
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{C}\mathrm{O}\mathrm{N}\mathrm{T}\mathrm{R}\mathrm{O}\mathrm{L} \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 61, \mathrm{N}\mathrm{o}. 5, \mathrm{p}\mathrm{p}. 2997--3017

THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION\ast 

ERIK EKSTR\"OM\dagger , ALESSANDRO MILAZZO\ddagger , AND MARCUS OLOFSSON\S 

Abstract. We consider a resource extraction problem which extends the classical de Finetti
problem for a Wiener process to include the case when a competitor, who is equipped with the
ability to extract all the remaining resources in one piece, may exist. This situation is modeled as a
nonzero-sum controller-and-stopper game with incomplete information. For this stochastic game we
provide a Nash equilibrium with an explicit structure. In equilibrium, the agent and the competitor
use singular strategies in such a way that a two-dimensional process, which represents available
resources and the filtering estimate of active competition, reflects in a specific direction along a given
boundary.

Key words. the de Finetti problem, uncertain competition, controller-and-stopper game
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1. Introduction. In the classical single-player de Finetti problem for a Wiener
process, the value of a limited resource evolves, in the absence of extraction, as

Yt = x+ \mu t+ \sigma Wt,

where \mu and \sigma are positive constants and W is a standard Brownian motion. The de
Finetti problem---also known as the dividend problem---then consists of maximizing

\BbbE 
\biggl[ \int \tau 0

0

e - rtdDt

\biggr] 
over all adapted, nondecreasing, and right-continuous processes D with D0 - = 0,
where \tau 0 := inf\{ t\geq 0 : Yt  - Dt \leq 0\} is the extinction time (or bankruptcy time). It is
well known (see, e.g., Asmussen and Taksar [1] and Jeanblanc and Shiryaev [12]) that
the optimal strategy \~D is given by \~Dt = sup0\leq s\leq t(Ys - B)+, where (x)+ :=max\{ x,0\} 
and B is a constant that can be calculated explicitly.

In the current article, we study the de Finetti problem under an additional threat
of competition. One interpretation of this uncertain competition is that the agent, who
exerts the control D to extract from the source Y , is subject to possible theft. For con-
creteness one may think of the owner of a fish farm who seeks to maximize the revenues
from harvesting a stochastically fluctuating population but whose business possibly is
monitored by another party who seeks to steal fish. Another possible interpretation
is that Y represents the value of a common resource but where currently only one
agent is extracting; unknown competition then corresponds to the possibility that
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2998 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

another agent will decide to extract as well. We thus include the possibility that a
competitor exists, and we assume that the competitor has the capacity to extract all
the remaining resources at once at a random time \gamma of their choice (for a discussion
of this feature, see Remark 2.6).

To model uncertain competition, we use a Bernoulli random variable \theta indicating
whether the competitor exists (\theta = 1) or not (\theta = 0), and we consider the maximization
of

\BbbE 

\Biggl[ \int \tau 0\wedge \^\gamma 

0

e - rtdDt

\Biggr] 

over singular controls D, where \^\gamma := \gamma 1\{ \theta =1\} + \infty 1\{ \theta =0\} . At the same time, the
competitor chooses \gamma to maximize the expected payoff

\BbbE 
\Bigl[ 
e - r(\tau 0\wedge \gamma )XD

\tau 0\wedge \gamma 

\Bigr] 
,

where XD = Y  - D represents the remaining resources after extraction.
The above problem setup models a game of control and stopping; see [3], [4], [7],

[10], [13], [14], and [15] for various studies of such games. Notably, we formulate and
solve a nonzero-sum game. Moreover, an important feature that distinguishes our
game from the works mentioned above is incomplete and asymmetric information,
which in our framework stems from the fact that the existence of the competitor is
uncertain. We thus complement the existing literature by investigating the role of
uncertain competition in stochastic games. This strand of research can be traced
back to the nondynamic setting of an auction game with uncertain competition (see
Hirshleifer and Riley [11, pp. 386--389]) and was more recently extended to a dynamic
setting in [6] where a stopping game with uncertain competition was studied. In [6]
the term ``ghost"" was also introduced to represent the players that may not exist.
In Ekstr\"om, Lindensj\"o, and Olofsson [8], the authors proposed and studied a ghost
game in a setting related to fraud detection and so-called ``salami slicing"" fraudulence.
As in the current paper, a controller-and-stopper nonzero-sum game of ghost type is
studied in [8], but with the ``ghost"" role inverted. More precisely, in [8] the controller
is a ghost, whereas in the current paper the stopper is a ghost. Our aim is thus to
investigate the role of uncertain competition in a singular stochastic control problem.
To lay the groundwork for possible future studies, we have chosen the classical setting
of the de Finetti problem, which is a well-studied problem in the singular control
literature.

Since the competitor is equipped with a binary stopping control, inference about
the existence of competition is based on observations of the events \{ \^\gamma \leq t\} . Indeed,
the strategies that we consider are based on observations/calculations of the two-
dimensional process (X,\Pi ): X =XD = Y  - D is observed and represents the value of
resources after extraction, whereas \Pi is calculated and represents the adjusted belief
of active competition, i.e., the conditional probability that \theta = 1 given that stop-
ping has not yet occurred (see section 3.2). Remarkably, our controller-and-stopper
nonzero-sum game with incomplete information has an explicit equilibrium with an
interesting and rich structure. In this equilibrium the controller extracts resources,
and the competitor stops at a randomized stopping time, specified in terms of a
generalized intensity, in such a way that the corresponding two-dimensional process
(X,\Pi ) reflects obliquely at a given monotone boundary x = b(p) (see Figure 1 in
section 6). To construct this two-dimensional reflected process, including a carefully
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 2999

specified reflection direction, we use the notion of perturbed Brownian motion, (see,
e.g., Carmona, Petit, and Yor [5] and Perman and Werner [16]). To the best of our
knowledge, this is the first time that a perturbed Brownian motion has been used
as part of the solution in a stochastic control problem. We also note how the struc-
ture of the equilibrium strategy, determined by this two-dimensional reflection, differs
completely from the equilibrium found in the controller-and-stopper ``ghost"" game in
[8]. In fact, in equilibrium, the two players act simultaneously as follows when the
sufficient statistic (X,\Pi ) hits a certain boundary: the controller exerts control in the
(negative) x-direction, and the ghost stopper stops with a generalized intensity that
induces a decrease in \Pi in such a way that the two-dimensional process (X,\Pi ) reflects
obliquely along the boundary.

Admittedly, our problem formulation with Brownian dynamics and with the possi-
bility of the competitor extracting all remaining resources in one piece is a bit stylized.
However, we hope that the current study of an explicit setup will contribute towards
the understanding of more involved problems, including more flexible diffusion models
and more general payoff structures. We note, however, that the explicit construction
of perturbed processes is not available for general diffusion processes, but one would
then instead need to rely on appropriate existence and uniqueness results for such
processes.

The paper is organized as follows. In section 2 we provide the precise game
formulation of the de Finetti problem under uncertain competition. In section 3 we
review the standard single-player de Finetti problem and use heuristic arguments to
provide properties that should hold in the game version studied here. Section 4 uses
the notion of perturbed Brownian motion to construct the candidate equilibrium. Our
main result, Theorem 5.1, in which the candidate equilibrium is verified, is presented
in section 5. Finally, section 6 illustrates our findings with a numerical study.

2. Problem setup. We begin by setting the mathematical stage necessary for
our analysis. Throughout the paper, we let (\Omega ,\scrF ,\BbbP ) be a complete probability
space on which a standard Brownian motion W , a Bernoulli random variable \theta with
\BbbP (\theta = 1) = 1 - \BbbP (\theta = 0) = p \in [0,1], and a Unif(0,1) random variable U are defined.
Moreover, W , \theta , and U are assumed to be independent.

We consider a stochastic game between player 1 and player 2 in which both players
seek to maximize certain quantities to be specified. Let Y be a Brownian motion with
drift given by

Yt = x+ \mu t+ \sigma Wt,

where the initial condition satisfies x \geq 0, and \mu and \sigma are given positive constants.
Denote by \BbbF W = (\scrF W

t )0\leq t<\infty the augmentation of the filtration generated by the
Brownian motion W ; this filtration will represent the information that Player 1 (the
``controller"") is equipped with.

Definition 2.1 (admissible controls for player 1). An admissible control for
player 1 is a nondecreasing, right-continuous, \BbbF W -adapted process D = (Dt)t\geq 0 sat-
isfying D0 - = 0 and D\tau 0 \leq Y\tau 0 on \{ \tau 0 <\infty \} , where \tau 0 := inf\{ s \geq 0 : Ds \geq Ys\} . We
denote by \scrA 1 the set of admissible controls for player 1.

For any strategy D \in \scrA 1, let X =XD := Y  - D, and define

\tau X0 := inf\{ t\geq 0 :Xt \leq 0\} .(2.1)

To simplify the notation, we will often omit the superscript and simply writeX instead
of XD and \tau 0 instead of \tau X0 .
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3000 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

In line with other studies of games with asymmetric information, we equip the
more informed player 2 (the ``competitor"") with randomized stopping times. To define
the strategies of player 2, we denote by \scrD the Skorokhod space of c\`adl\`ag paths on
[0,\infty ).

Definition 2.2 (admissible controls for player 2). An admissible control \Gamma =
(\Gamma t(X))t\geq 0 for player 2 is a mapping (t,X) \mapsto \rightarrow \Gamma t(X) from [0 - ,\infty )\times \scrD into [0,1] which
is progressively measurable for the canonical filtration on \scrD , nondecreasing and right-
continuous in t, and satisfying \Gamma 0 - (X) = 0. We denote by \scrA 2 the set of admissible
controls for player 2.

Given a pair of admissible strategies (D,\Gamma ) \in \scrA 1 \times \scrA 2, we define a randomized
stopping time \gamma as

\gamma := \gamma \Gamma := inf\{ t\geq 0 : \Gamma t(X
D)>U\} ,(2.2)

where we recall that U is a random variable which is Unif(0,1)-distributed and inde-
pendent of \theta and W . In accordance with the notation for X =XD, we will often omit
the superscript and simply write \gamma instead of \gamma \Gamma .

Remark 2.3. We note that player 2 selects a universal map \Gamma and applies to any
given path of X = Y  - D to generate randomized stopping time \gamma = \gamma \Gamma in (2.2). In
this way, player 2 is equipped with feedback controls, and we will obtain a Markovian
game structure.

Given a fixed discount rate r > 0 and a pair (D,\Gamma ) \in \scrA 1 \times \scrA 2, we define the
payoffs for player 1 and player 2 as

J1(x,p,D,\Gamma ) :=\BbbE 

\Biggl[ \int \tau 0\wedge \^\gamma 

0

e - rtdDt

\Biggr] 
(2.3)

and

J2(x,p,D,\Gamma ) :=\BbbE 
\Bigl[ 
e - r(\tau 0\wedge \gamma )X\tau 0\wedge \gamma 

\Bigr] 
,(2.4)

respectively, where \tau 0 = \tau X0 and \gamma = \gamma \Gamma are defined as in (2.1)--(2.2), and

\^\gamma :=

\Biggl\{ 
\gamma if \theta = 1,

\infty if \theta = 0.

The integral in (2.3) is interpreted in the Lebesgue--Stieltjes sense, with\int \tau 0\wedge \^\gamma 

0

e - rtdDt :=

\int 
[0,\tau 0\wedge \^\gamma ]

e - rtdDt.

The inclusion of the lower limit 0 of integration thus accounts for the contribution to
player 1 from an initial push dD0 =D0 > 0.

Each player seeks to maximize their respective profit, and we are looking for a
Nash equilibrium to this nonzero-sum game in the sense of the following definition.

Definition 2.4. A pair (D\ast ,\Gamma \ast )\in \scrA 1 \times \scrA 2 is a Nash equilibrium (NE) if

J1(x,p,D
\ast ,\Gamma \ast )\geq J1(x,p,D,\Gamma 

\ast ),

J2(x,p,D
\ast ,\Gamma \ast )\geq J2(x,p,D

\ast ,\Gamma )

for any pair (D,\Gamma )\in \scrA 1 \times \scrA 2.
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3001

Remark 2.5. Note that it is a consequence of our setup that player 1 has prece-
dence over player 2 in the sense that if a lump sum dDt > 0 is paid out at the same
time t = \^\gamma as player 2 stops, then player 1 receives the lump sum, whereas player
2 receives the reduced amount Yt  - Dt. Consequently, since player 1 may choose a
strategy with D0 = x, for any Nash equilibrium (D\ast ,\Gamma \ast )\in \scrA 1 \times \scrA 2 we must have

J1(x,p,D
\ast ,\Gamma \ast ) = sup

D\in \scrA 1

J1(x,p,D,\Gamma 
\ast )\geq x.

Remark 2.6. We have equipped player 2 with (randomized) stopping times, cor-
responding to a situation in which this player is limited to extracting all remaining
resources at once. This is not a restriction if one considers applications where the
actions are observable. Indeed, if player 2 were to be equipped with observable in-
creasing controls from \scrA 1 (or more generally, randomized ones), then their existence
would be revealed immediately upon extracting, turning the game into a resource ex-
traction game with known competition, for which a Nash equilibrium would be that
both players try to extract all remaining resources immediately. Therefore, a situation
with observable actions and unknown competition corresponds exactly to our setup.
(If, on the other hand, actions are not directly observable, then allowing player 2 to
extract at any rate would not degenerate into the game of the current article; for
details on a related game of such type, see [8].)

Remark 2.7. Notice that for player 2 we have chosen to maximize their expected
payoff when they are active, i.e., when \theta = 1. The case p = 0 thus corresponds to
when player 2 is active, whereas player 1 is certain that player 2 is not.

Alternatively, one could set player 2 to maximize

\^J2(x,p,D,\Gamma ) :=\BbbE 
\Bigl[ 
\theta e - r(\tau 0\wedge \^\gamma )X\tau 0\wedge \^\gamma 

\Bigr] 
.

The formulations for J2 and \^J2 have the following interpretations. Imagine that before
the game starts, at time t = 0 - , neither player knows \theta and that the value of \theta will
be revealed to player 2 at time t = 0. Then, \^J2 is the expected payoff for player 2
at time t = 0 - , whereas J2 is the expected payoff at time t = 0 when \theta = 1. These
games are referred to as the ex-ante version of the game and the interim version of
the game, respectively (see [2], [9] for the classical theory of games under incomplete
information). Also notice that the two formulations are equivalent as by independence
one obtains \^J2(x,p,D,\Gamma ) = pJ2(x,p,D,\Gamma ), and so the second inequality in Definition
2.4 can be equivalently replaced by \^J2(x,p,D

\ast ,\Gamma \ast )\geq \^J2(x,p,D
\ast ,\Gamma ) for p > 0.

Proposition 2.8. For a given pair (D,\Gamma )\in \scrA 1 \times \scrA 2, we have

J1(x,p,D,\Gamma ) =\BbbE 
\biggl[ \int \tau 0

0

e - rt(1 - p\Gamma t - )dDt

\biggr] 
,

where \Gamma t := \Gamma t(X
D).

Proof. By conditioning and independence, we have

J1(x,p,D,\Gamma ) =\BbbE 

\Biggl[ \int \tau 0\wedge \^\gamma 

0

e - rtdDt

\Biggr] 

= p\BbbE 

\Biggl[ \int \tau 0\wedge \^\gamma 

0

e - rtdDt

\bigm| \bigm| \bigm| \bigm| \theta = 1

\Biggr] 
+ (1 - p)\BbbE 

\Biggl[ \int \tau 0\wedge \^\gamma 

0

e - rtdDt

\bigm| \bigm| \bigm| \bigm| \theta = 0

\Biggr] 

= p\BbbE 
\biggl[ \int \tau 0\wedge \gamma 

0

e - rtdDt

\biggr] 
+ (1 - p)\BbbE 

\biggl[ \int \tau 0

0

e - rtdDt

\biggr] 
.(2.5)
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3002 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

For every \rho \in [0,1), let \gamma (\rho ) := inf\{ t\geq 0 : \Gamma t(X)> \rho \} . Then, since the randomization
device U is independent of \theta and W , and using Fubini's theorem, we have that

\BbbE 
\biggl[ \int \tau 0\wedge \gamma 

0

e - rtdDt

\biggr] 
=\BbbE 

\Biggl[ \int 1

0

\int \tau 0\wedge \gamma (\rho )

0

e - rtdDtd\rho 

\Biggr] 

=\BbbE 
\biggl[ \int \tau 0

0

e - rt
\biggl\{ \int 1

0

1\{ t\leq \gamma (\rho )\} d\rho 

\biggr\} 
dDt

\biggr] 
.

Note that

\{ \Gamma t - \leq \rho \} = \{ t\leq \gamma (\rho )\} ,

so \int 1

0

1\{ t\leq \gamma (\rho )\} d\rho =

\int 1

0

1\{ \Gamma t - \leq \rho \} d\rho = 1 - \Gamma t - .(2.6)

Combining (2.5) and (2.6), we obtain

J1(x,p,D,\Gamma ) =\BbbE 
\biggl[ \int \tau 0

0

e - rt(1 - p\Gamma t - )dDt

\biggr] 
.

3. Background material and heuristics.

3.1. The single-player de Finetti problem. Note that if p= 0, then player 1
acts under no competition and thus faces the standard de Finetti problem for which
the value function

V (x) := sup
D\in \scrA 1

\BbbE 
\biggl[ \int \tau 0

0

e - rtdDt

\biggr] 
(3.1)

and the optimal strategy \~D are well known (see, e.g., [12]). To describe this solution
in more detail, let \psi be the unique increasing solution of

\scrL \psi (x) = 0, x\geq 0,

with \psi (0) = 0 and \psi \prime (0) = 1, where \scrL denotes the differential operator

\scrL :=
\sigma 2

2
\partial 2x + \mu \partial x  - r.(3.2)

More explicitly,

\psi (x) =
e\zeta 2x  - e\zeta 1x

\zeta 2  - \zeta 1
,(3.3)

where \zeta i, i= 1,2, are the solutions of the quadratic equation

\zeta 2 +
2\mu 

\sigma 2
\zeta  - 2r

\sigma 2
= 0

with \zeta 1 < 0< \zeta 2. Setting

B :=
ln(\zeta 21 ) - ln(\zeta 22 )

\zeta 2  - \zeta 1
,(3.4)
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3003

we have that \psi is concave on [0,B] and convex on (B,\infty ), and

V (x) =

\Biggl\{ 
\psi (x)
\psi \prime (B) , x\leq B,

x - B + V (B), x >B.
(3.5)

Moreover,

\~Dt = sup
s\in [0,t]

\bigl( 
Ys  - B

\bigr) +
(3.6)

is an optimal strategy in (3.1), i.e.,

V (x) =\BbbE 

\Biggl[ \int \~\tau 0

0

e - rtd \~Dt

\Biggr] 
,

where \~X := X
\~D and \~\tau 0 := \tau 

\~X
0 . We also remark that ( \~X, \~D) is the solution of a

Skorokhod reflection problem with reflection at the barrier B.

3.2. Adjusted beliefs. We now return to our version of the game including
a ghost feature as described in section 2. At the beginning of the game, from the
perspective of player 1 there is active competition (i.e., \theta = 1) with probability p. As
time passes, and if no stopping occurs, player 1's conditional probability of competi-
tion \Pi will decrease. More precisely, at time t \geq 0, assuming that the strategy pair
(D,\Gamma )\in \scrA 1 \times \scrA 2 is played, we have

\Pi t =\Pi \Gamma 
t := \BbbP (\theta = 1| \scrF W

t , \^\gamma > t) =
\BbbP (\theta = 1, \^\gamma > t| \scrF W

t )

\BbbP (\^\gamma > t| \scrF W
t )

(3.7)

=
p\BbbP (\gamma > t| \scrF W

t )

(1 - p) + p\BbbP (\gamma > t| \scrF W
t )

=
p(1 - \Gamma t(X

D))

1 - p\Gamma t(XD)

since \BbbP (\gamma > t| \scrF W
t ) = 1 - \BbbP (U \leq \Gamma t| \scrF W

t ) = 1 - \Gamma t for \Gamma = \Gamma (XD). Moreover, since the
initial probability of the event \{ \theta = 1\} is p, we also have \Pi 0 - := p. Also note that
solving for \Gamma t in the equation above gives

\Gamma t =\Gamma \Pi 
t =

p - \Pi t
p(1 - \Pi t)

,(3.8)

so there is a bijection between \Pi and \Gamma .

3.3. Heuristics. This section illustrates the heuristic arguments which lead to
the formulation of a Nash equilibrium for our problem. These heuristics will be
rigorously supported in Theorem 5.1.

We start by providing some simple bounds for the payoff of player 1. Recalling
the single-player value function V from (3.1), we have

J1(x,p,D,\Gamma ) =\BbbE 
\biggl[ \int \tau 0

0

e - rt(1 - p\Gamma t - )dDt

\biggr] 
\leq \BbbE 

\biggl[ \int \tau 0

0

e - rtdDt

\biggr] 
\leq V (x)

for any strategy pair (D,\Gamma ) \in \scrA 1 \times \scrA 2, so it is clear that the risk of competition
deflates the value from the perspective of player 1. On the other hand, if \~D denotes
the optimal control of the single-player de Finetti problem (see (3.6)), then

J1(x,p, \~D,\Gamma ) =\BbbE 

\Biggl[ \int \~\tau 0

0

e - rt(1 - p\Gamma t - )d \~Dt

\Biggr] 
\geq (1 - p)\BbbE 

\Biggl[ \int \~\tau 0

0

e - rtd \~Dt

\Biggr] 
= (1 - p)V (x)
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3004 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

for any \Gamma \in \scrA 2. Thus it is clear that

(1 - p)V (x)\leq J1(x,p,D
\ast ,\Gamma \ast )\leq V (x)(3.9)

if (D\ast ,\Gamma \ast )\in \scrA 1 \times \scrA 2 is a Nash equilibrium.
We make the ansatz that there exists a Nash equilibrium (D\ast ,\Gamma \ast )\in \scrA 1\times \scrA 2 such

that
(a) there exists a nonincreasing continuous boundary p = c(x) such that the

overall effect of the equilibrium strategy (D\ast ,\Gamma \ast ) \in \scrA 1 \times \scrA 2 amounts to
reflection of the two-dimensional process (X\ast ,\Pi \ast ) = (Y  - D\ast ,\Pi \Gamma \ast 

) along this
boundary (see Figure 1);

(b) the corresponding equilibrium value v of player 1 satisfies

v(x,p) = (1 - p)V (x) for p\leq c(x).(3.10)

Notice that the ansatz (3.10) coincides with the lower bound in (3.9) and that it thus
bears some resemblance to the equilibrium obtained in the ghost Dynkin game studied
in [6].

Given this ansatz, we need to determine
(i) the boundary x \mapsto \rightarrow c(x);
(ii) the direction of reflection when the process (X\ast ,\Pi \ast ) is at the boundary;
(iii) the strategy pair (D\ast ,\Gamma \ast ) corresponding to the reflected process (X\ast ,\Pi \ast ).

We do this step by step, and then verify the constructed candidate Nash equilibrium
(D\ast ,\Gamma \ast ) in section 5. We focus on starting points (x,p) with p\leq c(x) here and treat
the strategy for p > c(x) directly in section 5.

First, note that by the bijection (3.8) between \Gamma and \Pi , we have that \Pi \ast is of
the form \Pi \ast = \Pi \ast (XD) for every D \in \scrA 1. Thus, to obtain the reflection of (X\ast ,\Pi \ast )
along the monotone boundary c, we need that

\Pi \ast 
t =\Pi \ast 

t (X
D) = p\wedge c

\biggl( 
sup

0\leq s\leq t
XD
s

\biggr) 
for t\geq 0.(3.11)

With a slight abuse of notation, \Pi \ast will be used to indicate both \Pi \ast (XD) and \Pi \ast (X\ast ),
but this will be clear from the context as it will depend on whether player 1 plays an
arbitrary admissible strategy D \in \scrA 1 or the equilibrium strategy D\ast .

Now, consider a starting point (x,p)\in [0,\infty )\times (0,1) with p\leq c(x). By (3.11), we
expect in equilibrium that

(X\ast 
t ,\Pi 

\ast 
t ) =

\biggl( 
Yt  - D\ast 

t , p\wedge c
\biggl( 

sup
0\leq s\leq t

(Ys  - D\ast 
s)

\biggr) \biggr) 
for D\ast \in \scrA 1 to be specified. By construction, \Pi \ast is continuous, and from (3.7) and
(3.8) we have

\Gamma \ast 
t =

p - \Pi \ast 
t

p(1 - \Pi \ast 
t )

and

d\Pi \ast 
t = - 1

1 - \Gamma \ast 
t

\Pi \ast 
t (1 - \Pi \ast 

t )d\Gamma 
\ast 
t(3.12)

on \{ t\geq 0 : \Gamma \ast 
t < 1\} .
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3005

Let \^\gamma \ast := \gamma \ast 1\{ \theta =1\} + \infty 1\{ \theta =0\} . By the dynamic programming principle, one
would expect that the process M=MD given by

Mt :=

\int t\wedge \^\gamma \ast 

0

e - rsdDs + e - rtv(Xt,\Pi 
\ast 
t )1\{ t<\^\gamma \ast \} 

is an \BbbF W,\^\gamma \ast 
-martingale if D = D\ast \in \scrA 1 is an optimal response to \Gamma \ast \in \scrA 2. Here,

\BbbF W,\^\gamma \ast 
= (\scrF W,\^\gamma \ast 

)0\leq t<\infty is the smallest right-continuous filtration to which W and
1\{ \cdot \geq \^\gamma \ast \} are adapted, augmented with the \BbbP -null sets of \Omega . Moreover, by conditioning

(cf. Proposition 2.8), M is an \BbbF W,\^\gamma \ast 
-martingale if and only if

\^Mt :=

\int t

0

e - rs(1 - p\Gamma \ast 
s - )dDs + e - rt(1 - p\Gamma \ast 

t )v(Xt,\Pi 
\ast 
t )

is an \BbbF W -martingale. Therefore, by an application of Ito's formula and (3.12), we see
that when player 2 plays the equilibrium strategy \Gamma \ast , if t is such that \Pi \ast 

t = c(X\ast 
t ) so

that (X\ast 
t ,\Pi 

\ast 
t ) is at the boundary, then we need that

(1 - vx)dD
\ast 
t  - 

\Pi \ast 
t

1 - \Gamma \ast 
t

\bigl( 
(1 - \Pi \ast 

t )vp + v
\bigr) 
d\Gamma \ast 

t = 0(3.13)

for M to be martingale. Moreover, since c is assumed to be continuous and nonin-
creasing, we have for all times t that

\Pi \ast 
t = p\wedge c

\biggl( 
sup

0\leq s\leq t
(Ys  - D\ast 

s)

\biggr) 
\leq c(Yt  - D\ast 

t ) = c(X\ast 
t ),(3.14)

so we obtain from the ansatz (3.10) that

(1 - p)vp(x,p) + v(x,p) = 0

whenever p \leq c(x). Therefore, the second term of (3.13) is zero, and to satisfy the
martingality condition we thus need to have vx(x,p) = 1 at the boundary c. Conse-
quently, the boundary p= c(x) should be defined by

(1 - c(x))V \prime (x) = 1(3.15)

for x\in [0,B], where B is the single-player boundary as specified in (3.4).
Taking (3.15) as a definition, we get

c(x) =
V \prime (x) - 1

V \prime (x)
, x\in [0,B],(3.16)

from which it follows immediately by (3.5) that c(B) = 0, c\prime (x)< 0, and c\prime (x)\rightarrow 0 as
x\nearrow B. Moreover, let

\^p := (V \prime (0) - 1)/V \prime (0).(3.17)

Then, c : [0,B]\rightarrow [0, \^p] defined by (3.15) is a continuous strictly decreasing bijection,
and we denote its inverse by b; thus b : [0, \^p]\rightarrow [0,B] satisfies

b(c(x)) = x \forall x\in [0,B].(3.18)

From here on, we will refer to b (instead of c) as the boundary when it is more
convenient to do so. By convention, we also extend b and c by continuity and define
b(p) = 0 for every p\in (\^p,1], and c(x) = 0 for x\in (B,\infty ).
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3006 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

We now turn to (ii), i.e., to the question of how to specify the direction of
reflection. Since player 2 in equilibrium only stops at time points when (X\ast ,\Pi \ast )
is at the boundary, we expect this player's equilibrium value u to be of the form
u(x,p) = g(p)\psi (x) for some function g and to satisfy the condition u(b(p), p) = b(p).
Consequently,

u(x,p) = b(p)
\psi (x)

\psi (b(p))
(3.19)

for x\leq b(p). By another application of the dynamic programming principle, we expect
the process

Nt = e - rtu(X\ast 
t ,\Pi 

\ast 
t )

to be a martingale when player 1 plays the equilibrium strategy D\ast . After applying
Ito's formula, this yields

 - ux dD\ast 
t + up d\Pi 

\ast 
t = 0(3.20)

on the boundary c, and the direction of reflection of (X\ast ,\Pi \ast ) thus needs to be
(up, - ux) for this martingality condition to hold.

Having dealt with (i) and (ii) above, we are now in position to handle item
(iii): construction of a candidate Nash equilibrium (D\ast ,\Gamma \ast ) so that the corresponding
process (X\ast ,\Pi \ast ) reflects along the boundary c, defined by (3.15), in the direction
(up, - ux). We first specify \Gamma \ast by setting

\Gamma \ast 
t (X

D) =
p - \Pi \ast 

t

p(1 - \Pi \ast 
t )

for t\geq 0

(cf. (3.8)), where \Pi \ast 
t = \Pi \ast 

t (X
D) = p \wedge c(sup0\leq s\leq t(X

D
s )) for an arbitrary strategy

D \in \scrA 1. The process (XD,\Pi \ast ) then reflects at the boundary c by construction, but
the direction of reflection is, for an arbitrary strategy D \in \scrA 1, not necessarily equal
to (up, - ux). What remains is thus to construct the strategy D\ast for player 1 which
ensures this specific direction of reflection.

We expect player 1 to exert control only when at the boundary, which by the
monotonicity of c translates to the process X = Y  - D being at its current maximum.
Therefore, one expects D\ast to be such that

dD\ast 
t = \lambda ( \=X\ast 

t )d
\=X\ast 
t

for some function \lambda to be determined, where \=X\ast 
t := b(p) \vee sup0\leq s\leq tX

\ast 
s and X\ast =

Y  - D\ast . Moreover, from (3.11) we have, when player 1 plays the equilibrium strategy
D\ast , that \Pi \ast 

t = c( \=X\ast 
t ), so (3.20) gives

\lambda (x) =
c\prime (x)up(x, c(x))

ux(x, c(x))
.(3.21)

Using (3.19), we then get

ux(x, c(x)) =
\psi \prime (x)

\psi (x)
x

and

up(x, c(x)) =
\psi (x) - x\psi \prime (x)

\psi (x)c\prime (x)
,
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3007

so that

\lambda (x) =
\psi (x) - x\psi \prime (x)

x\psi \prime (x)
.(3.22)

Since \psi (0) = 0 and \psi is concave on [0,B], we have \psi (x)\geq x\psi \prime (x) and thus also \lambda \geq 0
on (0,B].

In the next section we study in detail the solvability of the equation

X\ast 
t = Yt  - 

\int t

0

\lambda ( \=X\ast 
s )d \=X\ast 

s

using the notion of perturbed Brownian motion, which will allow us to obtain an
explicit form of the equilibrium strategy D\ast for player 1.

4. A perturbed Brownian motion with drift. To construct the equilibrium
strategy D\ast for player 1 we will use the notion of perturbed Brownian motion, which
is a linear Brownian motion that gets an extra push when it hits its current maximum.
Here we provide what is needed for the study of our problem, and we refer the reader
to [5], [16], and the references therein for further details on such processes. First,
define \Lambda : [b(p),B]\rightarrow [0,\infty ) by

\Lambda (x) :=

\int x

b(p)

\lambda (y)dy,(4.1)

where

\lambda (x) =
\psi (x)

x\psi \prime (x)
 - 1

as in (3.22) and the boundary b is defined as in (3.18). Since \lambda \geq 0 on (0,B], we note
that \Lambda is increasing. Note also that \lambda (x) is a bounded function for x \in [0,B], so \Lambda is
well-defined. For x\leq b(p) we now consider the equation

Xt = Yt  - \Lambda ( \=Xt), t\in [0, \tau B ],(4.2)

where Yt = x+\mu t+\sigma Wt, \=Xt := b(p)\vee sup0\leq s\leq tXs, and \tau B = \tau XB := inf\{ t\geq 0 :Xt \geq B\} .
The process X is then a perturbed Brownian motion with drift.

To construct a solution of (4.2), let

\=Yt := b(p)\vee sup
0\leq s\leq t

Ys.(4.3)

Define the function f : [b(p),\infty )\rightarrow [b(p),B] by the relations

\Lambda (f(y)) + f(y) = y, y \in [b(p),\Lambda (B) +B],(4.4)

f(y) =B, y >\Lambda (B) +B,

i.e., f is the inverse of the increasing function x \mapsto \rightarrow y := \Lambda (x)+x for y \in [b(p),\Lambda (B)+B]
and then extended constantly for y >\Lambda (B) +B. Now define

Xt := Yt  - \=Yt + f( \=Yt).(4.5)

Proposition 4.1. Assume that x\leq b(p). Then the process X in (4.5) solves (4.2).
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3008 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

Proof. Let t \in [0, \tau B ]. Since \=Xt := b(p) \vee sups\in [0,t]Xs, we obtain from (4.5) that
\=Xt = f( \=Yt) as f(b(p)) = b(p). Consequently, \tau B = inf\{ t \geq 0 : Yt \geq \Lambda (B) + B\} , and
so by (4.4) we have f( \=Yt) - \=Yt = - \Lambda (f( \=Yt)). This leads to

Xt = Yt  - \Lambda ( \=Xt),

which proves the claim.

Remark 4.2. The setup in (4.2) of a perturbed Brownian motion is slightly more
general than what is used in most literature on perturbed Brownian motions; in
fact, the typical choice of perturbation used in the literature is linear, corresponding
to a linear function \Lambda in (4.2). On the other hand, we only deal with one-sided
perturbation, in which case the solution can be constructed explicitly as in (4.5)
above. It is straightforward to check that the argument for pathwise uniqueness of
solutions of (4.2) (cf. [5, Proposition 2.1]) carries over to our setting.

Remark 4.3. The function f defined in (4.4) is constructed in such a way that the
process Xt = Yt - \=Yt+ f( \=Yt) is a perturbed Brownian motion with drift for t\in [0, \tau B ]
(as proved in Proposition 4.1), and it is the Skorokhod reflection of the process Yt at
the barrier B for t\in (\tau B ,\infty ). Indeed, for t\in (\tau B ,\infty ), we have

Xt = Yt  - \=Yt + f( \=Yt) = Yt  - \=Yt +B

= Yt  - sup
s\in [0,t]

(Ys  - B) = Yt  - sup
s\in [0,t]

(Ys  - B)+,(4.6)

i.e., we have Xt =X
\~D
t for t\in (\tau B ,\infty ) where \~D is defined as in (3.6).

5. Main result. In this section, we state and prove our main result: an explicit
Nash equilibrium for our game. To do that, let us fix (x,p)\in [0,\infty )\times [0,1] and recall
that Y is given by

Yt = x+ \mu t+ \sigma Wt.

First, define a new process Y \wedge by

Y \wedge 
t := x\wedge b(p) + \mu t+ \sigma Wt = Yt  - (x - b(p))+,

so that Y \wedge starts below the boundary b(p) (recall definition (3.18)). Then define \=Y \wedge 

as in (4.3) but with Y \wedge instead of Y , i.e.,

\=Y \wedge 
t := b(p)\vee sup

0\leq s\leq t
Y \wedge 
s .

Also, recall the definitions of \Lambda : [b(p),B]\rightarrow [0,\infty ) in (4.1) and f : [b(p),\infty )\rightarrow [b(p),B]
in (4.4), and define D\ast \in \scrA 1 by D\ast 

0 - = 0 and

D\ast 
t := (x - b(p))+ + \=Y \wedge 

t  - f( \=Y \wedge 
t ), t\geq 0.(5.1)

Setting

X\ast 
t := Yt  - D\ast 

t ,

Proposition 4.1 applied with Y \wedge in place of Y yields

X\ast 
t = Y \wedge 

t  - \=Y \wedge 
t + f( \=Y \wedge 

t ) = Y \wedge 
t  - \Lambda ( \=X\ast 

t ), t\in [0, \tau \ast B ],(5.2)
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3009

where \tau \ast B = \tau X
\ast 

B := inf\{ t \geq 0 : X\ast 
t \geq B\} . Note that by construction we have dD\ast 

t =
\lambda (X\ast 

t )d
\=X\ast 
t for t\in (0, \tau B ].

Moreover, for a given path X = XD \in \scrD (with D \in \scrA 1), define Z
\ast = Z\ast (X) by

Z\ast 
0 - := p and

Z\ast 
t := p\wedge c

\biggl( 
sup

0\leq s\leq t
Xs

\biggr) 
, t\geq 0(5.3)

(the process Z will play the role of \Pi \ast ; cf. (3.11)), and define \Gamma \ast \in \scrA 2 by

\Gamma \ast 
t (X) :=

\Biggl\{ 
1\{ t\geq \tau B\} , p= 0,
p - Z\ast 

t

p(1 - Z\ast 
t )
, p > 0,

(5.4)

where we recall that \tau B := inf\{ t\geq 0 :Xt \geq B\} .
Theorem 5.1. Let (x,p) \in [0,\infty )\times [0,1]. The pair (D\ast ,\Gamma \ast ) defined above is an

NE for the stochastic game (2.3)--(2.4), with equilibrium values

J1(x,p,D
\ast ,\Gamma \ast ) = v(x,p) :=

\biggl\{ 
(1 - p)V (x), x\leq b(p),
(1 - p)V (b(p)) + x - b(p), x > b(p),

J2(x,p,D
\ast ,\Gamma \ast ) = u(x,p) :=

\Biggl\{ 
b(p) \psi (x)

\psi (b(p)) , x\leq b(p),

b(p), x > b(p)

(with the understanding that b(p)\psi (x)/\psi (b(p)) = 0 for x = 0 also when b(p) = 0).
Here, V is the value of the single-player de Finetti problem given in (3.5), b is defined
as in (3.18), and \psi is given by (3.3).

Proof. Step 1. We first prove that D\ast is an optimal response to \Gamma \ast . Let D \in \scrA 1

be an arbitrary strategy for player 1 and set X := Y  - D. Let Z\ast be defined as in
(5.3) and \Gamma \ast 

t := \Gamma \ast 
t (X) as in (5.4) accordingly .

If p= 0, then \theta = 0 a.s., and so

J1(x,0,D,\Gamma 
\ast ) =\BbbE 

\biggl[ \int \tau 0

0

e - rtdDt

\biggr] 
.

Namely, the optimization problem for player 1 degenerates into the single-player de
Finetti problem, and D\ast coincides with its optimal solution \~D, as highlighted in
Remark 4.3. Hence, also v(x,0) = J1(x,0,D

\ast ,\Gamma \ast )\geq J1(x,0,D,\Gamma 
\ast ) for every D \in \scrA 1.

If x= 0, then J1(0, p,D,\Gamma 
\ast ) = 0 for every p\in [0,1], D \in \scrA 1, and so, in particular,

v(0, p) = J1(0, p,D
\ast ,\Gamma \ast ) for every p\in [0,1].

Now let p \in (0,1], and let us first consider 0 < x \leq b(p). (Note that this implies
that p \in (0, \^p) as b(p) = 0 for every p \in [\^p,1], where \^p is as in (3.17).) By (5.4), we
have

Z\ast 
t =

p(1 - \Gamma \ast 
t )

1 - p\Gamma \ast 
t

, t\geq 0,

and as a consequence, \Pi \Gamma \ast 
= Z\ast (see (3.7)). Since Z\ast and \Gamma \ast are continuous and of

finite variation, we obtain

dZ\ast 
t = - p(1 - Z\ast 

t )

1 - p\Gamma \ast 
t

d\Gamma \ast 
t , t\geq 0.
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3010 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

Now define

\~v(x,p) := (1 - p)V (x)\in C2([0,\infty )\times [0,1]).

By setting \tau := \tau 0 \wedge T with T \geq 0 and applying Ito's formula to e - rt(1  - 
p\Gamma \ast 

t )\~v(Xt,Z
\ast 
t ), we have that

e - r\tau (1 - p\Gamma \ast 
\tau )\~v(X\tau ,Z

\ast 
\tau ) = \~v(x,p) +

\int \tau 

0

e - rt(1 - p\Gamma \ast 
t )\scrL \~v(Xt - ,Z

\ast 
t )dt

 - 
\int \tau 

0

e - rt(1 - p\Gamma \ast 
t )\~vx(Xt - ,Z

\ast 
t )dD

c
t

+

\int \tau 

0

\sigma e - rt(1 - p\Gamma \ast 
t )\~vx(Xt - ,Z

\ast 
t )dWt

 - 
\int \tau 

0

e - rtp
\bigl[ 
(1 - Z\ast 

t )\~vp(Xt - ,Z
\ast 
t ) + \~v(Xt - ,Z

\ast 
t )
\bigr] 
d\Gamma \ast 

t

+
\sum 

0\leq t\leq \tau 

e - rt(1 - p\Gamma \ast 
t )
\bigl( 
\~v(Xt,Z

\ast 
t ) - \~v(Xt - ,Z

\ast 
t )
\bigr) 
,(5.5)

where \scrL is defined as in (3.2), and Dc denotes the continuous part of D. Notice that
\~v(x,p) = v(x,p) for x\leq b(p) and that by definition of \~v, for every t > 0 we have

\scrL \~v(Xt - ,Z
\ast 
t ) = 0 and (1 - Z\ast 

t )\~vp(Xt - ,Z
\ast 
t ) + \~v(Xt - ,Z

\ast 
t ) = 0.

Hence, (5.5) becomes

v(x,p) = e - r\tau (1 - p\Gamma \ast 
\tau )\~v(X\tau ,Z

\ast 
\tau ) +

\int \tau 

0

e - rt(1 - p\Gamma \ast 
t )\~vx(Xt - ,Z

\ast 
t )dD

c
t

 - 
\int \tau 

0

\sigma e - rt(1 - p\Gamma \ast 
t )\~vx(Xt - ,Z

\ast 
t )dWt

 - 
\sum 

0\leq t\leq \tau 

e - rt(1 - p\Gamma \ast 
t )
\bigl( 
\~v(Xt,Z

\ast 
t ) - \~v(Xt - ,Z

\ast 
t )
\bigr) 
.(5.6)

For the summation term, we have by the mean value theorem that

\sum 
0\leq t\leq \tau 

e - rt(1 - p\Gamma \ast 
t )
\bigl( 
\~v(Xt,Z

\ast 
t ) - \~v(Xt - ,Z

\ast 
t )
\bigr) 
= - 

\sum 
0\leq t\leq \tau 

e - rt(1 - p\Gamma \ast 
t )\~vx(\xi t,Z

\ast 
t )\Delta Dt,

(5.7)

where \xi t \in (Xt - ,Xt) and \Delta Dt := Dt  - Dt - . By plugging (5.7) into (5.6) and using
the fact that \~v\geq 0 and \~vx \geq 1, we obtain

v(x,p)\geq 
\int \tau 

0

e - rt(1 - p\Gamma \ast 
t )dDt  - 

\int \tau 

0

\sigma e - rt(1 - p\Gamma \ast 
t )\~vx(Xt - ,Z

\ast 
t )dWt.(5.8)

Let

\scrO := \{ (x,p)\in [0,\infty )\times [0,1] : x\leq b(p)\} \cup ((B,\infty )\times \{ 0\} ),(5.9)

and note that (Xt - ,Z
\ast 
t ) \in \scrO for every t \geq 0 (by construction of Zt) and that \~vx is

bounded on \scrO (\~vx(x,p) = 1 for (x,p) \in (B,\infty )\times \{ 0\} ). Thus, the stochastic integral
above is a martingale, and by an application of the optional sampling theorem we
have that

\~v(x,p)\geq \BbbE 

\Biggl[ \int \tau 0\wedge T

0

e - rt(1 - p\Gamma \ast 
t )dDt

\Biggr] 
.
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3011

Letting T \rightarrow \infty yields, by the monotone convergence theorem,

v(x,p)\geq \BbbE 
\biggl[ \int \tau 0

0

e - rt(1 - p\Gamma \ast 
t )dDt

\biggr] 
=\BbbE 

\biggl[ \int \tau 0

0

e - rt(1 - p\Gamma \ast 
t - )dDt

\biggr] 
= J1(x,p,D,\Gamma 

\ast )

for every D \in \scrD , where the last equality follows by Proposition 2.8.
Now notice that D\ast 

t defined in (5.1) is continuous for every t\geq 0, when x\leq b(p),
and that the same holds for X\ast 

t := XD\ast 

t . Let \tau \ast 0 := \tau X
\ast 

0 ; then (5.6) for D = D\ast and
\tau \ast := \tau \ast 0 \wedge T becomes

v(x,p) = e - r\tau 
\ast 
(1 - p\Gamma \ast 

\tau \ast )\~v(X\ast 
\tau \ast ,Z\ast 

\tau \ast ) +

\int \tau \ast 

0

e - rt(1 - p\Gamma \ast 
t )\~vx(X

\ast 
t ,Z

\ast 
t )dD

\ast 
t

 - 
\int \tau \ast 

0

\sigma e - rt(1 - p\Gamma \ast 
t )\~vx(X

\ast 
t ,Z

\ast 
t )dWt

= e - r\tau 
\ast 
(1 - p\Gamma \ast 

\tau \ast )\~v(X\ast 
\tau \ast ,Z\ast 

\tau \ast ) +

\int \tau \ast 

0

e - rt(1 - p\Gamma \ast 
t )dD

\ast 
t

 - 
\int \tau \ast 

0

\sigma e - rt(1 - p\Gamma \ast 
t )vx(X

\ast 
t ,Z

\ast 
t )dWt,

where the last equality holds since \~vx(x,p) = 1 if x\geq b(p) and dD\ast 
t = 0 if X\ast 

t < b(Z
\ast 
t ).

Hence, again by taking expected values, we obtain

v(x,p) = \BbbE 

\Biggl[ 
e - r(\tau 

\ast 
0 \wedge T )(1 - p\Gamma \ast 

\tau \ast 
0 \wedge T )\~v(X

\ast 
\tau \ast 
0 \wedge T ,Z

\ast 
\tau \ast 
0 \wedge T ) +

\int \tau \ast 
0 \wedge T

0

e - rt(1 - p\Gamma \ast 
t )dD

\ast 
t

\Biggr] 

\rightarrow \BbbE 

\Biggl[ \int \tau \ast 
0

0

e - rt(1 - p\Gamma \ast 
t )dD

\ast 
t

\Biggr] 
as T \rightarrow \infty by dominated convergence (the first term tends to 0 since \~v(X\ast 

\tau \ast 
0
,Z\ast 

\tau \ast 
0
) = 0).

Thus, we have proved that

J1(x,p,D
\ast ,\Gamma \ast ) = v(x,p)\geq sup

D\in \scrA 1

J1(x,p,D,\Gamma 
\ast ) \forall (x,p)\in \scrO .

Let us now consider (x,p) \in ([0,\infty )\times [0,1]) \setminus \scrO =: \scrO c, i.e., x > b(p) with p \not = 0.
Then,

v(x,p) = v(b(p), p) + x - b(p) = J1(b(p), p,D
\ast ,\Gamma \ast ) + x - b(p) = J1(x,p,D

\ast ,\Gamma \ast ).

Thus, we are left to prove that also in this case,

J1(x,p,D
\ast ,\Gamma \ast )\geq J1(x,p,D,\Gamma 

\ast ) \forall D \in \scrA 1.

For (x,p)\in \scrO c, let the admissible strategy D \in \scrA 1 have an initial jump \Delta D0 = x - y
with either b(p)\leq y \leq x or 0\leq y < b(p). In the former case, by definition (5.4) of \Gamma \ast ,
we have that

J1(x,p,D,\Gamma 
\ast ) = (1 - \Gamma \ast 

0)J1(b(q), q,D,\Gamma 
\ast ) + x - y=

q(1 - p)

p
V (b(q)) + x - y,

where q := c(y)\leq p (and hence y= b(q)). Since V is concave with V \prime (b(p)) = 1/(1 - p),
then

J1(x,p,D,\Gamma 
\ast )\leq q(1 - p)

p

\Bigl( 
V (b(p)) +

y - b(p)

1 - p

\Bigr) 
+ x - y

=
q

p

\Bigl( 
(1 - p)V (b(p)) + y - b(p)

\Bigr) 
+ x - y

\leq (1 - p)V (b(p)) + x - b(p) = J1(x,p,D
\ast ,\Gamma \ast ).
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3012 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

If instead 0\leq y < b(p), then by a similar argument,

J1(x,p,D,\Gamma 
\ast ) = J1(y, p,D,\Gamma 

\ast ) + x - y= (1 - p)V (y) + x - y

\leq (1 - p)V (b(p)) + x - b(p) = J1(x,p,D
\ast ,\Gamma \ast ).

This concludes Step 1, i.e., shows that the strategy D\ast is an optimal response to \Gamma \ast .
Step 2. We now prove that \Gamma \ast is an optimal response to D\ast . Recall that

u(x,p) :=

\Biggl\{ 
b(p) \psi (x)

\psi (b(p)) , x\leq b(p),

b(p), x > b(p),

set X\ast :=XD\ast 
with D\ast as defined in (5.1), let \tau \ast 0 := \tau X

\ast 

0 , and let

Z\ast 
t := p\wedge c

\biggl( 
sup

0\leq s\leq t
X\ast 
s

\biggr) 
, t\geq 0, Z\ast 

0 - := p,

as in (5.3) with D=D\ast .
Let p\in [0,1] and assume x\leq b(p). If p\in [\^p,1], then b(p) = 0 and so x= 0, and the

strategy \Gamma \in \scrA 2 is irrelevant since the game stops immediately. It hence suffices to
check p \in [0, \^p). For notational convenience we treat the case p= 0 separately below
and assume first p \in (0, \^p). Note that X\ast 

t \leq b(Z\ast 
t ) for every t \geq 0 and that Z\ast 

t , D
\ast 
t ,

and X\ast 
t are continuous for every t\geq 0. Define

\~u(x,p) := b(p)
\psi (x)

\psi (b(p))
\in C2([0,\infty )\times (0, \^p)),

and let \tau be any \BbbF W -stopping time s.t. \tau \leq \tau \ast B a.s., where \tau \ast B = inf\{ t\geq 0 :X\ast 
t \geq B\} .

Define \tau \ast = \tau \ast \varepsilon ,T := \tau \ast 0 \wedge \tau \ast B - \varepsilon \wedge \tau \wedge T for T, \varepsilon \geq 0 arbitrary and note that Z\ast 
t > 0 for

t\in [0, \tau \ast ). By applying Ito's formula to e - rt\~u(X\ast 
t ,Z

\ast 
t ), we obtain

e - r\tau 
\ast 
\~u(X\ast 

\tau \ast ,Z\ast 
\tau \ast ) = \~u(x,p) +

\int \tau \ast 

0

e - rs\scrL \~u(X\ast 
s ,Z

\ast 
s )ds - 

\int \tau \ast 

0

e - rs\~ux(X
\ast 
s ,Z

\ast 
t )dD

\ast 
s

+

\int \tau \ast 

0

\sigma e - rs\~ux(X
\ast 
s ,Z

\ast 
s )dWs +

\int \tau \ast 

0

e - rs\~up(X
\ast 
s ,Z

\ast 
s )dZ

\ast 
s .

By definition of \~u, we have that \scrL \~u(X\ast 
s ,Z

\ast 
s ) = 0 for every 0 \leq s \leq \tau \ast , and by

construction of D\ast and Z\ast (recall (5.2)), we obtain\int \tau \ast 

0

e - rs\~up(X
\ast 
s ,Z

\ast 
s )dZ

\ast 
s  - 

\int \tau \ast 

0

e - rs\~ux(X
\ast 
s ,Z

\ast 
s )dD

\ast 
s

=

\int \tau \ast 

0

e - rs
\Bigl( 
\~up(X

\ast 
s ,Z

\ast 
s )c

\prime (X\ast 
s ) - \~ux(X

\ast 
s ,Z

\ast 
s )\lambda (X

\ast 
s )
\Bigr) 
d \=X\ast 

s = 0,(5.10)

where the last equality holds by definition of \lambda in (3.21). Hence,

e - r\tau 
\ast 
\~u(X\ast 

\tau \ast ,Z\ast 
\tau \ast ) = \~u(x,p) +

\int \tau \ast 

0

\sigma e - rs\~ux(X
\ast 
s ,Z

\ast 
s )dWs.(5.11)

Since \~ux is bounded on \{ (x,p) : x \leq b(p)\} , the stochastic integral in (5.11) is a
martingale. Since X\ast and Z\ast are continuous, applying the optional sampling theorem
and using dominated convergence yields

\~u(x,p) =\BbbE 
\Bigl[ 
e - r\tau 

\ast 
\~u(X\ast 

\tau \ast ,Z\ast 
\tau \ast )

\Bigr] 
\rightarrow \BbbE 

\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \tau )\~u(X\ast 

\tau \ast 
0 \wedge \tau ,Z

\ast 
\tau \ast 
0 \wedge \tau )

\Bigr] 
,
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3013

as T \rightarrow \infty and \varepsilon \rightarrow 0, so

\~u(x,p) =\BbbE 
\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \tau )\~u(X\ast 

\tau \ast 
0 \wedge \tau ,Z

\ast 
\tau \ast 
0 \wedge \tau )

\Bigr] 
(5.12)

for any \BbbF W -stopping time \tau \leq \tau B a.s. Now, for any \Gamma \in \scrA 2, define the \BbbF W -stopping
times

\gamma (\rho ) := inf\{ t\geq 0 : \Gamma t(X
\ast )>\rho \} , \rho \in [0,1),

and let \gamma B(\rho ) := \gamma (\rho )\wedge \tau \ast B \leq \tau \ast B . Since \~u= u on \{ (x,p) : x\leq b(p)\} , equality (5.12) for
\tau = \gamma B(\rho ) reads

u(x,p) =\BbbE 
\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \gamma B(\rho ))u(X\ast 

\tau \ast 
0 \wedge \gamma B(\rho ),Z

\ast 
\tau \ast 
0 \wedge \gamma B(\rho ))

\Bigr] 
, \rho \in [0,1).

Thus,

u(x,p) =

\int 1

0

\BbbE 
\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \gamma B(\rho ))u(X\ast 

\tau \ast 
0 \wedge \gamma B(\rho ),Z

\ast 
\tau \ast 
0 \wedge \gamma B(\rho ))

\Bigr] 
d\rho (5.13)

\geq 
\int 1

0

\BbbE 
\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \gamma B(\rho ))X\ast 

\tau \ast 
0 \wedge \gamma B(\rho )

\Bigr] 
d\rho ,

where the inequality holds because \psi (x) is concave for x\leq B with \psi (0) = 0.
Lastly, we note that

e - r(\tau 
\ast 
0 \wedge \gamma B(\rho ))X\ast 

\tau \ast 
0 \wedge \gamma B(\rho ) \geq e - r(\tau 

\ast 
0 \wedge \gamma (\rho ))X\ast 

\tau \ast 
0 \wedge \gamma (\rho )

a.s.(5.14)

since X\ast 
t \leq B for all t > 0 and r > 0, and thus

u(x,p)\geq 
\int 1

0

\BbbE 
\Bigl[ 
e - r(\tau 

\ast 
0 \wedge \gamma (\rho ))X\ast 

\tau \ast 
0 \wedge \gamma (\rho )

\Bigr] 
d\rho = J2(x,p,D

\ast ,\Gamma ).

If \Gamma = \Gamma \ast , then by (5.4) we have that \gamma \ast (\rho )\leq \tau \ast B for every \rho \in [0,1), where

\gamma \ast (\rho ) := inf\{ t\geq 0 : \Gamma \ast 
t (X

\ast )>\rho \} , \rho \in [0,1),

and thus the inequality in (5.14) is an equality in this case. Moreover, \Gamma \ast 
t only increases

when Z\ast 
t increases and Z\ast =Z\ast 

t := p\wedge c
\Bigl( 
sup0\leq s\leq tXs

\Bigr) 
, so

u(X\ast 
\tau \ast 
0 \wedge \gamma \ast (\rho ),Z

\ast 
\tau \ast 
0 \wedge \gamma \ast (\rho )) = b(c( \=X\tau \ast 

0 \wedge \gamma \ast (\rho ))) =X\ast 
\tau \ast 
0 \wedge \gamma \ast (\rho )

in (5.13). Thus all the inequalities above become equalities, and

u(x,p) = J2(x,p,D
\ast ,\Gamma \ast ).(5.15)

If p = 0, we have u(x,0) = \~u(x,0) = b(0) \psi (x)
\psi (b(0)) = B \psi (x)

\psi (B) and Z\ast 
t = 0 for all

t \geq 0. Applying Ito's formula to e - rtu(X\ast 
t ,0) between 0 and \tau 0 \wedge \tau \leq \tau \ast B and using

the properties of \psi (x) gives

e - r(\tau 0\wedge \tau )\~u(X\tau 0\wedge \tau ,0) = \~u(x,0) - 
\int \tau 0\wedge \tau 

0

e - rs\~ux(X
\ast 
s ,0)dD

\ast 
s

+

\int \tau 0\wedge \tau 

0

e - rs\sigma \~ux(X
\ast 
s ,0)dWs.
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3014 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

Taking expected value and arguing as above thus gives

u(x,0) =\BbbE 
\Bigl[ 
e - r(\tau 0\wedge \tau 

\ast 
B)u(X\ast 

\tau 0\wedge \tau \ast 
B
,0)

\Bigr] 
= e - r(\tau 0\wedge \tau 

\ast 
B)X\tau 0\wedge \tau \ast 

B
= J2(x,0,D

\ast ,\Gamma \ast )

and

u(x,0) =

\int 1

0

\BbbE 
\Bigl[ 
e - r(\tau 0\wedge \gamma B(\rho ))u(X\tau 0\wedge \gamma B(\rho ),0)

\Bigr] 
d\rho 

\geq 
\int 1

0

\BbbE 
\Bigl[ 
e - r(\tau 0\wedge \gamma B(\rho ))X\tau 0\wedge \gamma B(\rho )

\Bigr] 
d\rho \geq J2(x,p,D

\ast ,\Gamma ),

where we again have used convexity of \psi and the fact that any stopping time \gamma (\rho )> \tau \ast B
yields a lower payoff than \tau \ast B .

The above treats the case x \leq b(p), so let us finalize the proof by considering
x> b(p). We have, for every \Gamma \in \scrA 2, that

u(x,p) = u(b(p), p)\geq J2(b(p), p,D
\ast ,\Gamma ) = J2(x,p,D

\ast ,\Gamma ),

where the last equality holds by the precedence of player 1 over player 2 and since
D\ast 

0 = x - b(p) for x> b(p). Similarly, we obtain

u(x,p) = u(b(p), p) = J2(b(p), p,D
\ast ,\Gamma \ast ) = J2(x,p,D

\ast ,\Gamma \ast ).

Hence, \Gamma \ast is an optimal response to D\ast . Together with Step 1, this implies that
(D\ast ,\Gamma \ast ) is an NE and that the equilibrium values are v and u, respectively. This
concludes the proof.

Remark 5.2. It is a remarkable feature of the equilibrium strategy (D\ast ,\Gamma \ast ) that
it allows the process \Pi \ast to reach 0 in finite time, thereby completely ruling out the
possibility that a competitor exists. To the best of our knowledge, this fact has no
counterpart in the literature on games with unknown competition (cf. [6], [8], [11]).

To see that this can happen, let x\leq b(p). Then we have

X\ast 
t = Yt  - \=Yt + f( \=Yt),

and thus \=X\ast 
t = f( \=Yt) where f is an increasing bounded function such that f(x) = B

for all x\geq \Lambda (B) +B. Consequently, \Pi \ast 
t = p\wedge c( \=X\ast 

t ) = p\wedge c(f( \=Yt)) = c(B) = 0 for all

t\geq \tau B = inf\{ s\geq 0 : Ys \geq \Lambda (B) +B\} 

the first time the drifted Brownian motion Y reaches \Lambda (B) +B (which is finite a.s.).

Remark 5.3. It is not clear to us whether or not the Nash equilibrium obtained in
Theorem 5.1 is unique. Also, note that the equilibrium obtained is specified in terms
of a belief system described by \Pi , which is updated in a Bayesian way. As such,
the obtained equilibrium bears much resemblance to the notion of perfect Bayesian
equilibrium, which is the standard solution concept for games with asymmetric infor-
mation in discrete time.

6. A numerical example. To provide the reader with further intuition, we
conclude by looking at some numerical experiments. Throughout the section, we
consider parameters \mu = 0.03, \sigma = 0.12, and r = 0.01. The optimal strategy \~D in the
single-player de Finetti problem given by (3.6) then amounts to reflection at B \approx 1.12.
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THE DE FINETTI PROBLEM WITH UNCERTAIN COMPETITION 3015

Fig. 1. A simulated path of (\Pi \ast ,X\ast ) reflected along the boundary p \mapsto \rightarrow b(p). The starting point
(p,x)\approx (0.72,0.13) is illustrated by the cross \times .

Fig. 2. Auxiliary processes \Pi \ast (dashed), \Gamma \ast (dash-dot), and D\ast (dotted).

Note that whereas the qualitative form of the single-player strategy de Finetti
problem is fixed, the nature of the NE strategy for player 1 varies depending on the
value of p\in [0,1]. To be more precise, if player 1 is certain that no competitor exists,
i.e., if p= 0, then the problem degenerates into the standard single-player de Finetti
problem, and the optimal strategy is \~D (and player 2 would stop as soon as X hits B).
On the other hand, if player 1 has sufficient evidence of the existence of a competitor,
i.e., if p \in [\^p,1] where \^p= (V \prime (0) - 1)/V \prime (0) as in (3.17), then the agent extracts the
whole resource immediately, and the game terminates at t= 0. The most interesting
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3016 E. EKSTR\"OM, A. MILAZZO, AND M. OLOFSSON

Fig. 3. The boundary p \mapsto \rightarrow b(p) and the direction of reflection for the equilibrium process
(X\ast ,\Pi \ast ). The top horizontal line is x = B \approx 1.1 and represents the level at which to exert the
control in the single-player de Finetti problem.

scenario is when p \in (0, \^p). In this case, the NE described in Theorem 5.1 amounts
to a (possible) initial lump sum extraction of size (x - b(p))+, and then continuous
extraction so as to reflect the two-dimensional process (X\ast ,\Pi \ast ) along the boundary
b, with reflection in the prescribed direction (up, - ux). Figures 1 and 2 are derived

with initial values p= 0.8 \cdot \^p\approx 0.72 and x= b(p)
2 \approx 0.13, putting us in the last of the

three cases above.
Figure 3 shows the boundary p \mapsto \rightarrow b(p) (or, equivalently, x \mapsto \rightarrow c(x)) together with

the direction of reflection of the equilibrium process (X\ast ,\Pi \ast ). Note that b(0) =B and
b(\^p) = 0. Figures 1 and 2 show a simulated path of the equilibrium process (X\ast ,\Pi \ast )
and the corresponding processes \Pi \ast , \Gamma \ast , and D\ast , respectively. Flat portions of \Gamma \ast ,\Pi \ast ,
and D\ast correspond to X\ast being strictly below the boundary b(\Pi \ast ). Note also that
in Figure 1, the process \Pi \ast reaches 0 in finite time, ruling out the existence of a
competitor playing the equilibrium strategy if they did not stop yet; see Remark 5.2.
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