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Abstract

Gibbs sampling methods are standard tools to perform posterior inference for mixture
models. These have been broadly classified into two categories: marginal and conditional
methods. While conditional samplers are more widely applicable than marginal ones, they
may suffer from slow mixing in infinite mixtures, where some form of truncation, either
deterministic or random, is required. In mixtures with random number of components, the
exploration of parameter spaces of different dimensions can also be challenging. We tackle
these issues by expressing the mixture components in the random order of appearance
in an exchangeable sequence directed by the mixing distribution. We derive a sampler
that is straightforward to implement for mixing distributions with tractable size-biased
ordered weights, and that can be readily adapted to mixture models for which marginal
samplers are not available. In infinite mixtures, no form of truncation is necessary. As for
finite mixtures with random dimension, a simple updating of the number of components
is obtained by a blocking argument, thus, easing challenges found in trans-dimensional
moves via Metropolis-Hastings steps. Additionally, sampling occurs in the space of ordered
partitions with blocks labelled in the least element order, which endows the sampler with
good mixing properties. The performance of the proposed algorithm is evaluated in a
simulation study.

Keywords: Dirichlet process; Pitman-Yor process; size-biased permutations; stick-breaking con-
struction; species sampling models.
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1 Introduction

Mixture models represent one of the most successful applications of Bayesian methods. Bayesian
inference proceeds by placing a prior on the mixing distribution, whose atoms and their sizes
represent the mixture component parameters and the weights, respectively. An important issue
is that the number of components is rarely known in advance. The nonparametric approach
consists in modelling the mixing distribution with infinitely many support points, and infer the
number of components through the number of groups observed in the data (e.g. Escobar and
West; 1995). Another alternative is to assign a prior to this unknown quantity (cf. Richardson
and Green; 1997; Miller and Harrison; 2018). Posterior inference for mixture models is custom-
arily based on Gibbs sampling methods which have been broadly classified into two categories:
marginal and conditional samplers. Marginal methods (Escobar and West; 1995; Neal; 2000)
are termed this way because they partially integrate out the mixing distribution and exploit the
generalized Pólya urn scheme representation (Blackwell and MacQueen; 1973; Pitman; 2006) of
the prediction rule of a sample from the mixing distribution. By doing so marginal samplers
avoid dealing with a potentially infinite or random model dimension. They are well suited for
models such as the Dirichlet (Ferguson; 1973; Escobar and West; 1995), the Pitman-Yor (Pit-
man and Yor; 1997; Ishwaran and James; 2001) and mixtures of finite mixtures (Miller and
Harrison; 2018). However, they are challenging to adapt to mixing priors without a tractable
prediction rule. In alternative, one can use conditional methods which include the mixing distri-
bution and update it as a component of the sampler. While being more widely applicable they
bring some issues in their design and implementation. In infinite mixture models, some sort
of truncation either deterministic or random is necessary to avoid dealing with infinitely many
mixture components. Finite dimensional approximations of the mixing prior were proposed in
(Ishwaran and James; 2001). Of random truncation type are the exact conditional samplers
derived by Walker (2007); Kalli et al. (2011) and Papaspiliopoulos and Roberts (2008). It has
been observed that they require Metropolis-Hastings steps that swap components’ labels so to
speed up mixing (Porteous et al.; 2006; Papaspiliopoulos and Roberts; 2008). As for mixtures
with a random number of components, the main challenge of conditional samplers is the need to
explore parameter spaces of different dimensions. The standard method is the reversible jump
MCMC algorithm (Richardson and Green; 1997) but this can be difficult to implement.

In this paper we contribute both methodologically and computationally to mitigate these
issues by developing a novel conditional Gibbs sampling method named the ordered allocation
sampler. The sampler works with the mixture components in the random order in which they
are discovered. To derive it we use in depth the theory of species sampling models set forth in
Pitman (1995, 1996a,b) where, in particular, it is established that the law of the weights in order
of appearance corresponds to the distribution of the weights that is invariant under size-biased
permutations. This one admits a simple stick-breaking representation for the Dirichlet and the
Pitman-Yor processes. Working with this specific rearrangement of mixture components allows
us to exploit a (conditional) prediction rule in the sampler. Thus, it bears similarities with
marginal methods such as the fact that mixing takes place in the space of partitions and not in
the space of cluster’s labels as it occurs in other conditional samplers (Porteous et al.; 2006).
Empirical studies confirm that this endows our sampler with nice mixing properties. A second
major advantage of our proposal is that, since n data points can not be generated from more
than n distinct components, at most the sampler needs to update the first n components in order
of appearance. This is especially relevant for infinite mixture models as it avoids truncation. In
particular, for Pitman-Yor processes with slowly decaying weights, our sampler proves to be very
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convenient computationally wise. A third important consequence is that marginalization over
the weights in order of appearance yields exactly the exchangeable partition probability function
(EPPF Pitman; 1996b). For mixtures with random dimension, this translates to a simple way
of updating the number of components without resorting to a reversible jump step. Finally, as
other conditional methods, the ordered allocation sampler allows direct inference on the mixing
distribution and can be adapted to a wide range of mixing priors.

The rest of the paper is organized as follows. In Section 2 we provide background theory
on species sampling priors in mixture models. It will set the stage for the ordered allocation
sampler. In Section 3 we first derive the sampler for models with tractable size-biased permuted
weights, and later we show how to adapt it when the law of this arrangement of the weights is
not available in explicit form. In Section 4 we illustrate the performance of our sampler with
well-known real and simulated datasets. Some concluding remarks and discussion points are
brought in Section 5. Proofs, technical details and additional illustrations are in the Appendix.

2 Species sampling models

In Bayesian mixture models we model exchangeable data, (yi) = (yi)
n
i=1, taking values in a

Borel space, (Y,B(Y)), as conditionally independent and identically distributed (iid) from

Q(y) =

∫
X
g(y | x)P (dx) =

m∑
j=1

pj g(y | xj), (1)

where g(· | x) is a density for each x, and the mixing distribution, P =
∑m

j=1 pjδxj
, is an almost

surely discrete random probability measure over the Borel parameter space (X,B(X)). Species
sampling models, introduced and studied by Pitman (1996b), constitute a very general class
of random probability measures that provide a convenient prior specification for the mixing
distribution P . In species sampling models, P =

∑m
j=1 pjδxj

, the atoms, (xj) = (x1, . . . , xm),
are iid from a diffuse distribution, ν, over (X,B(X)), and are independent of (m, (pj)). The
weights (pj) = (p1, . . . , pm) are positive random variables with

∑m
j=1 pj = 1 almost surely, and

the number of support points, m, can be finite, infinite or random. A sequence, (θi) = (θi)
∞
i=1,

is a species sampling sequence driven by P if it is exchangeable and the almost sure limit of the
empirical distributions, P = limn→∞ n−1

∑n
i=1 δθi , is a species sampling model. By de Finetti’s

theorem, the latter is equivalent to the existence of a species sampling model, P , such that given
P , (θi) are conditionally iid according to P (cf. Theorem 1.1 and Proposition 1.4 of Kallenberg;
2005). The laws of (θi) and P determine each other, and both are fully determined by that of
(m, (pj)), and the diffuse distribution, ν. A key aspect to note is that the law of P is invariant
under weights permutations. That is, P =

∑m
j=1 pjδxj is equal in distribution to

∑m
j=1 pρ(j)δxj

for every permutation ρ of {1, . . . ,m}, which means that working with an ordering of the weights
or another does not change the mixing prior. This is reflected through the so called exchangeable
partition probability function (EPPF), given by

π(n1, . . . , nk) =
∑

(j1,...,jk)

E
( k∏

i=1

pni
ji

)
, (2)

where the sum ranges over all k-tupples of distinct positive integers, and pj = 0 for j > m. In

fact, π(n1, . . . , nk) describes the probability that a sample, (θ1, . . . , θn), of size n =
∑k

j=1 nj ,

3



exhibits exactly k distinct values, with corresponding frequencies, n1, . . . , nk (Pitman; 1996b,
2006). Whenever π(n1, . . . , nk) can be computed in closed form, the prediction rule, P[θi+1 ∈ · |
θ1, . . . , θi], of (θi) is available and can be described in terms of a generalized Pólya urn scheme
(cf Blackwell and MacQueen; 1973).

The invariance under permutations of
∑m

j=1 pρ(j)δxj , as well as the complexity of computing
the unordered sum in (2), have motivated the study of weights permutations that simplify the
analysis. An ordering of the weights of paramount importance is the size-biased permutation,
(p̃j) = (p̃1, . . . , p̃m), given by p̃j = pαj

, and (αj) = (α1, . . . , αm) defined by

P[α1 = j | (pj)] = pj ,

P[αl = j | (pj), α1, . . . , αl−1] =
pj

1−
∑l−1

i=1 pαi

1{j ̸∈{α1,...,αl−1}}, 2 ≤ l ≤ m.
(3)

In other words, (αj) and (p̃j) are sampled without replacement from {1, . . . ,m} and (pj), re-
spectively, with probabilities (pj). By construction the distribution of (p̃j) is invariant under
size-biased permutations. As shown by Pitman (1995, 1996a), the EPPF (2) can be computed
through

π(n1, . . . , nk) = E
[ k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃l

)]
, (4)

hence, if the distribution of (p̃j) is available, it becomes easier to compute π(n1, . . . , nk). An-
other advantage of working with size-biased permutations is that p̃j coincides with the long-run
proportion of indexes i such that θi = x̃j , where x̃j is the jth distinct value to appear in (θi).
Furthermore, the conditional law of (θi) given (x̃j) = (x̃1, . . . , x̃m) and (p̃j) admits a simple
prediction rule as detailed next.

Theorem 1. Let P =
∑m

j=1 pjδxj
be a species sampling model over the Borel space (X,B(X))

and let (θi) = (θi)
∞
i=1 be a sequence with values in (X,B(X)). Define the jth distinct value to

appear in (θi) through x̃j = θMj
, where Mj = min{i > Mj−1 : θi ̸∈ {x̃1, . . . , x̃j−1}}, for j ≥ 2

and M1 = 1. Then (θi) is an species sampling sequence driven by P if and only if the following
hold:

i. (θi) exhibits m distinct values, (x̃j) = (x̃1, . . . , x̃m), in order of appearance, and (x̃j) are iid
from ν. Furthermore, for j ≤ m, x̃j = xαj where (αj) satisfies (3).

ii. The almost sure limits

p̃j = lim
n→∞

|{i ≤ n : θi = x̃j}|
n

, j ≤ m,

exist, p̃j > 0,
∑m

j=1 p̃j = 1 almost surely, and (p̃j) = (p̃1, . . . , p̃m) is invariant under size-
biased permutations. Moreover, (p̃j) is given by p̃j = pαj , with (αj) as in 2.i.

iii. θ1 = x̃1, and the conditional prediction rule of (θi) given (p̃j) and (x̃j) is

P[θi+1 ∈ · | (p̃j), (x̃j), θ1, . . . , θi] =

ki∑
j=1

p̃jδx̃j
+

(
1−

ki∑
j=1

p̃j

)
δx̃ki+1

,

for every i ≥ 1, where ki is the number of distinct values in (θ1, . . . , θi).
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iv. m, (p̃j), (pj) and (αj) are independent of elements in (x̃j).

Theorem 1 is based on theory laid down in Pitman (1995, 1996b), nonetheless, we provide a
self-contained proof in Appendix A, due to the crucial role it plays in the derivation of the new
sampler.

The canonical example of species sampling models in Bayesian nonparametric statistics is the
Dirichlet process (Ferguson; 1973). It has m = ∞ support points and its size-biased permuted
weights, (p̃j), admit the stick-breaking representation

p̃1 = v1, p̃j = vj

j−1∏
i=1

(1− vi), j ≥ 2, (5)

where (vj) = (vj)
∞
j=1 are iid from the Beta distribution Be(1, θ) (Sethuraman; 1994). The

Dirichlet model can be generalized to the two-parameter (σ, θ)-model (Pitman; 2006) which
features size-biased permuted weights as in (5) with independent vj ∼ Be(1−σ, θ+jσ) according
to one of the following two regimes:

a) σ ∈ [0, 1) and θ > −σ. In this case m = ∞ and the species sampling model P has been
named the Pitman-Yor process by Ishwaran and James (2001) after Pitman and Yor (1997).
Evidently the choice σ = 0 reduces to a Dirichlet process.

b) Given m ∈ N, σ = −γ < 0, and θ = mγ. In agreement with the notation we have
established m stands for the number of support points of P . It turns out that the law
of (p̃j) corresponds to that of the size-biased permutation of symmetric Dirichlet weights,
(p1, . . . , pm) ∼ Dir(γ, . . . , γ) (Pitman; 1996a). When γ is fixed and m is random P belongs
to the class of Gibbs-type priors (see De Blasi et al.; 2015, for a recent review), while the
allied mixture model corresponds to the mixture of finite mixtures of Miller and Harrison
(2018).

Another type of species sampling models for which a stick-breaking characterization of size-
biased weights is available are homogeneous normalized random measures with independent
increments (cf. Regazzini et al.; 2003; Favaro et al.; 2016). Unfortunately, such characterization
remains elusive for most species sampling models used in mixture modelling, examples are
finite dimensional approximations of the Pitman-Yor process (Ishwaran and James; 2001), the
Geometric process (Fuentes-Garćıa et al.; 2010), the probit stick-breaking process (Rodŕıguez
and Dunson; 2011) and exchangeable stick-breaking processes studied by Gil–Leyva and Mena
(2021). For all these species sampling priors the weights can be defined in terms of a stick-

breaking decomposition, pj = vj
∏j−1

l=1 (1− vl), for some sequence of random variables (vj) with
values in [0, 1], yet (pj) is not invariant under size-biased permutations.

3 The ordered allocation sampler

As mentioned in Section 2, in mixture models data points (yi) = (yi)
n
i=1 are treated as condi-

tionally iid from a random density Q as in (1). Whenever the mixing distribution, P , is a species
sampling model we can equivalently assume yi | θi ∼ g(· | θi), independently for i ≤ n, where
(θi) is a species sampling sequence driven by P . In this setting, marginal samplers integrate out
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P and exploit the exchangeability of (θi) as well as the prediction rule, P[θi+1 ∈ · | θ1, . . . , θi],
to derive an algorithm for posterior inference (cf. Neal; 2000; Favaro and Teh; 2013; Miller and
Harrison; 2018). Instead, conditional samplers (e.g. Ishwaran and James; 2001; Papaspiliopou-
los and Roberts; 2008; Kalli et al.; 2011) include the mixing distribution, P , and update its
atoms, (xj), and weights, (pj), as components of the sampler. The ordered allocation sampler
is a conditional sampler as it includes the mixing distribution, P , however similarly to marginal
samplers it relies on a prediction rule for species sampling sequences. Explicitly, motivated by
Theorem 1 we work with the atoms, (x̃j), and weights, (p̃j), of P in the order in which they
were discovered by (θi). As commonly done in other samplers, we augment the model with
latent allocation variables that identify each observation, yi, with the mixture component it was
sampled from. Here, in accordance with the order of appearance we introduce what we call
ordered allocation variables, (di) = (di)

n
i=1, given by di = j if and only if yi was sampled from

g(· | x̃j), i.e. θi = x̃j . Thus, θi = x̃di , and yi | ((x̃j), di) ∼ g(· | x̃di), independently for i ≤ n. If
ki denotes the number of distinct values in (θ1, . . . , θi) then ki coincides with max{d1, . . . , di},
and di+1 necessarily takes a value in {1, . . . , ki + 1}. More precisely, iii of Theorem 1 allows us
to compute

d1 = 1, di+1 | (p̃j), d1, . . . , di ∼
ki∑
j=1

p̃jδj +

1−
ki∑
j=1

p̃j

 δki+1, (6)

for i ≤ n, independently of elements in (x̃j) (see also iv of Theorem 1). This yields the augmented
likelihood

p[(yi), (di) | (p̃j), (x̃j)] =

kn∏
j=1

p̃
nj−1
j

(
1−

j−1∑
l=1

p̃l

) ∏
i∈Dj

g(yi | x̃j)1D, (7)

where kn = max{d1, . . . , dn}, Dj = {i ≤ n : di = j}, nj = |Dj |, and D is the event that
{D1, . . . , Dkn} is a partition of {1, . . . , n} with blocks in the least element order, in particular
Dj ̸= ∅, for j ≤ kn, and min (D1) < min (D2) < · · · < min

(
Dkn

)
. The full conditional

distributions required at each iteration of the sampler are proportional to the product of (7)
times the prior distributions, p[(x̃j)] and p[(p̃j)], of the atoms and weights of P in order of
appearance. We first derive the ordered allocation sampler for those species sampling mixing
distributions where the prior of (p̃j) can be modelled directly as is the case of the (σ, θ)-model.
Latter we explain how to adapt the sampler for the more general case where the law of (p̃j) is
not available.

3.1 Ordered allocation sampler for size-biased weights

Updating of the ordered allocation variables (di):

p[ di = d | · · · ] ∝ p̃d g(yi | x̃d)×
kn∏
j=1

p̃−1
j

(
1−

j−1∑
l=1

p̃l

)
1D. (8)

This is the fundamentally novel part of the algorithm. Differently from other conditional sam-
plers, the allocation variables (di) can not be updated independently of each other for two main
reasons: (i) kn = max{d1, . . . , dn} might change as a consequence of an update in di, and (ii)
the least element order of D1, . . . , Dkn

must be preserved, as specified by the indicator 1D.
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Instead, the updating of (di) resembles the way marginal algorithms update allocation variables
(cf. Neal; 2000) in the sense that we will update one di at a time by conditioning on the current
value of the remaining ordered allocation variables. To do so, we first identify the set, Di, of
admissible moves for di, which contains all positive integers d for which the event D remains true

after setting di = d. That is, for d ∈ N, define k(d)n = max{k−i, d}, where k−i = max{dl : l ̸= i},
and add d ∈ Di if, under the assumption di = d, the sets Dj = {l ≤ n : dl = j} are non-empty,

for j ≤ k
(d)
n , and satisfy min (D1) < min (D2) < · · · < min

(
D

k
(d)
n

)
. An example that illustrates

how to determine Di is available in Appendix D. With this notation at hand we can rewrite (8):

p[ di = d | · · · ] ∝ p̃d g(yi | x̃d)×
k(d)
n∏

j=1

p̃−1
j

(
1−

j−1∑
l=1

p̃l

)
1{d∈Di}. (9)

Next, we need to weight the admissible moves according to (9). To this aim, note that for

each d ∈ Di, either k
(d)
n = k−i or k

(d)
n = k−i + 1. This means that we can divide (9) by∏k−i

j=1 p̃
−1
j (1−

∑j−1
l=1 p̃l) and obtain

p[ di = d | · · · ] ∝

{
p̃dg(yi | x̃d) if k

(d)
n = k−i,(

1−
∑k−i

l=1 p̃l

)
g(yi | x̃d) if k

(d)
n = k−i + 1,

(10)

for d ∈ Di, and p[ di = d | · · · ] = 0, for d ̸∈ Di. Once we have identified Di, sampling from (10)
is straight-forward, as its support is Di ⊂ {1, . . . , n}.

Updating of component parameters in order of appearance (x̃j):

p[ x̃j | · · · ] ∝
∏
i∈Dj

g(yi | x̃j)ν(x̃j). (11)

Since Dj = ∅, for j > kn, we simply sample x̃j ∼ ν from its prior distribution. For j ≤ kn,
sampling from (11) is easy if g and ν form a conjugate pair. Otherwise, the problem of updating
the non-empty components parameters is identical as in conditional samplers and some marginal
ones. The advantage with respect to conditional algorithms is that the occupied component
parameters are precisely the first kn in the sequence (x̃j).

Updating of size-biased weights (p̃j):

p[ (p̃j) | · · · ] ∝
kn∏
j=1

p̃
nj−1
j

(
1−

j−1∑
l=1

p̃l

)
× p[(p̃j)]. (12)

If the stick-breaking representation (5) is available, we can update (p̃j) via sampling (vj) from

its full conditional. Noting that 1−
∑k

l=1 p̃l =
∏k

l=1(1− vl) for each k ≥ 1, we find

p[ (vj) | · · · ] ∝
[ kn∏
j=1

v
nj−1
j (1− vj)

∑
l>j nl

]
× p[(vj)].
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For example, for the (σ, θ)-model we know that apriori vj ∼ Be(1 − σ, θ + jσ), independently,
according to one of the two regimes (a) or (b) spelled out in Section 2. In this case, we update
vj ∼ Be(nj−σ, θ+jσ+

∑
l>j nl), independently for j ≤ kn, and we sample vj ∼ Be(1−σ, θ+jσ),

for j > kn, as apriori.

Before we move on, there are two points worth highlighting concerning the updating of
(p̃j). The first one is that while the stick-breaking decomposition simplifies this step it is not a
requirement, what is needed is a posterior characterization of the weights in order of appearance.
The Pitman-Yor multinomial process studied by Lijoi et al. (2020) illustrates this point. The
second crucial remark is that sampling p̃j and x̃j , for j > kn, is needed for only a few j as
required by the occupation of new components when updating (di). Being that di ≤ n, at most
we will require to update p̃j and x̃j , for j ≤ min{n,m}. This is specially relevant for infinite
mixture models as it assures the sampler unfolds in a finite dimensional space even when the
model dimension, m, is infinite. In fact, if the model dimension is deterministic, the ordered
allocation sampler is practically identical for finite and infinite mixture models. The case of
random m is treated next.

Updating the model dimension m:

If the model dimension is random, our proposal here is to update m, (p̃j) and the non occupied
component parameters, (x̃j)j>kn

= (x̃kn+1, . . . , x̃m), as a block from

p[m, (p̃j), (x̃j)j>kn
| · · · ] ∝

kn∏
j=1

p̃
nj−1
j

(
1 −

j−1∑
l=1

p̃l

) m∏
j=kn+1

ν(x̃j) × p[ (p̃j) | m]p[m]. (13)

Here we keep “ · · · ” to denote all random terms other than m, (p̃j) and (x̃j)j>kn
. We first

sample m from its marginal, i.e. (13) after integrating over (p̃j) and (x̃j)j>kn
:

p[m | · · · ] ∝ E
[∏kn

j=1
p̃
nj−1
j

(
1−

∑j−1

l=1
p̃l

) ∣∣∣∣m]p(m). (14)

The expectation is taken with respect to the conditional distribution of (p̃j) givenm and treating
kn, n1, . . . , nkn

as constants. In particular, since
∑m

j=1 p̃j = 1, (14) equals zero for m < kn.
Taking this into account and recognizing, in the conditional expectation, the EPPF of the
species sampling model given m, cf. (4), we obtain

p[m | · · · ] ∝ π(n1, . . . , nkn | m)p[m]1{kn≤m}. (15)

This is a remarkably simple expression for the updating of the model dimension as it only
requires the conditional EPPF given m. In Appendix B we provide an example on how to
update m for mixtures of finite mixtures and for the choice of p[m] detailed by Gnedin (2010).
After updating m, we sample (p̃j) and (x̃j)j>kn

, conditioning on m. Thus (p̃j) is sampled from
(12) as detailed before, and the m − kn non occupied component parameters, x̃kn+1, . . . , x̃m,
from the prior ν, cf. (11). Note that the blocking argument is remarkably simple when compared
with the Metropolis-Hasting steps of the reversible jump MCMC algorithm.
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3.2 Ordered allocation sampler for non size-biased weights

In this section we adapt the ordered allocation sampler to species sampling priors that do
not enjoy an explicit characterization of the size-biased weights (p̃j). This makes our sampler
applicable to mixture models for which marginal samplers are not available, so increasing sub-
stantially its scope (examples can be found at the end of Section 2). To this aim recall that
(p̃j) is a rearrangement of the weights in any arbitrary order, (pj), i.e. p̃j = pαj

, where (αj)
is sampled without replacement from {1, . . . ,m} with probabilities (pj), as defined in (3). The
key idea is to include (αj) as part of the sampler. As we will see, this augmentation yields a
conditional sampler that inherits the advantages of the algorithm in Section 3.1 without requir-
ing a closed-form expression of (p̃j) or the EPPF. As for the component parameters in order
of appearance, (x̃j), we will continue to model them directly, as i.i.d. from ν, independently of
(pj) and (αj), cf. iv in Theorem 1. Thus, instead of (7), we work with the augmented likelihood

p[ (yi), (di) | (pj), (αj), (x̃j) ] =

kn∏
j=1

pnj−1
αj

(
1−

j−1∑
l=1

pαl

) ∏
i∈Dj

g(yi | x̃j)1D. (16)

It is straightforward to see that the updating of the ordered allocation variables (di) and the
component parameters (x̃j) remain identical. Hence, we will only explain how to update the
weights in order of appearance via (pj) and (αj), as well as the model dimension, m, whenever
this quantity is random.

Updating of (p̃j) through (pj) and (αj):

From (3) and (16) we find

p[ (pj), (αj) | · · · ] ∝
kn∏
j=1

pnj
αj

×
m∏

j=kn+1

pαj

(
1−

j−1∑
l=1

pαl

)−1

1A × p[(pj)], (17)

where A is the event that αi ̸= αj for every i ̸= j. In this part, as a notational device, we keep
“ · · · ” to denote all random terms other than (pj), (αj). Also, we distinguish the indexes of
the occupied components, (αj)j≤kn

, from the remaining ones, (αj)j>kn
. The key idea to attain

simple updating steps is to sample (αj)j≤kn from its full conditional, which can be expressed as
a weighted permutation of kn indexes, and separately (pj) and (αj)j>kn as a block.

We first focus on the updating of (αj)j≤kn
. From (17) we get

p[ (αj)j≤kn | (αj)j>kn , (pj), · · · ] ∝
kn∏
j=1

pnj
αj
1A, (18)

after noting that
∏m

j=kn+1(1 −
∑j−1

l=1 pαl
)−1 is a constant with respect to (αj)j≤kn

, because

1 −
∑j−1

l=1 pαl
=
∑m

l=j pαl
. The event A indicates that this is about sampling from a weighted

permutation ρ of the kn integers corresponding to current values of (αj)j≤kn
. Namely, we sample

ρ from

π(ρ) =
1

Z

kn∏
j=1

wj,ρ(j) , ρ ∈ S,

9



where wj,l = p
nj
αl , Z is the normalizing constant and S is the space of permutations of {1, . . . , kn}.

Afterwards we simply apply ρ to the indexes of the current value of (αj)j≤kn
so to obtain the

updated value (αρ(j))j≤kn
. Now, to sample ρ from π we follow Zanella (2020) by adopting a

Metropolis–Hastings scheme using a locally-balanced informed proposal distribution, cf. Example
3 therein. For the reader’s convenience, we recall briefly how it works. Let N(ρ) be the neighbor-
hood of ρ ∈ S given by all permutations obtained by switching two indexes, (i.e. ρ∗ ∈ N(ρ) if and
only if there exist i ̸= j such that ρ∗(i) = ρ(j), ρ∗(j) = ρ(i) and ρ∗(l) = ρ(l) for all l ̸∈ {i, j}). In-
stead of using a random walk scheme, consisting in proposing a new value of ρ, say ρ∗, uniformly
over N(ρ), and accepting it with probability a(ρ, ρ∗) = min{1, π(ρ∗)/π(ρ)}, we bias the proposal
towards high probability regions of the target. To do so, we set the proposal distribution to
be Q(ρ, ρ∗) =

√
π(ρ∗)1N(ρ)/Z(ρ), where Z(ρ) =

∑
z∈N(ρ)

√
π(z) is the normalizing constant.

Then the new value, ρ∗, is accepted with probability a(ρ, ρ∗) = min
{
1, π(ρ∗)Q(ρ∗,ρ)

π(ρ)Q(ρ,ρ∗)

}
. In the

simulation study we initialized ρ as the identity function over S and performed kn Metropolis-
Hastings steps at each iteration. As explained by Zanella (2020) the appeal of considering a
locally-balanced proposal, such as Q, is that it is roughly π-reversible when S is large with
respect to N(ρ), thus the acceptance probability a(ρ, ρ∗) tends to be high. Otherwise, if kn
is small, one can opt to sample exactly from (18) by enumerating all possible permutations of
(αj)j≤kn .

As for the updating of (pj) and (αj)j>kn
, we first sample (pj) from the conditional distribu-

tion p[ (pj) | (αj)j≤kn
, · · · ] obtained from p[ (pj), (αj)j>kn

| (αj)j≤kn
, · · · ] after integrating over

(αj)j>kn
. We get

p[ (pj) | (αj)j≤kn
, · · · ] ∝

α∏
j=1

p
rj
j × p[(pj)],

where α = max{αj : j ≤ kn}, and rj =
∑kn

l=1 nl1{αl=j}, that is rj = nl if and only if there exist

l ≤ kn such that αl = j and rj = 0 otherwise. When pj = vj
∏j−1

l=1 (1− vl), we can update (pj)
via sampling (vj) from

p[ (vj) | (αj)j≤kn , · · · ] ∝
α∏

j=1

v
rj
j (1− vj)

∑
l>j rj × p[(vj)].

For instance, if a priori vj ∼ Be(aj , bj), independently for j ≥ 1, then a posteriori vj ∼ Be(rj +
aj ,
∑

l>j rl + bj) for j ≤ α and vj ∼ Be(aj , bj), for j > α. Further examples on how to update
(pj) can be found in Appendix C. After updating (pj) we sample (αj)j>kn

from

p[ (αj)j>kn | (αj)j≤kn , (pj), · · · ] =
m∏

j=kn+1

pαj

(
1−

j−1∑
l=1

pαl

)−1

1A. (19)

That is, αkn+1, αkn+2, . . . are sampled without replacement from {j ≤ m : j ̸∈ (αj)j≤kn
} with

probabilities proportional to {pj : j ̸∈ (αj)j≤kn
}. This can be achieved by sampling sequentially

as a priori, cf. (3).

This way of updating (αj), although theoretically valid, has the disadvantage that switches
among indexes in (αj)j≤kn

and indexes in (αj)j>kn
only occur when kn changes as a consequence

of an update in (di). To facilitate the mixing one can include the following acceleration step after
updating (αj)j≤kn from (18) and before updating (αj)j>kn from (19). We suggest to sample

10



each αj with j ≤ kn from

p[αj | (pj), (αl)l≤kn,l ̸=j , · · · ] ∝ pnj
αj
1A, (20)

i.e. conditioning on the current values of αl, for l ≤ kn and l ̸= j, with (αj)j>kn integrated out.
Hence, the indicator 1A above only dictates αj ̸= αl, with l ≤ kn. If the number of components
is finite, the support of (20) consists of m− kn − 1 positive integers and sampling directly from
this distribution is trivial. Otherwise, when m = ∞, we can treat (αj)j>kn

as a latent variable
with distribution as in (19), and update the pair (αj , αkn+1) from

p[ (αj , αkn+1) | (pj), (αl)l ̸∈{j,kn+1}, · · · ] ∝ pnj
αj
pαkn+1

(
1−

kn∑
l=1

pαl

)−1

1A. (21)

In practice, it is enough to sample αkn+1 from p[αkn+1 | α1, . . . , αkn
, (pj), · · · ] as in (3) and

later either leave (αj , αkn+1) unchanged or switch the values of αj and αkn+1, with probabilities
determined by (21). It is worth emphasizing that this procedure has to be repeated for all
j ≤ kn, and that each time we discard αkn+1 because it is only playing the role of an auxiliary
variable to draw samples from (20).

Similarly as with the sampler in Section 3.1, this sampler unfolds in a finite dimensional
space even when the model dimension is infinite. In general, we will only need to update x̃j and
αj , for j > kn, when required by the updating the ordered allocation variables, (di). At most
iterations this will be necessary for only a few indexes j. As for the weights, it is the updating
of (αj) what will determine how many entries of (pj) must be updated. Thus, at most we will
need to update pj for j ≤ max{α1, . . . , αJ} where J is the latest entry of (αj) we were required
to update.

Updating of m:

If the model dimension is random, our proposal is to update m, (x̃j)j>kn , (pj) and (αj)j>kn

as a block from the full conditional p[m, (p̃j), (x̃j)j>kn , (αj)j>kn | · · · ]. Here we use “ · · · ” to
denote all random terms other than m, (x̃j)j>kn

, (pj) and (αj)j>kn
. Integrating over (x̃j)j>kn

,
(pj) and (αj)j>kn

, we first sample m from

p[m | · · · ] ∝ E
[∏kn

j=1
pnj
αj

∣∣∣∣m]1{m≥kn}p[m], (22)

where the expectation is taken with respect to the conditional distribution of (pj) given m, and
treating (nj)j≤kn

and (αj)j≤kn
as constants. Later we sample (p̃j) and (αj)j>kn

from (17) as
previously explained, and the m−kn empty component parameters, x̃j , from the prior, cf. (11).
In contrast to (15), the EPPF does not appear in (22), instead it is enough to compute an
expectation of the weights. This is very convenient, being that when law of (p̃j) is not available,
typically the EPPF is hard to compute as mentioned in Section 2.

3.3 Acceleration step

There is a very simple modification of the ordered allocation sampler that can greatly improve
its performance. To motivate it, first note that the set of admissible moves, Di, of di is always
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contained in {1, . . . , ki−1+1}, with k0 = 0 and ki = max{d1, . . . , di}. Recalling that di indicates
from which component of the mixture was yi sampled, this means that while the latest data
points will be able to reallocate to virtually all observed components, the first data points will
rarely be reassigned to a different component. Furthermore, since component parameters and
weights are labelled in the order in which they were discovered by (yi), the initial order of data
points can dictate how often there are label switches of components and thus affect the mixing
properties of the sampler. To overcome this, it is enough to exploit the exchangeability of (yi)
and add a step, after updating (di), in which we randomly permute the data points obtaining
(y′i) = (yρ(i)), where ρ is a uniform permutation of {1, . . . , n}. Accordingly, we modify (di)
obtaining (d′i) defined by d′i = j if and only if dρ(i) equals the jth distinct value to appear in
(dρ(i)). This way, the ordered allocation variables, (d′i), that correspond to the permuted data
set, (y′i), preserve the induced clustering structure, and the least element order as dictated by
the event D now holds for (D′

j) with D′
j = {i : d′i = j} (see Appendix D for an example). In

accordance, for the sampler in Section 3.2 we will also need to change the values of (αj)j≤kn
so

to obtain (α′
j)j≤kn

, where α′
j now indicates which weight in (pj) is the jth one to be discovered

by (y′i). To do so we simply have to set α′
j = αl if and only if the jth distinct value to appear

in (dρ(i)) equals l. After doing so we can move on with the updating of m (if it is random) and
each of the observed component parameters, x̃′

j , and weights, p̃′j = pα′
j
, identically as before,

although now they are labelled in order in which they were discovered by (y′i).

For the simulation study we will present in the following section, this acceleration step was
included in all implementations of the ordered allocation. Nonetheless, in Appendix E we present
a few runs of the ordered allocation sampler without it to illustrate its effect.

4 Simulation study

In this section we present a simulation study to compare the mixing of the ordered allocation
sampler against that of a marginal sampler and a conditional sampler. Following Kalli et al.
(2011), three different data sets have been considered (histograms are displayed in Figure 1).
The first data set is the galaxy data, consisting of the velocities of 82 distinct galaxies diverging
away from our galaxy. The other two data sets are the leptokurtic and bimodal data sets first
introduced in Green and Richardson (2001). The leptokurtic consists of 100 data points simulated
from the mixture 0.67N(0, 1)+0.33N(0.3, 0.252). In the bimodal the 100 observations come from
the mixture 0.5N(−1, 0.52) + 0.5N(1, 0.52). To each data set we fitted a mixture of Gaussian
distributions with random location and scale parameters, i.e. g(y | x) = N(y | µ, σ2), and
with five different mixing priors specifications. First we consider a mixture of finite mixtures
(MFM, Miller and Harrison; 2018) specifically a mixing prior with random dimension, m, and
symmetric Dirichlet weights, (p1, . . . , pm) ∼ Dir(γ, . . . , γ), with γ = 1. As for m, we used the
prior p[m] = λ(1 − λ)m−1/m! (Gnedin; 2010) with λ = 0.1. The remaining mixing priors
we considered are a Dirichlet process (DP) with total mass parameter θ = 1, a Pitman-Yor
process (PY) with parameters (σ, θ) = (0.3, 0.7), a Geometric process (GP, Fuentes-Garćıa
et al.; 2010) and an Exchangeable Stick-Breaking process (ESB, Gil–Leyva and Mena; 2021).
Further specifications of the Geometric and the Exchangeable stick-breaking processes can be
found in Appendix C. In all cases the distribution ν of the component parameters was fixed
to ν(µ, σ2) = N(µ | µ0, λ

−1
0 σ2)Γ−1(σ2 | a0, b0) with hyperparameters µ0 = n−1

∑n
i=1 yi, λ0 =

1/100 and a0 = b0 = 0.5.
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Figure 1: Histogram of the galaxy (left), leptokurtic (middle) and bimodal (right) datasets. The
lines represent the estimated densities using the ESB mixing prior and the ordered allocation
sampler in Section 3.2.

The marginal sampler we have implemented is Algorithm 8 in Neal (2000) for DP, PY and
MFM. In particular for MFM, Algorithm 8 was adapted following Miller and Harrison (2018).
No marginal samplers are available for GP and ESB as these priors lack a Pólya urn scheme
representation. As for the conditional sampler, we implemented the (dependent) slice-efficient
sampler, as described by Kalli et al. (2011), for all models but MFM. The ordered allocation
sampler (OAS in short) was used to implement all considered mixing priors. In particular, we
used the algorithm in Section 3.1 for MFM, DP and PY, as these priors enjoy a tractable law
of the size-biased permuted weights. The algorithm of Section 3.2 was used for GP and ESB.
In Appendix C we explain how to update the weights of the GP and ESB priors.

To monitor algorithmic performance we explored the convergence of the number of occupied
components, kn, and the deviance, Dv, of the estimated density (cf Green and Richardson;
2001). The deviance can be computed by Dv = −2

∑n
i=1 log

∑m
j=1

nj

n g(yi | xj), where nj is
the number of data points associated to g(yi | xj). More precisely, we considered the chains
(ktn)

T
t=1 and (Dt

v)
T
t=1 attained from T iterations after the burn-in period. In each case we

estimated the integrated autocorrelation time (IAT), τ = 1/2 +
∑∞

l=1 ρl, where ρl stands for
l-lag autocorrelation of the monitored chain. As done by Kalli et al. (2011), τ was estimated

through τ̂ = 1/2 +
∑C−1

l=1 ρ̂l, where ρ̂l is the estimated autocorrelation at lag l and C = min{l :
|ρ̂l| < 2/

√
T}. This is a very useful summary statistic for quantifying the convergence of an

MCMC algorithm, smaller values of τ̂ corresponding to better performance. For each sampler
and mixing prior, we considered 2×106 iterations after a burn-in period of 105 iterations. Table
1 reports estimates of the IAT for kn and Dv with standard errors appearing in parenthesis, the
latter computed following Section 3 of Sokal (1997).

We observe that, when applicable, Algorithm 8 outperforms the other samplers, and that the
OAS has better mixing properties than the slice sampler. On average, the IAT corresponding
to the OAS is roughly 1.8 times bigger than that of Algorithm 8, and the IAT of the slice
sampler is approximately 4.7 times larger than that of the OAS. In general, it has been found
that conditional algorithms perform worse than marginal samplers. This can be explained by
the fact that in conditional algorithms mixing takes place in the space of all possible values
of the (usual) allocation variables, (ci)

n
i=1, given by ci = j if and only is θi = xj . Instead, in
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galaxy data leptokurtic data
Marginal OAS Conditional Marginal OAS Conditional

MFM
Dv 14.43(0.38) 26.17(0.93) — 563.5(61.3) 855.5(94.8) —
kn 33.55(0.92) 89.42(3.07) — 337.7(26.3) 535.2(64.7) —

DP
Dv 12.30(0.23) 23.76(0.57) 119.2(9.95) 22.42(0.54) 25.81(0.63) 120.5(10.3)
kn 13.68(0.25) 32.49(0.81) 190.2(16.3) 9.26(0.13) 18.99(0.41) 100.8(7.18)

PY
Dv 13.48(0.24) 21.59(0.52) 83.33(4.63) 53.85(1.45) 62.91(2.10) 322.9(37.0)
kn 12.43(0.23) 35.62(0.84) 115.7(6.23) 12.02(0.24) 20.96(0.56) 138.7(13.1)

GP
Dv — 11.01(0.33) 40.76(2.50) — 50.64(1.55) 158.7(7.86)
kn — 61.67(1.89) 621.2(172.5) — 45.34(1.21) 129.8(6.43)

ESB
Dv — 24.29(0.68) 245.4(28.3) — 61.29(1.97) 184.5(18.6)
kn — 59.27(2.16) 632.4(88.9) — 26.78(0.91) 120.1(10.7)

bimodal data
Marginal OAS Conditional

MFM
Dv 122.9(8.04) 143.0(9.28) —
kn 65.15(3.89) 109.4(7.99) —

DP
Dv 7.84(0.16) 13.87(0.35) 35.61(1.68)
kn 6.30(0.07) 13.38(0.22) 52.00(2.18)

PY
Dv 39.91(1.33) 58.11(2.21) 257.1(22.8)
kn 6.24(0.14) 12.40(0.30) 58.10(3.35)

GP
Dv — 57.45(1.76) 148.4(5.81)
kn — 55.85(1.65) 146.0(5.94)

ESB
Dv — 48.48(1.52) 76.51(3.48)
kn — 19.93(0.58) 35.53(1.42)

Table 1: Results for the three datasets by model and sampler.

marginal algorithms the labels of the allocation variables are irrelevant, which means that the
sampler searches is the space of partitions of {1, . . . , n}, generated by the ties among allocation
variables (cf. Porteous et al.; 2006). Now, in the OAS, mixing occurs in the space of all possible
values of the ordered allocation variables, (di), which unequivocally define an ordered partition of
{1, . . . , n}, with blocks in the least element order. Since there exists a one to one correspondence
between (unordered) partitions of {1, . . . , n} and partitions, of the same set, ordered according
to the least element, we find that marginal samplers and the OAS search in the exact same
space. This explains the better mixing properties of the OAS when compared with the slice
sampler. Still, Algorithm 8 has better performances compared with the OAS, which is mainly
due to the restricted support of (di) in the OAS.

In Appendix E we extend this study for the DP model to further compare the distinct
versions of the OAS in Sections 3.1 and 3.2, as well as the effect of the acceleration step in
Section 3.3. There we also show the graph of the estimated weighted densities by component,
so to illustrate in more details how the different samplers mix over component labels.

5 Discussion

The ordered allocation sampler exploits the conditional law of a species sampling sequence given
the atoms and the weights in order of appearance. The idea of sorting the parameters by order of
appearance is analogous to that of Chopin (2007) for devising sequential Monte Carlo algorithm
for hidden Markov models. A key difference is that in our framework we retain exchangeability
of the data, while in hidden Markov model the data possess a precise temporal order.

Mixture models with a random dimension have been long known for their appeal from a
modelling perspective and for their optimal asymptotic properties (Rousseau and Mengersen;
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2011; Shen et al.; 2013). However, posterior computation had remained somehow elusive until
the advent of the marginal sampler by Miller and Harrison (2018). The ordered allocation
sampler is a valid alternative, it is simple to implement, and more broadly applicable. The
sampler has been illustrated for mixtures of finite mixtures, but it readily applies to symmetric
Dirichlet distributed weights whose parameter γ can depend on the number of components.
For example, we can use it to implement Dirichlet-multinomial mixing priors, or “ sparse finite
mixtures ” as termed by Frühwirth-Schnatter and Malsiner-Walli (2019), where γ = θ/m. As
for mixtures with infinitely many components, the sampler completely avoids the truncation
problem. In fact, it is practically identical for the case where m is a finite fixed number and the
case where m is infinite. Other conditional samplers are designed for the case where m < ∞
is fixed, m = ∞, or m is random and there are clear distinctions between samplers that are
designed for one case or another. To the best of our knowledge, the ordered allocation sampler
is the first conditional sampler that treats in a unified manner the distinct assumptions on m.

As highlighted throughout the paper, the ordered allocation sampler enjoys nice properties
in terms of applicability and mixing performance. Nonetheless, there are areas of improvements.
In other conditional samplers allocation variables are updated independently of each other in a
block, rather that one at a time. In big data settings this is a significant advantage over the
ordered allocation sampler. Another drawback is that the number of occupied components, kn,
can not change as freely, from one iteration to the next one, as it does in other samplers. This
explains the higher IAT of kn when compared against the marginal method. The ordered alloca-
tion sampler may need additional modifications to address these issues, which is an interesting
direction for future research.
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Fuentes-Garćıa, R., Mena, R. H. and Walker, S. G. (2010). A new Bayesian nonparametric
mixture model, Communications in Statistics - Simulation and Computation 39(4): 669–682.

Gil–Leyva, M. F. and Mena, R. H. (2021). Stick-breaking processes with exchangeable length
variables, Journal of the American Statistical Association p. in press.

Gnedin, A. (2010). A species sampling model with finitely many types, Electronic Communica-
tions in Probability 15: 79–88.

Green, P. J. and Richardson, S. (2001). Modeling heterogeneity with and without the Dirichlet
process, Scand. J. Stat. 28: 355–375.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors, J.
Amer. Statist. Assoc. 96: 161–173.

Kallenberg, O. (2005). Probabilistic Symmetries and Invariance Principles, first edn, Springer.

Kalli, M., Griffin, J. E. and Walker, S. (2011). Slice sampling mixtures models, Statist. Comput.
21: 93–105.

Lijoi, A., Prünster, I. and Rigon, T. (2020). The Pitman–Yor multinomial process for mixture
modelling, Biometrika 107(4): 891–906.

Miller, J. W. and Harrison, M. T. (2018). Mixture models with a prior on the number of
components, J. Amer. Statist. Assoc. 113(521): 340–356.

Neal, R. M. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture Models, J.
Comput. Graph. Statist. 9(2): 249–265.

Papaspiliopoulos, O. and Roberts, G. O. (2008). Retrospective Markov chain Monte Carlo
methods for Dirichlet process hierarchical models, Biometrika 95: 169–186.

Pitman, J. (1995). Exchangeable and partially exchangeable random partitions, Probab. Theory
Relat. Fields 102: 145–158.

Pitman, J. (1996a). Random discrete distributions invariant under size-biased permutation,
Adv. Appl. Probab. 28(2): 525–539.

Pitman, J. (1996b). Some developments of the Blackwell-MacQueen urn scheme, in T. F. et al.
(ed.), Statistics, Probability and Game Theory; Papers in honor of David Blackwell, Vol. 30 of
Lecture Notes-Monograph Series, Institute of Mathematical Statistics, Hayward, California,
pp. 245–267.

Pitman, J. (2006). Combinatorial Stochastic Processes, Vol. 1875 of École d’été de probabilités
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Appendix

A Proof of Theorem 1

Lemma A.1. Let m be a random variable taking values in {1, 2, . . .} ∪ {∞} and let (p̃j) =
(p̃1, . . . , p̃m) be a sequence in [0, 1] with

∑m
j=1 p̃j = 1. Let π :

⋃
k∈N Nk → [0, 1] be defined by

π(n1, . . . , nk) = E
[ k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃l

)]
.

Then (p̃j) is invariant under size-biased permutations if and only if π is a symmetric function
of (n1, . . . , nk).

The proof of Lemma A.1 can be found in Pitman (1995, 1996a). Actually, Pitman derived it
more in general for a sequence (p̃j)

∞
j=1 taking values in the infinite dimensional simplex ∆∞ ={

(wj)
∞
j=1 : wj ≥ 0,

∑∞
j=1 wj = 1

}
. The statement in Lemma A.1 easily follows by transforming

(p̃1, . . . , p̃m) into a sequence in ∆∞ by appending zeros, i.e. p̃j = 0 for j > m. For simplicity
we will first take for granted Lemma A.1, later in Remark A.1 we explain how to derive a
self-contained proof.

Proof of Theorem 1:

(Sufficiency): Assume (θi) is a species sampling sequence driven by the species sampling model
P =

∑m
j=1 pjδxj . By de Finetti’s theorem,

lim
n→∞

1

n

n∑
i=1

δθi =

m∑
j=1

pjδxj
,

almost surely. As
∑m

j=1 pj = 1 and pj > 0, we get that outside a P-null event, θi ∈ {x1, . . . , xm}
for every i ≥ 1, and for each j ≤ m there exist i ≥ 1 such that θi = xj . This together with
the diffuseness of ν, yield that (θi) exhibits exactly m distinct values, x1, . . . , xm, almost surely.
This means that we can define (αj) = (α1, . . . , αm) given by αl = j if and only if θMl

= xj ,
recalling that M1 = 1 and for 2 ≤ l ≤ m, Ml = min{i > Ml−1 : θi ̸∈ {θM1

, . . . , θMl−1
}}. This

way, x̃j = xαj
is the jth distinct value of (θi) in order of appearance. Next we prove that (αj)

satisfies equation (3) in the main document. To this aim, note that P is {(pj), (xj)}-measurable
and vice versa. Moreover (θM1 , . . . , θMl

) is {(α1, . . . , αl), (xj)}-measurable and (α1, . . . , αl) is
{(θM1 , . . . , θMl

), (xj)}-measurable. As (θi) is conditionally iid from P , this implies

P[α1 = j | (pj), (xj)] = P[θ1 = xj | P ] = pj

and for 2 ≤ l ≤ m,

P[αl = j | (pj), (xj), α1, . . . , αl−1] = P[θMl
= xj | P, θM1

, . . . , θMl−1
]

∝ pj1{xj ̸∈{θM1
,...,θMl−1

}}
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This is
P[αl = j | m, (pj), (xj), α1, . . . , αl−1] =

pj

1−
∑l−1

i=1 pαi

1{j ̸∈{α1,...,αl−1}}.

Hence, given (pj), (αj) satisfies (3). Moreover, as (pj) is independent of (xj), we also get that
(αj) is independent of (xj), which are iid from ν. This yields that (x̃j) = (xαj ) are also iid from
ν, so i is proved.

Using de Finetti’s theorem once more, we get

lim
n→∞

kn∑
j=1

|{i ≤ n : θi = x̃j}|
n

δx̃j = lim
n→∞

1

n

n∑
i=1

δθi =

m∑
j=1

pjδxj =

m∑
j=1

pαjδxαj
,

where kn is the number of distinct values in {θ1, . . . , θn}. Since the directing random measure
of an exchangeable sequence is unique almost surely, this assures kn → m, and for j ≤ m, the
long run proportion of indexes i such that θi = x̃j = xαj is

p̃j = lim
n→∞

|{i ≤ n : θi = x̃j}|
n

= pαj ,

almost surely. As (3) holds for (αj), (p̃j) = (pαj
) is a size-biased permutation of (pj), which

yields ii.

As for iii, first note that by definition, x̃1, . . . , x̃kn
are the kn distinct values in order of

appearance in {θ1, . . . , θn}, for every n ≥ 1, in particular θ1 = x̃1. Now, as (θi) is conditionally
iid from P =

∑m
j=1 pjδxj

=
∑m

j=1 p̃jδx̃j
, we get that for each n ≥ 1 and every j ≤ kn,

P[θn+1 = x̃j | (p̃j), (x̃j), θ1, . . . , θn] = p̃j .

Thus,

P[θn+1 ̸∈ {x̃1, . . . , x̃kn} | (p̃j), (x̃j), θ1, . . . , θn] = 1−
kn∑
j=1

p̃j .

By definition, under the event θn+1 ̸∈ {x̃1, . . . , x̃kn
} we must have θn+1 = x̃kn+1, i.e.

P[θn+1 ∈ · | (x̃j), (p̃j), θ1, . . . , θn] =

kn∑
j=1

p̃jδx̃j
+

(
1−

kn∑
j=1

p̃j

)
δx̃kn+1

.

As for iv, first note that (p̃j) is {(pj), (αj)}-measurable and (pj) is {(p̃j), (αj)}-measurable.
The last assertion relies on pj = p̃α−1

j
, where (α−1

j ) is the inverse permutation of (αj). From

the proof of i and the hypothesis, we have that (αj), (pj) and m are independent of (xj). Thus,
for every B ∈ B(X),

P[x̃j ∈ B | m, (p̃j), (αj)] = P[x̃j ∈ B | m, (pj), (αj)] = P[xαj ∈ B | m, (pj), (αj)] = ν(B),

which proves iv.

(Necessity): Assume i–iv hold. We first prove that (θi) is exchangeable. Fix n ≥ 1 and define
the random partition, Πn of [n] = {1, . . . , n} generated by the random equivalence relation i ∼ j
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if and only of θi = θj . In other words Πn = {D1, . . . , Dkn} where Dj = {i ≤ n : θi = x̃j}. Using
iii, a simple counting argument implies

P[Πn = {A1, . . . , Ak} | (p̃j), (x̃j)] =

k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃j

)
, (A1)

for every partition {A1, . . . , Ak} of [n], and where nj = |Aj |. Taking expectations in (A1),

P[Πn = {A1, . . . , Ak}] = E
[ k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃j

)]
.

By ii and Lemma A.1, the function

(n1, . . . , nk) 7→ π(n1, . . . , nk) = E
[ k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃j

)]
is symmetric. This shows P[Πn = {A1, . . . , Ak}] = π(n1, . . . , nk), at most depends on the
number of blocks k of {A1, . . . , Ak} and the frequencies, n1, . . . , nk, of each block, through a
symmetric function. In other words, Πn is exchangeable, in the sense that for every permutation,
ρ, of [n], Πn is equal in distribution to ρ(Πn), where

ρ(Πn) = {ρ(Dj) : Dj ∈ Πn} and ρ(Dj) = {ρ(i) : i ∈ Dj}.

Now, fix B1, . . . , Bn ∈ B(X) and note

P[θρ(1) ∈ B1, . . . , θρ(n) ∈ Bn | Πn] = P[x̃j ∈ Bl,∀ l ∈ ρ(Dj), j ≤ kn | Πn] =

kn∏
j=1

ν

( ⋂
i∈ρ(Dj)

Bi

)
.

The last equality follows from the fact that (x̃j) are iid from ν, and x̃j is independent of m and
(p̃j), which together with (A1) imply x̃j is independent of Πn. By taking expectations in the
last equation we find,

P[θρ(1) ∈ B1, . . . , θρ(n) ∈ Bn] = E
[ kn∏
j=1

ν

( ⋂
i∈ρ(Dj)

Bi

)]
.

As Πn is exchangeable,

E
[ kn∏
j=1

ν

( ⋂
i∈ρ(Dj)

Bi

)]
= E

[ kn∏
j=1

ν

( ⋂
i∈Dj

Bi

)]
,

hence
P[θρ(1) ∈ B1, . . . , θρ(n) ∈ Bn] = P[θ1 ∈ B1, . . . , θn ∈ Bn],

which proves (θi) is exchangeable. Finally, by de Finetti’s theorem we know that directing
random measure of (θi) is given by

P = lim
n→∞

1

n

n∑
i=1

δθi = lim
n→∞

|{i ≤ n : θi = x̃j}|
n

kn∑
j=1

δx̃j
,
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and by i and ii we conclude

P =

m∑
j=1

p̃jδx̃j
=

m∑
j=1

pαj
δxαj

=

m∑
j=1

pjδxj
.

Remark A.1. The sufficiency of Lemma A.1, which we require to prove the necessity of The-
orem 1, can be easily derived using the sufficiency of Theorem 1, thus provide a self-contained
proof of Theorem 1. Namely, in the context of Lemma A.1 let (p̃j) be invariant under size-biased
permutations, and let (p′j) = (p′1, . . . , p

′
m′) be any sequence of weights whose size-biased permu-

tation has the law of (p̃j). Then we can construct a species sampling model P ′ =
∑m′

j=1 p
′
jδx′

j
over

a Borel space (X,B(X)) and a species sampling sequence (θ′i) driven by P ′. By the sufficiency
of Theorem 1, we get that for every n ≥ 1,

P[θ′n+1 ∈ · | (p̃′j), (x̃′
j), θ

′
1, . . . , θ

′
n] =

k′
n∑

j=1

p̃′jδx̃′
j
+

(
1−

kn∑
j=1

p̃′j

)
δx̃′

k′
n+1

, (A2)

where (x̃′
j) are the distinct values that (θ′i) exhibits in order of appearance, and (p̃′j) denotes

the size-biased permutation of (p′j). Now, let Π′
n be the random partition of [n] generated by

the random equivalence relation i ∼ j if and only if θ′i = θ′j . Then, by construction Π′
n is

exchangeable, and a simple counting argument, using (A2), yields

P[Π′
n = {A1, . . . , Ak}] = E

[ k∏
j=1

(
p̃′j

)nj−1 k−1∏
j=1

(
1−

j∑
l=1

p̃′j

)]
,

where nj = |Aj |. Since (p̃′j) is equal in distribution to (p̃j) and Π′
n is exchangeable, we conclude

π(n1, . . . , nk) = E
[ k∏
j=1

p̃
nj−1
j

k−1∏
j=1

(
1−

j∑
l=1

p̃j

)]
= E

[ k∏
j=1

(
p̃′j

)nj−1 k−1∏
j=1

(
1−

j∑
l=1

p̃′j

)]
is a symmetric function of (n1, . . . , nk).

B Mixtures of finite mixtures with Gnedin (2010) prior
on m

In this section we illustrate how to update the model dimension m by sampling from (15). We
consider a mixture model with symmetric Dirichlet weights (p1, . . . , pm) ∼ Dir(1, . . . , 1), and
random m with prior distribution

p[m] =
λ(1− λ)m−1

m!
,

where λ ∈ (0, 1) is a known constant. As mentioned in Section 2, the size-biased permuted

weights (p̃j) admit stick-breaking representation p̃1 = v1, and p̃j = vj
∏j−1

i=1 (1− vi) for indepen-
dent random variables, vj ∼ Be(1 − σ, θ + jσ) where σ = −1 and θ = m. Thus, the ordered
allocation sampler as derived in Section 3.1 can be used to implement this model.
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First note that using (4) and the stick-breaking decomposition of (p̃j), we can compute the
conditional EPPF given m:

π(n1, . . . , nkn
| m) =

∏kn−1
j=1 (θ + jσ)

(θ + 1)n−1

kn∏
j=1

(1− σ)nj−1 =
(m− kn + 1)kn−1

(m+ 1)n−1

kn∏
j=1

nj !

where n =
∑kn

j=1 nj and (z)r =
∏r−1

i=0 (z+i), using the convention that the empty product equals
one. Hence, (15) simplifies to

p[m | · · · ] ∝ (m− kn + 1)kn−1

(m+ 1)n−1
× λ(1− λ)m−1

m!
1{kn≤m}.

Following Gnedin (2010), we obtain

∞∑
m=kn

(m− kn + 1)kn−1

(m+ 1)n−1

λ(1− λ)m−1

m!
=

(kn − 1)!(1− λ)kn−1(λ)n−kn

(n− 1)!(1 + λ)n−1
.

Thus, we can explicitly compute

p[m | · · · ] = λ(1− λ)m−1(m− kn + 1)kn−1

(m+ n− 1)!
× (n− 1)!(1 + λ)n−1

(kn − 1)!(1− λ)kn−1(λ)n−kn

1{kn≤m}.

In particular, using notation qr = p[m = r | · · · ]

qkn
=

(λ+ n− kn)kn

(n)kn

,

and recursively for r ≥ kn,

qr+1 = qr
r(r − λ)

(r − kn + 1)(r + n)
.

Thus, to update m, sample u ∼ Unif(0, 1), and set m = r when
∑r−1

l=kn
ql < u ≤

∑r
l=kn

ql.

C Geometric and exchangeable stick-breaking processes

To illustrate the ordered allocation sampler derived in Section 3.2 we chose two species sampling
mixing priors for which the law of (p̃j) is not available. These are the geometric process and
the exchangeable stick-breaking process. The geometric process (Fuentes-Garćıa et al.; 2010)
is a species sampling model P =

∑∞
j=1 pjδxj

with decreasingly ordered weights, (pj), given

by pj = v(1 − v)j−1 where v is a random variable taking values in (0, 1). The exchangeable

stick-breaking process (Gil–Leyva and Mena; 2021) instead has weights pj = vj
∏j−1

l=1 (1 − vl),
where (vj) = (vj)

∞
j=1 is an exchangeable sequence with values in (0, 1). Here we consider (vj)

to be a species sampling sequence driven by a Dirichlet process P ′ over ([0, 1],B([0, 1])), with
total mass parameter θ′ and base measure ν′ = Be(a, b). Next we refer to P =

∑∞
j=1 pjδxj

as
Dirichlet driven exchangeable stick-breaking process.
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To fully specialize the ordered allocation sampler in Section 3.2 for this two mixing priors it
is enough to explain how to update (pj) via sampling (vj) from

p[ (vj) | · · · ] ∝
α∏

j=1

v
rj
j (1− vj)

Rjp[(vj)], (C3)

where rj =
∑kn

l=1 nl1{αl=j}, Rj =
∑

l>j rl, α = max{α1, . . . , αkn}, and “ · · · ” refers to all the
random variables involved excluding (αj)j>kn and (pj). Note that by excluding (pj) we are also
excluding (vj) because these two sequences characterize each other. It is worth noting that the
following description can be readily adapted to the updating of (vj) in the slice-efficient sampler.

For the geometric process we have that vj = v for every j ≥ 1, hence it suffices to update v
from

p[ v | · · · ] ∝ vn(1− v)
∑n

i=1 ci−n × p[v],

where ci = αdi for each i ≤ n. In particular if v ∼ Be(a, b) a priori, then we update v ∼
Be(a+ n, b+

∑n
i=1 ci − n).

Now, for Dirichlet driven exchangeable stick-breaking processes, the updating of (vj) is
more delicate due to the non-trivial dependence among elements in (vj). We will first focus on
updating (vj)j≤α. To this aim note that since (vj) is a species sampling sequence driven by a
Dirichlet process with total mass parameter θ′ and base measure ν′ = Be(a, b), we can compute

p[(vj)j≤α] =
(θ′)kα

(θ′)n

kα∏
l=1

(ml − 1)!Be(v∗l | a, b),

where (v∗l ) = (v∗1 , . . . , v
∗
kα
) are the distinct values that (vj)j≤α exhibits, ml = |El| and El =

{j ≤ α : vj = v∗l } = {j ≤ α : ej = l}, with ej = l if and only if vj = v∗l (cf. Pitman; 1996b;
Neal; 2000). Thus (C3) yields

p[ (v∗l ), (ej) | · · · ] ∝
(θ′)kα

(θ′)n

kα∏
l=1

(ml − 1)!(v∗l )
∑

j∈El
rj (1− v∗l )

∑
j∈El

RjBe(v∗l | a, b).

Now to update (vj) we can first sample (v∗l ) from

p[ (v∗l ) | (ej), · · · ] ∝
kα∏
l=1

Be

(
v∗l

∣∣∣∣ a+
∑
j∈El

rj , b+
∑
j∈El

Rj

)
,

which is a product of independent Beta distributions. Afterwards, for each j ≤ α, we can update
which value does vj take among the ones observed in the rest of the vj ’s or if it takes a new
unobserved value. Say that (v∗l )−j = (v∗1 , . . . , v

∗
k−j

) are the distinct values in (vi : i ≤ α, i ̸= j),
in no particular order, and assume without loss of generality that ei = l if and only if vi = v∗l
for each i ̸= l. Then it is enough to sample from

p[ej = e | (ei)i ̸=j , (v
∗
l )−j , · · · ] ∝


me(v

∗
e)

rj (1− v∗e)
Rj if e ∈ {1, . . . , k−j}

θ′
∫
vrj (1− v)RjBe(dv | a, b) if e = k−j + 1

0 otherwise,
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where me = |{i ̸= j : ei = e}| and∫
vrj (1− v)RjBe(dv | a, b) = Γ(rj + a)Γ(Rj + b)

Γ(rj +Rj + a+ b)
.

If the updated value ej ∈ {1, . . . , k−j} we simply set vj = v∗ej otherwise if ej = k−j+1 we sample
vj ∼ Be(a+ rj , b+Rj). Once we have updated (vj)j≤α, we can update vj for j > α by sampling
sequentially from p[ vj | (vi)i<j , · · · ], which happens to coincide with the prior prediction rule
p[ vj | (vi)i<j ]. As (vj) is a species sampling sequence driven by a Dirichlet process, P ′, with
total mass parameter θ′ and base measure ν′ = Be(a, b), it is well known that

P[vj ∈ · | (vi)i<j ] =

kj−1∑
j=1

ml

θ′ + j − 1
δv∗

l
+

θ′

θ′ + j − 1
ν′

where v∗1 , . . . , v
∗
kj−1

are the distinct values in (vi)i<j , and ml = |{i < j : vi = v∗l }| (cf. Pitman;

1996b). Thus updating vj for j > α is easy, and it will be required only for a few j > α.

In general, this way of updating (vj) for Dirichlet driven exchangeable stick-breaking pro-
cesses is actually an adaptation of Algorithm 2 in Neal (2000), however, other marginal methods
such as Algorithm 8 can also be exploited. In fact, by taking into account the underlying Dirich-
let process, P ′, of (vj), even a version of the slice sampler or the ordered allocation sampler
could have been used. To conclude, we mention that for the simulation study in Section 4 of
the main document we fixed the hyperparameters θ′ = 1, and a = b = 1 for both geometric and
Dirichlet driven exchangeable stick-breaking models.

D Ordered allocation variables

Here we discuss the set Di of admissible moves for the updating of the ordered allocation variable
di. Some general rules for determining Di can be envisioned: (i) if di is different from any other
dj , that is Ddi = {i}, then di cannot change, unless di = kn; and (ii) Di ⊂ {1, . . . , ki−1 + 1}, so
for larger i, there are more possible admissible moves, in particular, d1 = 1 cannot change. As
for illustration, let n = 5 and say that before updating (di), d1, . . . , d5 are such that the blocks
of the partition in the least element order are D1 = {1, 3}, D2 = {2, 4} and D3 = {5}. Clearly
d1 = 1 cannot change. As for d2, the admissible moves are D2 = {1, 2} thus d2 will be sampled
from

p(d2 = 1 | rest) ∝ p̃1g(y2 | x̃1), p(d2 = 2 | rest) ∝ p̃2g(y2 | x̃2).

Say that we sample d2 = 1, so that now D1 = {1, 2, 3}, D2 = {4}, D3 = {5}. Since the blocks
must be in least element order, the admissible moves for d3 are D3 = {1, 2}, hence d3 will be
sampled from

p(d3 = 1 | rest) ∝ p̃1g(y3 | x̃1), p(d3 = 2 | rest) ∝ p̃2g(y3 | x̃2).

Assume we sample d3 = 1 so now D1 = {1, 2, 3}, D2 = {4}, and D3 = {5}. Given that D2

can not be an empty set, under the current configuration, the only admissible move for d4 is
D4 = {4}, i.e. d4 cannot change. Finally, the admissible moves for d5 are D5 = {1, 2, 3}, and
we will sample d5 from

p(d5 = 1 | rest) ∝ p̃1g(y5 | x̃1), p(d5 = 2 | rest) ∝ p̃2g(y5 | x̃2),
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p(d5 = 3 | rest) ∝ (1− p̃1 − p̃2)g(y5 | x̃3).

Finally, assuming that we sample d5 = 2, the initial configuration D1 = {1, 3}, D2 = {2, 4} and
D3 = {5}, is updated to D1 = {1, 2, 3} and D2 = {4, 5}.

In Section 3.3 we discuss an acceleration step that consists in randomly permuting the data
points at each iteration of the sampler. Next we provide an example on how to modify the
ordered allocation variables so to preserve the induced clustering structure, as well as the least
element order of the partition induced by the modified variables. Let us consider again, as
starting values of (di) the ones corresponding to the partition D1 = {1, 3}, D2 = {2, 4} and
D3 = {5}, so

(di) = (1, 2, 1, 2, 3).

Also consider the permutation ρ = (2, 1, 3, 5, 4), i.e. ρ(1) = 2, ρ(2) = 1, . . . ρ(5) = 4, so that the
permuted data set is (y′i) = (yρ(i)) = (y2, y1, y3, y5, y4). The ordered allocation variables, (di),
induce the following clustering of data points:

{y1, y3} = {y′2, y′3}, {y2, y4} = {y′1, y′5}, {y5} = {y′4}.

Thus, the original partition ({1, 3}, {2, 4}, {5}) becomes (D′
1, D

′
2, D

′
3) = ({1, 5}, {2, 3}, {4}) with

respect to the new labeling of the observations. Let us check that the ordered allocation variables,
(d′i) = (1, 2, 2, 3, 1), that correspond to (D′

j), can be obtained as explained in Section 3.3, that
is d′i = j if and only if dρ(i) equals the jth distinct value to appear in (dρ(i)). We have

(dρ(i)) = (d2, d1, d3, d5, d4) = (2, 1, 1, 3, 2)

so that the distinct values of (dρ(i)) in order of appearance are 2, 1, 3. Then,

dρ(1) = d2 = 2 is the first distinct value to appear in (dρ(i)) hence d′1 = 1,

dρ(2) = d1 = 1 is the second distinct value to appear in (dρ(i)) hence d′2 = 2,

dρ(3) = d3 = 1 is the second distinct value to appear in (dρ(i)) hence d′3 = 2,

dρ(4) = d5 = 3 is the third distinct value to appear in (dρ(i)) hence d′4 = 3,

dρ(5) = d4 = 2 is the first distinct value to appear in (dρ(i)) hence d′5 = 1.

We conclude that
(d′i) = (1, 2, 2, 3, 1),

which in fact yields the partition in least element order D′
1 = {1, 5}, D′

2 = {2, 3}, D′
3 = {4}.

E Extended simulation study for the DP model

In this section we provide further illustrations of the two versions of the ordered allocation sam-
pler derived in Sections 3.1 and 3.2 of the main paper, and of the importance of the acceleration
step in Section 3.3. We consider the Dirichlet process mixing prior and we repeat the simulation
study of Section 4 implementing, together with Algorithm 8 in Neal (2000) (Marginal), the de-
pendent slice-efficient sampler by Kalli et al. (2011) (Conditional) and the sampler of Section 3.1
with the acceleration step (OAS1), the sampler of Section 3.2 with the acceleration step (OAS2)
and the sampler of Section 3.1 without the acceleration step (OAS1*). Table E1 reports the
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Figure E1: Estimated density and weighted densities by component (colored lines) for the galaxy
(left column), leptokurtic (middle column) and bimodal (right column) data sets, assuming a
Dirichlet process mixing distribution. Implementation was made using a Marginal sampler (1st
row), the ordered allocation samplers in Sections 3.1 and 3.2 (2nd and 3rd row, respectively)
including data permutations, the ordered allocation sampler in Section 3.1 without data per-
mutations (4th row) and the slice-efficient sampler (5th row).
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IAT of the deviance (Dv) and number occupied components (kn) for these 5 different samplers.

In Figure E1 we show the estimated weighted densities, Q̂j , of each component j ≤ K, as well

as the estimated density, Q̂ =
∑K

j=1 Q̂j , where K is the largest index j, for which Q̂j is not
identical to zero. We have computed

Q̂j =
1

T

T∑
t=1

n
(t)
j

n
g
(
·
∣∣x(t)

j

)
,

for a window of T = 104 iterations after the burn-in period has elapsed. Here x
(t)
1 , x

(t)
2 , . . .

are the sampled component parameters as labelled (or indexed) at iteration t, and n
(t)
j is the

number of data points assigned to the jth component at iteration t. In particular, for the
ordered allocation samplers, components are labelled in the order in which they were discovered
by the (possibly permuted) dataset at each iteration. For the marginal sampler, components
are labelled this way at the first iteration, and at subsequent iterations relabelling only occurred
to delete gaps, i.e. so that the first kn indexes, j, refer to the observed components. As for the
slice sampler, components were never relabelled.

We will first focus on exploring the effects of the acceleration step in Section 3.3. As can
be observed in Figure E1 the ordered allocation sampler without data permutations (OAS1*,
4th row) is more prone to label components consistently throughout iterations, this is reflected

through the propensity of Q̂j to be unimodal. In contrast, for the ordered allocation sampler that

includes the acceleration step of Section 3.3 (OAS1, 2nd row) Q̂j has the shape of the estimated

density Q̂. Thus Q̂j is multimodal when Q̂ is (as is the case of the leptokurtic dataset). This
indicates that more label-switches occur in the OAS1, which is an expected consequence of the
fact that by permuting data points, components are discovered in a distinct order. Comparing
against the graphs of the marginal sampler (1st row), we see that by including the acceleration
step, label-switches occur in a more similar way as they naturally do in marginal samplers,
which is the only type of sampler where labels are completely irrelevant. In terms of algorithmic
performance, in Table E1 we see that the inclusion of data permutations at each iteration
represents a significant improvement of the mixing properties, as the IAT corresponding to the
OAS1 are much smaller than those of the OAS1*. The one exception is the IAT of Dv for the
leptokurtic dataset, which is very similar for the OAS1 and the OAS1*. This is due to the fact
that, although this dataset comes from more than one Gaussian component, it only has one
mode. Thus, it is not clear from which component does each data point come from, this is turn
leads to frequent label-switches even if one does not permute the dataset.

We now turn to explore the algorithmic performance of the OAS2 compared against that the
OAS1, when the latter applies, i.e. the distribution of the size-biased permuted weights, (p̃j) is
available. In Table E1 we see that for the galaxy dataset, the IAT values of the OAS2 compare
very well with those of the OAS1. For the other two datasets instead there is a difference
between the IAT values of the OAS1 and the OAS2. To explain why this happens, recall that
the key distinction between the OAS1 and the OAS2 is that the first one updates (p̃j) directly,
while the OAS2 relies on the the indexes (αj). In particular for the DP model, the OAS2
ignores the fact that the distribution of (p̃j) is available. As mentioned in the main paper, to
update (αj) the OAS2 first updates (αj)j≤kn

(i.e. those of weights of occupied components) and
later (αj)j>kn

, hence swaps between αj and αi, with j ≤ kn < i, mainly occur when occupied
components are created or removed as a consequence of an update of (di). Now, the leptokurtic
and bimodal datasets were both simulated from a mixture of two (more or less) balanced Gaussian
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components. Since we have implemented a Gaussian mixture, at most iterations the sampler
will effectively recognize that there are only two large occupied components (see the 2nd and
3rd columns of Figure E1 for an illustration). Thus the mixing of (αj) will be affected because
components are rarely created of removed. Furthermore, as typically there will be only two large
“ occupied ” weights and the rest of them will be very small, it is extremely unlikely that their
indexes get swapped. Instead, the galaxy dataset was not generated from a Gaussian mixture,
which forces the model to rely on different Gaussian components of varying sizes to estimate
the density (cf. 1st column of Figure E1). This means that the number of occupied components
will change frequently and some of the “ occupied ” weights will be small at many iterations thus
facilitating the mixing of weights’ indexes.

Marginal OAS1 OAS2 OAS1* Conditional

galaxy
Dv 12.30(0.23) 23.76(0.57) 26.76(0.84) 106.9(7.98) 119.2(9.95)
kn 13.68(0.25) 32.49(0.81) 36.36(1.09) 115.2(7.18) 190.2(16.3)

leptokurtic
Dv 22.42(0.54) 25.81(0.63) 35.98(1.00) 26.92(0.75) 120.5(10.3)
kn 9.26(0.13) 18.99(0.41) 27.97(0.88) 44.48(0.60) 100.8(7.18)

bimodal
Dv 7.84(0.16) 13.87(0.35) 20.82(0.57) 50.47(3.20) 35.61(1.68)
kn 6.30(0.07) 13.38(0.22) 25.43(0.87) 39.28(1.33) 52.00(2.18)

Table E1: IAT of Dv and kn (standard errors are shown in parenthesis) for Algorithm 8 in Neal
(2000) (Marginal), the ordered allocation samplers in Sections 3.1 and 3.2 with data permutation
(OAS1 and OAS2, respectively), the ordered allocation sampler in Section 3.1 without data
permutations (OAS1*) and the dependent slice-efficient sampler (Conditional), obtained by
fitting a DP model to the galaxy, leptokurtic and bimodal datasets.
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