd−η.
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By Taylor’s formula and Lemma 4 we obtain

σ(x, ξ) =
∑

|α′|<N ′

1

α!
∂αξ {eλ(x,ξ)p(x, ξ)Dα

xe
−λ(x,ξ)}

+N ′
∑

|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1Os−

∫∫
e−iyη∂αξ {eλ(x,ξ+θη)p(x, ξ + θη)Dα

xe
−λ(x+y,ξ+θη)}dyd−η dθ

= sN ′(x, ξ) + rN ′(x, ξ).

Now we observe that thanks to (2.5) we have that

e−λ(x,ξ+θη)eλ(x+y,ξ+θη)∂αξ {eλ(x,ξ+θη)p(x, ξ + θη)Dα
xe

−λ(x+y,ξ+θη)}

has order m − N ′(1 − 1
κ
) (with respect to ξ). Applying the same argument used in the proof

of [23, Theorem 6.10], one can split the symbol rN ′ = qN ′ + r∞, where qN ′ and r∞ satisfy (6.6)
and (6.7) respectively. Details are left to the reader.

□

Remark 11. Shrinking δ̃ > 0 if necessary, we may conclude that

r∞(x,D) ◦ R{e−λ(x,D)} = r̃∞(x,D),

where r̃∞(x,D) is still a regularizing operator.
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