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Nonbinary fungal signals and
calcium-mediated transduction in
plant immunity and symbiosis

Summary

Chitin oligomers (COs) are among the most common and active

fungal elicitors of plant responses. Short-chain COs from symbiotic

arbuscular mycorrhizal fungi activate accommodation responses in

the host root, while long-chain COs from pathogenic fungi are

acknowledged to trigger defence responses. The modulation of

intracellular calcium concentration – a common second messenger

in a wide variety of plant signal transduction processes – plays a

central role in both signalling pathways with distinct signature

features. Nevertheless, mounting evidence suggests that plant

immunity and symbiosis signalling partially overlap at multiple

levels. We here elaborate on recent findings on this topic,

highlighting the nonbinary nature of chitin-based fungal signals,

their perception and their interpretation through Ca2+-mediated

intracellular signals. Based on this, we propose that plant perception

of symbiotic and pathogenic fungi is less clear-cut than previously

described and involves a more complex scenario in which partially

overlapping and blurred signalling mechanisms act upstream of the

unambiguous regulation of gene expression driving accommoda-

tion or defence responses.

Calcium as a universal signalling hub in plants

The modulation of intracellular calcium ion concentration
([Ca2+]) has gradually emerged and developed as a ubiquitous
and versatile signalling mode across the evolutionary tree of life,
from prokaryotes to eukaryotes (Plattner & Verkhratsky, 2015;
Luan &Wang, 2021). In plants, Ca2+-mediated signalling plays a
major role in the transduction of a broad range of very diverse
environmental stimuli, including abiotic stresses and biotic
interactions, such as herbivore bite or the perception of microbe-
associated molecular patterns (MAMPs; Edel et al., 2017). One
possible explanation for the convergence of so many signalling
pathways into one single ion is that Ca2+ is a rather reactive cation
that can precipitate essential anions such as PO4

3� and severely
interfere with metabolic processes (Edel et al., 2017). As such,
cellular homeostasis maintains cytosolic and nuclear [Ca2+] in the
range of 100 nM (roughly 10 000-fold lower than that in
the extracellular space) through the constant action of ATP-

powered Ca2+ pumps and/or Ca2+ exchangers (Luan &
Wang, 2021). Any local increase above that baseline triggers
immediate effects on structural and functional proteins, activating
downstream responses. In fact, a long list of sensor proteins is
known to be affected by Ca2+, including Ca2+-dependent protein
kinases, calcineurin B-like proteins, calmodulin and calmodulin-
like proteins (Ravi et al., 2023). One major challenge in plant cell
biology is the decoding of Ca2+-mediated signals. In fact,
converging evidence indicates that the correct coupling of upstream
stimulation by environmental cues with downstream responses is
achieved by encoding information in the transient changes in
intracellular [Ca2+]. The subcellular localisation, duration, ampli-
tude and steepness of Ca2+ transients, as well as their frequency and
regularity in the case of repeated oscillations (spiking), are therefore
believed to contribute to the so-called ‘calcium signature’ that
encodes information and transduces it downstream (Jiang &
Ding, 2023).

Through the decades, the study of Ca2+ signalling in plants
occurred through a number of different approaches, as new probes
and technologies were developed. Pioneering studies based on cell
loadingwith fluorescentCa2+dyes (CalciumGreen-1, Fura-2 etc.) or
Ca2+-sensitive bioluminescent proteins (aequorin) were progressively
complemented using genetically encoded Ca2+ indicators (GECIs),
starting from the recombinant expression of aequorin and, more
recently, fluorescence-based sensors such as Cameleon, GCaMP and
GECO proteins (reviewed by Grenzi et al., 2021). A consequence of
this constant technological development is that, over the last few
decades, different biological questions have often been addressed
using different approaches, depending on which Ca2+ probes were
available at the time. Some of the earliest investigationswere based on
the injection of fluorescent Ca2+ indicators such as CalciumGreen-1
in individual cells before its exposure to pathogenic (Xu &
Heath, 1998) or symbiotic elicitors (Ehrhardt et al., 1996). Knight
et al. (1991) were the first to demonstrate that aequorin-expressing
Nicotiana plumbaginifolia generated measurable photon emissions
upon cytosolic Ca2+ increases in response to touch, cold shock and
biotic elicitors.

In the field of plant–microbe interactions, these pioneering
studies revealed the onset of Ca2+-mediated responses to several
pathogen-associated elicitors, such as Ca2+ transients in suspended
tobacco cells treated with oligogalacturonic acid (Chandra
et al., 1997), sustained elevations in [Ca2+] upon the perception
of b-glucan (Mith€ofer et al., 1999), or biphasic Ca2+ variations in
response to different Phytophthora elicitors (Lecourieux
et al., 2002). In the following years, a new class of ratiometric
fluorescent GECIs, the most used being Yellow Cameleon (YC),
was developed and successfully expressed in plants (Miyawaki
et al., 1999), ushering in a new era of high quantum yield and high-
resolution Ca2+ imaging that provided subcellular scale details at
the expense of the loss of precise quantitative information offered
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by aequorin. Studies based on suchCa2+ probes focussed for several
years on the triggering of nucleus-centred Ca2+ spiking signals in
diverse beneficial plant–microbe interactions (Barker et al., 2017).
The most recently introduced intensiometric GECIs (such as
GECO and GCaMP families) further improved quantum yield,
allowing evenmore detailed studies of subcellular Ca2+ oscillations
in defence- (Keinath et al., 2015) and symbiosis-related signalling
(Kelner et al., 2018).

This diversity in methodological approaches to the investigation
ofCa2+ signalling in plant–microbe interactions generated a corpus
of literature data that is difficult to compare (Fig. 1) and the first
attempts in this direction are only starting to appear (Binci
et al., 2023).

The role of chitin-derived molecules in plant–fungus
interactions

Microbe-associated molecular patterns (MAMPs) are well known
to trigger Ca2+-mediated signalling in plant cells. One of the most
widespread and active fungal MAMP is chitin, the N-acetyl-
glucosamine (GlcNAc) polymer representing the most abundant
structural component of fungal cell walls. In particular, while the
low solubility of fibrillar chitin is believed to limit its elicitation
range to direct cell-to-cell contacts, diffusible chitin oligomers
(COs) have been demonstrated to stimulate a number of plant
responses when applied as water solutions. A quick cytosolic [Ca2+]
elevation links the perception of pathogen-associated long-chain
COs (≥ 8 GlcNAc residues) with defence responses (Cao
et al., 2014), while short-chain COs (4–5 GlcNAc residues) from

symbiotic arbuscular mycorrhizal (AM) fungi trigger repeated
oscillations in nuclear [Ca2+], known as Ca2+ spiking (Barker
et al., 2017). Evidence in support of this clear-cut binary distinction
led to a model where the alternative recognition of short vs long
COs triggers a sophisticated competition mechanism in the
assembly of alternative receptor complexes (Feng et al., 2019;
Zhang et al., 2021; Fig. 2). However, the ability of both symbiotic
and pathogenic fungi to release COs of variable length – and the
technical challenge of determining the relative abundance of each
molecule in raw fungal exudates – has prevented the correlation of
an enrichment in short or long COs with the early recognition
of symbionts and pathogens, respectively. One possible explana-
tion comes from the identification of lipochito-oligomers (LCOs)
in arbuscularmycorrhizal (AM) fungal exudates. These short-chain
CO-derived molecules – very similar to rhizobial Nod factors –
also activate nuclearCa2+ spiking and have been proposed as amore
specific signal, reinforcing – if not outcompeting – the symbiotic
message of short COs (Oldroyd, 2013). Nevertheless, LCOs have
also been shown to be present in the exudates of both symbiotic and
nonsymbiotic fungi (Rush et al., 2020). Furthermore, the
occurrence of additional signalling molecules specifically char-
acterising AM vs pathogenic fungi has long been postulated on the
basis of experimental evidence (Bonfante & Requena, 2011).
Lastly, it is important to underline that most of the studies on plant
responses to pathogenic fungi have been focussed on foliar
interactions, whereas direct comparisons between root responses
to symbiotic and pathogenic fungi remain very limited (Genre
et al., 2009). This implies that any comparison between such
responses has to take into account the distinct cellular, anatomical
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Fig. 1 Intracellular Ca2+ signatures underlying the plant defence-symbiosis continuum. Ca2+ signatures evoked in response to chitin oligomers (COs) leading
towards defence or symbiotic responses reveal different patterns and dynamics depending on the Ca2+ reporter used. Fluorescence-based reporters such as
cameleon or GECO (upper panel) allow the dissection of Ca2+ traces within single cells, revealing local and individual oscillations in [Ca2+]. By contrast,
bioluminescence-based reporters, such as aequorin, quantitatively monitor [Ca2+] variations as the sum of asynchronous traces from large cell populations
within whole organs or seedlings. The comparison between the two approaches uncovers the biphasic nature of Ca2+-mediated signals, associating an early
increase in [Ca2+] (magenta background) with immunity-related responses and later spiking (green background) with symbiotic responses (Binci et al., 2023).
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and physiological background of the experiments (Zhang &
Kong, 2021; Tehrani & Mitra, 2023).

Volpe et al. (2020), however, showed that the application of
short-chain COs alone is sufficient to promote AM development,
whereas exogenous long-chain COs can reduce AM colonisation
(Zhang et al., 2021), demonstrating that – in spite of our limited
understanding of fungus-plant signalling – symbiotic MAMPs are
interpreted univocally by the plants. Furthermore, a recent
investigation by Yu et al. (2023) demonstrated the role of host
plant-released extracellular lysin motif (LysM) proteins in
specifically intercepting long-chain COs and quenching defence
responses during arbuscule development. Whether an analogous
mechanism also occurs during earlier steps of AM colonisation
remains to be demonstrated, but the hypothesis is very intriguing.

Two additional aspects have anyway to be taken into
consideration, which can explain the importance of short-chain
COs as symbiotic signals. The first one is the ability of chitin-
derivedmolecules to diffuse in soil solutions. Indeed, CO solubility
in water is high for short-chain COs (as for most analogous
oligosaccharides), but drops quickly as the chitin backbone grows
beyond 6 GlcNAc residues (Lodhi et al., 2014). This implies that
selective pressure would favour the use of short-chain COs as
diffusible signals for their ability to reach the host root earlier than
longermolecules. Second, the strategies for host infection by fungal
pathogens seemingly converge into a stealth approach, with
multiple mechanisms aimed at preventing plant recognition of
defence elicitors. In some of the best-studied models, these include
the fungal release of LysM proteins that bind long-chain COs

Fig. 2 Nonbinary signalling inplant immunityand symbiosis. Symbiotic andpathogenic fungiboth releaseamixof short- and long-chainchitinoligomers (COs).
While amajor distinction has been proposed between symbiosis-related (green) short-chainmolecules (with optional substitutions comprising a lipid tail and a
sulphate group, as in lipochito-oligosaccharides, LCOs) and defence-associated (magenta) long-chain COs, recent evidence suggests that this clear-cut
distinction is not evident and additional factors such as CO concentration, the relative abundance and solubility of eachmolecule in fungal exudates, as well as
their acetylation degree, may play crucial roles in the elicitation of downstream responses. A second level of complexity is emerging from the study of plant
receptors involved in CO perception. Besides the variability observed between plant species, several studies suggest that the same receptors take part in
different complexes, depending on the availability of individual COs, competition dynamics between membrane-associated complexes and functional
redundancy. Changes in intracellular [Ca2+] have been described as a central hub in signal transduction of both symbiosis and immunity signalling. In more
detail, cytosolic Ca2+ transients are elicited by both types of fungi. A hallmark of symbiotic signalling is the induction of nuclear-centred Ca2+ spiking, even if
long-chainCOs have also been shown to induce thismechanismwhen applied as purifiedmolecules (dashedmagenta arrow). Amajor challenge in the biology
of plant–microbe interactions is the disentanglement of this complex signalling scenario, which underpins the efficient and unambiguous regulation of gene
expression towards defence or symbiotic responses. A possible contribution can come from the simultaneous perception of additional (nonchitinous) signals
that are more specific to symbionts or pathogens and the physiological conditions of the plant, such as its nutritional status (dashed grey arrows).
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released from the fungal wall by the action of plant chitinases, thus
competing with plant receptors and suppressing the activation of
host defence signalling (Volk et al., 2019). In other words, fungal
symbionts take a critical advantage in revealing their identity as
early as possible, whereas pathogens are favoured by the opposite
strategy. In line with this, AM fungi possess a number of chitin
synthases and chitinases (Tisserant et al., 2013; Sun et al., 2019)
granting autonomous and active production of short-chain COs –
besides the long chitinous chains that make up their hyphal walls –
and indeed AM fungi are known to release short-chainCOs even in
the absence of a plant host (Genre et al., 2013).

Nevertheless, recent evidence suggests that the boundaries
between the signalling cascades activated in the plant host in the
two above-mentioned cases are less defined than previously
thought. Both short- and long-chain COs can trigger a transient
elevation of cytosolic [Ca2+] (Binci et al., 2023). Moreover, not
only short- but also long-chain COs activate nuclear Ca2+ spiking
in Medicago truncatula, rice and barley (Feng et al., 2019; Zhang
et al., 2021; Li et al., 2022). Nevertheless, the genetic repertoire
needed in either case seems to differ (Feng et al., 2019; Binci
et al., 2023). However, the few reports about CO application to
plants in the presence of AM fungi show that short-chain COs
promote, whereas long-chain COs inhibit symbiotic responses
(Volpe et al., 2020; Zhang et al., 2021). This testifies that the plant
perception of these fungal signals is likely more complex than
previously thought, possibly involving factors such as their
concentration, relative composition of bioactive mixtures, acetyla-
tion degree, plant nutritional status, competition between
redundant receptors and the activation of additional signalling
pathways acting in parallel (Fig. 2). Remarkably, whilemost studies
on plant responses to chitin-based fungal signals have been
performed by exposing whole organs to water-based solutions,
under natural conditions the most intense signal exchange is likely
to occur very locally, in the presence of direct contact or very close
interaction between fungal hyphae and plant cells, that is a situation
where the combined perception of multiple, soluble and surface-
associated MAMPs has to be taken into consideration. Altogether
this may contribute to the generation and shaping of the observed
Ca2+-mediated signals, as much as their downstream decoding. In
short, the long-standing paradigm based on the classical subdivi-
sion of fungal signals between pathogenic and symbiotic molecules
needs a careful and timely revision, with a reinterpretation of the
elusive barriers between symbiosis and immunity, that are possibly
better represented by a continuum or, rather, nonbinary identities.
Furthermore, an analogous consideration may apply to the evoked
intracellular Ca2+ signals, thus questioning the traditional
specificity of stimulus–response coupling via unique Ca2+

signatures. Indeed, the emerging scenario suggests a unifying role
of Ca2+ at the nexus of signalling circuits in plant–fungus
interactions, thereby acting as a common interpreter in the
multiple communication pathways of pathogenic and beneficial
fungi with their host plants.

In the following paragraphs, we try to outline this intertwined
scenario, starting from the best established aspects of Ca2+-
mediated signalling in plant transduction of symbiotic and
pathogenic fungal signals.

Nuclear Ca2+ spiking: a hallmark of symbiotic
signalling

Following the progress ofCa2+monitoring and imaging tools,Ca2+

spiking has been first described in root hairs for rhizobium-legume
symbiosis (Ehrhardt et al., 1996; Miwa et al., 2006). The more
refined and reliable approach allowed by GECIs clarified the
synchronicity between nuclear and perinuclear Ca2+ oscillations
(Sieberer et al., 2009;Kelner et al., 2018);moreover, it revealed that
analogous Ca2+ signalling occurs in non-root-hair epidermal cells
(atrichoblasts) during early establishment of the AM symbiosis
(Chabaud et al., 2011), in inner root cells during root colonisation
by both AM fungi and rhizobia (Sieberer et al., 2012), in
actinorhizal symbioses (Chabaud et al., 2016) and during the
interaction with an endophytic Fusarium (Skiada et al., 2020).
Importantly, for the two symbioses where microbial elicitors have
been characterised –Nod factor and Myc factors for symbiotic
nitrogen fixation and AM, respectively –Ca2+ spiking activation
has been consistently demonstrated to be part of the earliest
signalling mechanism within the so-called Common Symbiotic
Signalling pathway (CSSP;Oldroyd, 2013).Overall, the triggering
of nucleus-centred oscillations in [Ca2+] remains a hallmark of
signalling pathways governing beneficial plant–microbe interac-
tions (Oldroyd, 2013).

Cytosolic Ca2+ responses: plant immunity and beyond

Transient elevations in cytosolic [Ca2+] are well known to be part of
the plant immunity response to most fungal pathogens (Zipfel &
Oldroyd, 2017). Plant immunity is made of two components:
pattern-triggered immunity (PTI) and effector-triggered immu-
nity (ETI; Yuan et al., 2021). PTI is activated upon MAMP
recognition by pattern recognition receptors (PRR) in the plasma
membrane of plant cells. By contrast, ETI is mediated by
intracellular plant immunity receptors containing a nucleotide-
binding domain and a leucine-rich repeat domain, called NLRs,
which are able to recognise pathogen-released effectors. This
model, splitting PTI and ETI mechanisms, is now being revised,
based on recent evidence suggesting a mutual potentiation of PTI
and ETI to properly mount the plant immunity response to
pathogens (Ngou et al., 2022).Whatever the eventual update of this
scheme, both PTI- and ETI-associated changes in cytosolic [Ca2+]
are crucial mediators of downstream responses that are activated
through a Ca2+-regulated phosphocode, involving calcium-
dependent protein kinases and possibly epigenetics mechanisms
(Erickson et al., 2022; Hannan Parker et al., 2022).

PTI-activated cytosolic Ca2+ signals are characterised by a steep
and rapid elevation in [Ca2+], which is tightly interconnected with
the activation of other typical PTI responses such as reactive oxygen
species (ROS) burst, MAPK cascade and immunity marker gene
expression (Bjornson et al., 2021; K€oster et al., 2022). Microbes as
well as purified elicitors of different origins, including chitin-
derived molecules, have been shown to activate PTI-induced Ca2+

responses (Ranf et al., 2011; Cao et al., 2014; Keinath et al., 2015).
From a historical perspective, such studies have mainly used
aequorin as a Ca2+ probe, which contributed to defining a fast and
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steep transient change in [Ca2+] as the acknowledged PTI-
associated Ca2+ signature. More recently, the use of fluorescent
GECIs has revealed the oscillatory nature of suchCa2+ signals at the
single-cell level (Thor & Peiter, 2014; Keinath et al., 2015), under
the control of a partially characterised repertoire ofCa2+-permeable
channels and Ca2+ pumps (reviewed by K€oster et al., 2022).

By contrast, the dynamics of ETI-associated cytosolic Ca2+

signals are much slower, with a later onset and longer duration
(K€oster et al., 2022). The effector-triggered cytosolic Ca2+ influx
has been shown to depend on the activity of a set of plasma
membrane Ca2+ channels (Kim et al., 2022) as well as on the
formation of NLR oligomers called resistosomes, which are crucial
for hypersensitive response and cell death (Ngou et al., 2022).

Inside the symbiosis-immunity continuum

Whereas the plant molecular pathway underpinning the symbiont
accommodation and the one triggered by the interaction with
pathogens are highly divergent and mainly controlled in different
intracellular compartments by a specific Ca2+ signature, the
existence of several levels of interactions between the two processes
is widely accepted. The first hints pointing at an involvement of the
plant immunity machinery during the establishment of AM
symbiosis came from cytological observations (Gianinazzi-
Pearson, 1996) and, later on, from gene expression analyses:
Indeed, the presence of AM fungal structures in root cells induces
the transcription of dozens of immunity-related genes in different
plant species (reviewed by Rey & Jacquet, 2018) with contrasting
level of expressions depending on the developmental stage
(Giovannetti et al., 2015).

One of the possible reasons behind the regulation of immunity-
related genes is that AM fungal components are also able to induce
cellular responses that are typically associated with plant defence,
such as ROS burst and MAPK phosphorylation (Bozsoki
et al., 2017). Interestingly, the same molecules that have been
described as purely ‘symbiotic’ such as tetrameric COs (CO4;
Genre et al., 2013) – able to trigger nuclear and perinuclear Ca2+

spiking also at nanomolar concentration – can also induce plant
cellular ROS burst and MAPK cascades, and this activation fully
depends on the chitin receptor presence, similarly to what happens
with octameric COs (CO8) and chitin (Bozsoki et al., 2017).
Consistently, this immunity cascade triggered by fungal COs
clearly overlaps with a strong and quick cytosolic Ca2+ influx that
can be equally induced by CO4 or CO8 and that critically depends
on the elicitor concentration (Binci et al., 2023). Indeed, signals
from AM fungi activate a cytosolic Ca2+ influx similar to the PTI-
triggered one: in aequorin-expressing soybean suspension cultures,
a steep cytosolic [Ca2+] elevation is activated after stimulation with
germinating spore exudates from Gigaspora margarita (Navazio
et al., 2007).

It remains unclear whether and how cellular processes that are
usually associated with plant immunity could also play an active
signalling role during the recognition of symbiotic fungal
molecules and, subsequently, during the regulation of arbuscular
development and degeneration. This is the casewith a class of LysM
receptors, such asM. truncatula LYK9 (Bozsoki et al., 2017; Feng

et al., 2019; Gibelin-Viala et al., 2019) and L. japonicus CERK6
(Bozsoki et al., 2017; Binci et al., 2023), with strong affinity for
chitin and mediating CO-induced ROS burst, MAPK phosphor-
ylation, cytosolic Ca2+ influx and showing different degrees of
involvement in the regulation of mycorrhizal colonisation. A
similar role is played by LYRIIIA proteins that regulate plant
defence in response to the perception of LCOs, thereby facilitating
colonisation by AM fungi in mycotrophic plant species. Interest-
ingly, their involvement in plant defence remains conserved also in
nonmycotrophic plants (Wang et al., 2023). Altogether, it is
tempting to speculate that an initial cytosolic [Ca2+] increase could
mediate a cytosolic signalling cascade partially facilitating the
establishment or the tuning of AM symbiosis, being linked with
cytosolic intermediate messenger(s), such as mevalonate (Venka-
teshwaran et al., 2015). The picture gets even more complicated
when considering that CO4 (and Nod factor) also possess a strong
capacity of suppressing plant immunity in nonmycorrhizal plants
(Liang et al., 2013).

In addition, it has also to be considered that a notable contrast
is arising in the regulation of nuclear Ca2+ spiking patterns
between Fabaceae plants, commonly employed as primary
models for endosymbioses, and monocots. For example, in
barley, nutrient homeostasis, and particularly phosphorus and
nitrogen depletion, strongly impacts plant cell responsiveness to
short-chain COs by increasing the percentage of nuclei that
actively respond to LCO and, partially, to CO4 treatment. This
has been correlated with an increment of AM fungal colonisation
that is controlled byNSP1 andNSP2 (Li et al., 2022). It will now
be interesting to understand whether the competitive interaction
between OsCERK1 and OsCeBiP/OsMYR1, mediating plant
immune or symbiotic response (Zhang et al., 2021), is also
controlled by the plant nutritional status.

Research outlook

Our current understanding of plant–microbe interactions
mainly derives from studies conducted in controlled laboratory
conditions, where plants are exposed to purified signals – often
tested at arguable doses – or subjected to single microorganism
challenges. A stimulating, albeit arduous, direction for future
studies lies in investigating the intricate mechanisms employed
by plants to integrate multiple signals from diverse micro-
organisms. The use of combinations of molecules and mixtures
of microbes to unravel these complex processes will likely
represent one of the forthcoming challenges in gaining further
insights into how plants adapt to their dynamic and multi-
faceted biotic surroundings.

It appears reasonable to speculate that part of the specificity in
plant recognition of fungal signals does not solely rely on chitin-
based molecules and that a multifactorial signalling scenario may
indeed drive the plant response in the appropriate direction
(Fig. 2). Besides the possible existence of additional, symbiosis-
specific fungal signals that have so far eluded our efforts, the plant
nutritional status has been proposed to play a critical role: nutrient
starvation appears to lower plant defences, favouring symbiosis
development at the risk of suffering a pathogenic attack; by
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contrast, high phosphate and nitrogen availability are known to
favour plant immunity and knockdownAMsymbiosis (Oldroyd&
Leyser, 2020; Dejana et al., 2022). Furthermore, one consistent
feature of AM symbiosis is the formation of large fungal adhesion
structures, called hyphopodia, that develop on the root epidermis a
few hours before the appearance of a penetrating hyphal tip. This
broad and relatively long-lasting surface-to-surface contact
between fungal and plant cells is associated with local cell wall
remodelling (Bonfante & Genre, 2010) and –most likely –
intensive bi-directional secretion of signals, including extracellular
vesicles (Holland & Roth, 2023). Unveiling what messages are
being exchanged in such microscopical interfaces remains a
biological (and technical) challenge that may indeed shed light
on key processes in AM fungal recognition by their host plants.

An additional frontier for further investigations concerns a
thorough analysis of the contribution of different plant intracellular
compartments, such as plastids and the endoplasmic reticulum (ER),
in the regulation and shaping of the complex intracellular Ca2+

signatures triggered by fungal molecules. Indeed, plastids and ER are
known to be involved in the modulation and dissipation of cytosolic
Ca2+ signals in plant cells (Sello et al., 2016; Cortese et al., 2022).

Furthermore, the urgency to combine complementary
approaches (e.g. aequorin-based Ca2+ quantification and
cameleon-based imaging) to measure and visualise [Ca2+] at
subcellular resolution is emerging. This appears as a key step
towards the disentangling ofCa2+ signalling events in plant–fungus
interactions. The use of next-generation GECIs endowed with
brighter fluorescence, such as GECO and GCaMP (Grenzi
et al., 2021), has just started to allow the investigation of long-
range Ca2+ signals on a systemic scale in different experimental
systems (Toyota et al., 2018; Bellandi et al., 2022) and has the
potential to reveal the occurrence of analogous signalling
mechanisms between root epidermis and cortex (Carotenuto
et al., 2019) or between root and shoot (Gutjahr et al., 2009) in
response to AM fungal signals. The development of biolumines-
cence resonance energy transfer (BRET)-based aequorin-GFP
reporters, together with the introduction of high-sensitivity
photon-counting cameras, revived the use of aequorin as the only
available GECI that can so far generate quantitative subcellular
resolution mapping of [Ca2+] over time (Grenzi et al., 2021).
Moreover, the constant development of novel Ca2+ biosensors with
maximised performance (Chai et al., 2023) opens up new
perspectives in plant symbiotic and immunity studies, by allowing
the detection of systemic signalling events at the level of the entire
plant during different types of plant–microbe interactions.
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