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Exploiting signaling rewiring in cancer cells with
co-existing oncogenic drivers
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The development of tailored therapies designed to specifically target driver
oncogenes has initiated a revolutionary era in cancer biology. The avail-
ability of a growing number of selective inhibitors has generated novel
experimental and clinical paradigms. These represent an opportunity and a
challenge for researchers and clinicians to delve deeper into the intricate
dynamics of cancer development and response to treatment. By directly
inhibiting key driver oncogenes involved in tumor initiation and progres-
sion, scientists have an unprecedented opportunity to conduct longitudinal
and clonal evolutionary studies of how cancer cells adapt, rewire, and
exploit conflictive or overlapping signaling dependencies in response to
treatment in vitro and in vivo. This challenge has to be progressively
resolved to discover more effective and personalized cancer therapies.
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In cancer biology, the concept of “oncogenic sweet spot”
refers to the optimal signaling input resulting in best cell
fitness output [1]. This optimal input is the result of geno-
mic information connected to transcriptional regulation
and post-translational modifications. In this context,
recurrent patterns of mutations that are either co-
occurring or mutually exclusive in human cancers have
been progressively identified largely due to the exponen-
tially growing amount of data provided by improved
sequencing technology [2,3]. These stereotyped patterns
tend to show the mutual exclusivity of key oncogenic
drivers that can orchestrate a full program of cell transfor-
mation. Experimental models have demonstrated that the
co-occurrence of conflictive oncogenes is not favored due
to the cellular stress that derives from ‘over-signaling’.
This would result in a reduced fitness for tumor cells that
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are forced to express two mutually exclusive oncogenes
[4,5] or forced to overexpress individual oncogenes [6,7].

Current knowledge regarding drug resistance in can-
cer often revolves around the identification of specific
genetic mutations responsible for stable, inheritable
resistance states. However, there is growing recogni-
tion of adaptive and potentially reversible mechanisms
of drug resistance. These plastic mechanisms represent
dynamic phenotypic diversity present within tumor cell
populations which is dependent on individual onco-
genic sweet-spot, suggesting that disrupting these states
could be highly advantageous. Therapeutic efforts can
be focused on shifting the drug-resistant subpopulation
toward a state that represents the drug sensitivity of
the majority of cells, promoting greater uniformity
among tumor cell subpopulations.

ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma virus oncogene homolog; NTRK,
neurotrophic tyrosine receptor kinase; RET, rearranged during transfection proto-oncogene.
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Oncogene toxicity as a therapeutic vulnerability
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Fig. 1. Targeted treatment allows for acquisition of secondary oncogenic alterations otherwise incompatible in untreated tumors due to
excessive signaling (A). Potential alternative treatments in the presence of co-existing oncogenic drivers (B-D).

Systematic sequencing of tumor biopsies at relapse
or longitudinal sampling of circulating tumor DNA in
clinical trials and real-world patients have yielded vast
amounts of data that have substantially broadened the
understanding of the genetic basis of tumor cell adap-
tation to the blockade of driver oncogenic signaling.
Typically, a sustained inhibition of driver oncogenes
(i.e., EGFR, ALK, KRAS, RET, NTRK) shapes the
selection of clonal populations that are driven by co-
existing oncogenes that never occur in treatment-naive
tumors [8—11]. Previous studies have suggested that the
oncogenic sweet-spot for a positive balance between
proliferation and apoptosis can be found by tumor
cells in multiple ways. One example being a single
driver truncating mutation in treatment-naive tumors
or the co-existence of two or three driver oncogenes
when targeted therapy downregulates the oncogenic
signaling and selects for newly occurring mutations.

While our understanding of these mechanisms is still
incomplete, an immediate question that arises is
whether this tumor adaptability can be exploited as a
liability for cancer treatment when two potent and
druggable oncogenes co-exist. In some models, preclin-
ical data have demonstrated that the co-existence of
potent driver oncogenes is detrimental for cell fitness
in untreated tumor cells. In contrast, this co-existence
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is selected upon oncogenic driver inhibition in experi-
mental models and patients (Fig. 1A) [12]. Would drug
withdrawal in this context result in anti-tumor activity
due to a combined oncogene toxicity? If so, what
would be the best strategy to exploit this co-existence
of multiple driver oncogenes?

One immediate approach would be a dual therapy
that simultaneously targets both mutated driver onco-
genes (Fig. 1B). While reasonable in principle, it is not
infrequent to observe non-tolerable toxicities in patients
with drug combinations. The type and severity of these
toxicities cannot be fully predicted and depend on each
drug combination together with the individual patient’s
response. If toxicities are observed, alternative
approaches can be envisioned. One possibility is a
monotherapy that sequentially targets each of the co-
existing driver oncogenes (Fig. 1C). The key element of
successful sequential drug treatment strategies relies on
the induction of a susceptible state by the initial therapy
targeting the truncal driver oncogene and forcing cancer
cells to rewire to a new oncogene dependency.

This approach would likely alleviate the toxicity of
combined therapies and could be achieved by design-
ing treatment regimens that exhibit synergy without
administering both drugs concurrently [12]. Such a feat
could be accomplished if the initial drug provokes a
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considerable vulnerability in cancer cells, which must
persist beyond the interruption of the first treatment
and can be exploited by a second drug to eradicate
remaining vulnerable cells [13]. An additional provoca-
tive strategy could be the sudden withdrawal of any
treatment. While this approach could be a gamble, the
abrupt over-signaling induced by the co-existing onco-
genes should bring the cells over the threshold of opti-
mal fitness and induce cell-cycle arrest or apoptosis as
a reaction to the rapid and potent unleashing of onco-
genic stress (Fig. 1D). Whether one of these
approaches would be best for each patient remains to
be determined by clinicians. In this context, it is
expected that each of these approaches could have a
different efficacy based on the tumor subtype, the fea-
tures of the co-existing mutations, and the potency
and safety profiles of the drugs available.

In all these treatment scenarios, the goal is to delay
or prevent the emergence of drug resistance through
sequential administration of targeted therapies, offering
a treatment schedule to mitigate possible constraints on
dosage due to cumulative toxicities between the com-
bined agents. In other words, a complete eradication of
tumor cells might be difficult to achieve with multiple
drug combinations due to the barrier imposed by toxic-
ity. However, there could possibly be alternative ways
to exploit the growing arsenal of targeted therapies to
prolong the fight with drug-resistance cancer cells while
improving the quality of life of cancer patients.
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