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Non-alcoholic fatty liver disease (NAFLD) isacommon, progressive liver
disease strongly associated with the metabolic syndrome. Itis unclear how
progression of NAFLD towards cirrhosis translates into systematic changes
incirculating proteins. Here, we provide a detailed proteo-transcriptomic
map of steatohepatitis and fibrosis during progressive NAFLD. In this
multicentre proteomic study, we characterize 4,730 circulating proteins
in 306 patients with histologically characterized NAFLD and integrate

this with transcriptomic analysis in paired liver tissue. We identify
circulating proteomic signatures for active steatohepatitis and advanced
fibrosis, and correlate these with hepatic transcriptomics to develop a
proteo-transcriptomic signature of 31 markers. Deconvolution of this
signature by single-cell RNA sequencing reveals the hepatic cell types
likely to contribute to proteomic changes with disease progression. As an

exemplar of use as a non-invasive diagnostic, logistic regression establishes
acomposite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4
and TREM2), body mass index and type 2 diabetes mellitus status, to identify

at-risk steatohepatitis.

Non-alcoholic fatty liver disease (NAFLD) is a chronic, progressive
condition affecting about 25% of the global population that is strongly
associated with features of the metabolic syndrome, including obesity
and type 2 diabetes mellitus (T2DM)'. NAFLD is characterized by exces-
sive accumulation of hepatic triglyceride and encompasses a range of
disease states: from steatosis (non-alcoholic fatty liver, NAFL) through
non-alcoholic steatohepatitis (NASH), defined by the presence of hepato-
cyteballooning and lobular inflammation withincreasing fibrosis stage,

to cirrhosis and hepatocellular carcinoma’. Not every patient diagnosed
with NAFL will develop NASH or progressto cirrhosis and end-stage liver
disease, meaning that there is substantial interindividual variationin
disease severity. Patients with greater steatohepatitic disease activity,
defined by a histological NAFLD Activity Score (NAS, the sum of steatosis,
hepatocyte ballooning and lobular inflammation) more than orequal to
4 with fibrosis stage of 2 or more (F > 2) are considered to show ‘at-risk
NASH’ that indicates a high likelihood of progressive disease™’.
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Fig.1| Proteomics analysis from patients with histologically proven
NAFLD to identify circulating markers. a, Schematic overview of the study.
b,c, Differentially expressed proteins in the discovery cohort of 191 patients
stratified on the basis of fibrosis stage F3-4 versus baseline FO-2 (Benjamini-
Hochberg false discovery rate) (b) and functional annotation enrichment

ATP1B4

analysis (c). d,e, Differentially expressed proteins in191 patients stratified on
the basis of a high disease activity score NAS > 4 (Benjamini-Hochberg false
discovery rate) (d) and enrichment analysis (e). f, Venn diagram showing overlap
between the two different analyses. g, Heatmap showing expression of top 50
most significant proteins associated with fibrosis and NAS > 4. FC, fold change.

Several non-invasive tests have been developed toidentify patients
with advanced liver fibrosis. These include use of indirect markers
reflecting liver function and biochemical changes, such as the NAFLD
Fibrosis Score (NFS) or the FIB-4 (ref. 4), and biomarkers that directly
measure collagen turnover, including cleaved pro-collagen type 3
peptide’ or thrombospondin-2 (ref. 6). The FibroScan-AST (FAST)
score based onimaging assessment has proved to be an efficient way to
identify NASH patients considered to be at risk of progressive disease’.
More recently, proteomic approaches have been used to identify clas-
sifiers that differentiate advanced from early fibrosis®’. In contrast,
effective biomarkers that identify steatohepatitis and grade activity
remain elusive, the field therefore relies on histological assessment
thatisinvasive and has considerable interobserver variability.

In this study, we integrate proteomics and RNA sequencing
(RNA-seq) approaches to understand pathophysiological changes
associated with NAFLD in humans and establish whether candidate
circulating biomarkers might originate from the liver (Fig. 1a); asimilar
approach to that used recently in human alcoholic liver disease'® and

NAFLD animal models". Our study included 336 samples from patients
with histologically characterized NAFLD derived from the European
NAFLD Registry'. The discovery cohort comprised 191 plasmasamples
and the independent validation cohorts included 115 serum samples
together with 30 liver biopsies. Within the discovery cohort, 38.4%
were female, the average age was 55.2 (+11) years, average body mass
index (BMI) was 33.5 (+6.7) and 60.7% had type 2 diabetes (Table 1
and Supplementary Table1). Samples were processed for proteomics
using the SomaScanv.4.0 platform, measuring 4,730 unique proteins
and reads were corrected for sex, centre and T2DM (Extended Data
Fig.1). When stratifying patients on the basis of fibrosis stage (F), rang-
ing from O to 4 and comparing advanced (F3-4) with mild (FO-2), we
found 117 unique proteins (121 probes) to be differentially expressed
(Fig. 1b and Supplementary Table 2). Functional annotation enrich-
ment clustered proteins correlating to pathways such as ‘celladhesion’,
‘inflammatory response’ and ‘carbohydrate metabolism’ (Fig. 1c). When
stratifying patients on the basis of a high disease activity using NAS > 4,
we found 52 differentially expressed proteins (53 probes) (Fig.1d and
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Table 1| Patient demographics

Clinicalfeature Discoverycohort Discovery Validation cohort
(n=191) RNA-seqcohort  (n=115)
(n=52)

Age (years) 55.24+11.04 54.02+13.25 52.32+£12.53
Sex (% female) 387 36.5 44.3
BMI 33.47+6.67 31.31£5.38 32+5.82
T2DM (%) 60.73 577 52.2
Platelets x10° 224.08+67.57 216.1£60.59 232.75+62.86
Albumin (gdl™)  4.47+0.34 4.47+0.3 4.24+0.37
AST (ul™) 43.27+21.80 42.44+24.31 49.82+31.37
ALT (ul™) 59.70+33.47 59.65+33.03 72.39+49.81
Steatosis

1 72 19 50

2 82 27 46

& 37 6 19
Ballooning

0 26 9 V|

1 108 31 47

2 57 12 27
Lobular inflammation

0 19 3 28

1 109 39 60

2 61 9 24

3 2 1 3
Brunt fibrosis

0 30 n 22

1 56 14 29

2 26 7 33

3 56 12 19

4 23 8 12

Supplementary Table 3). Enrichment analysis grouped proteinsrelating
to ‘lipid metabolism’,‘amino-acid biosynthesis’ or ‘bile acid catabolism’
(Fig.1e). The two comparisons, advanced fibrosis and NAS > 4, shared
30 differentially expressed proteins (Fig. 1f). When looking at the
top 50 most significant differentially expressed proteins for each of
these two comparisons, different dynamic expression patterns were
observed as NAFLD progressed (Fig.1g). Clear differences were seenin
proteins associated with fibrogenesis and steatohepatitis during the
pathogenesis of NAFLD: proteins associated with steatohepatitic activ-
ity (NAS > 4) tended to peak in NASH F2-3 and then fall with progres-
sionto cirrhosis. By contrast, proteins purely associated with fibrosis
increased steadily, peakingin cirrhosis (F4) (Fig. 1g).

To establish that the circulating proteins were of hepatic origin,
and to further characterize their cellular origins within the liver, we
conducted a two-stage analysis. First, a proteo-transcriptomic com-
parisoninacohort of matching plasma-liver biopsy samples that were
asubset of the discovery cohort, and second, anintegrated single-cell
RNA-seqand tissue expression analysis using publicly available data®.

We performed linear correlations between circulating proteins
on the basis of the SomaScan read-out and hepatic messenger RNA
obtained from RNA-seq analysis in a subset of 52 cases from the dis-
covery cohort with matching plasma-liver biopsy samples. Here, 4,584
protein probes, matching 4,292 proteins and/or genes, were identified
in the RNA-seq data, of which 194 significantly correlated with each

other (Fig. 2a and Supplementary Table 4). Within these 194 correla-
tions, 31 proteins had beenidentified in the two previous comparisons
described above (Fig. 2a). Eight of these 31 signals were associated
with both NAS >4 and advanced fibrosis (F3-4), including THBS2,
APOF, ADAMTSL2, CFHR4, TREM2, AKR1B10, SULT2A1 and PTGR1.
In addition, 21 positive correlations were uniquely identified in the
advanced fibrosis comparison, including GDF15, IGFBP7 and SHBG,
while two correlations were from the NAS >4 comparison (ADSSL1
and ENO3) (Fig. 2a).

GTex tissue expression analysis indicated that several of the 31
proteins in the signature are enriched in normal human liver, includ-
ing the markers APOF, CFHR4, PTGR1, SULT2A1 and SHBG (Extended
DataFig.2). Additionally, supervised analysis using bulk RNA-seq data
fromalarge cohort of 206 patients with NAFLD', showed that most of
our signature changes occur in patients with advanced fibrosis and/
or NAS >4 (Supplementary Table 5). Integrated single-cell RNA-seq
analysis showed that the 31signature proteins can be found in different
hepatic cell populations (Fig. 2b). Of the 31 markers, 18 were enriched
inepithelial cells, hepatocytes or cholangiocytes (including AKRIBIO,
CFHR4 and PTGRI) compared to other hepatic cells, while other mark-
ers were primarily restricted to fibroblasts (ADAMTSL2, THBS2) or
macrophages (CXCL8 and TREM?2) (Fig. 2b).

To demonstrate the potential power of our proteo-transcriptomics
signature strategy to support development of new non-invasive diag-
nostics to detect fibrosing-steatohepatitis, we performed logistic
regression analysis to identify patients with ‘at-risk NASH’, defined
as NAS >4 (with at least one point deriving from each NAS compo-
nent) plus F > 2 fibrosis. Backward elimination of variables identified
acomposite modelin the discovery cohort (n =191) that could classify
patients with at-risk NASH with an area under the curve (AUC) of 0.878
(+0.025) including the variables BMI, T2DM and circulating ADAMTSL2,
AKR1B10, CFHR4 and TREM2 (Fig. 3a), independent from any other
clinical variables. The classification model had a positive predictive
value of 0.79 and a negative predictive value of 0.85 (Supplementary
Table 6). It significantly outperformed established non-invasive tests
including the FIB-4, NFS and aspartate transaminase (AST) to alanine
transaminase (ALT) ratio scores in the entire discovery cohort of 191
patients, and had ahigher AUC compared to the FAST score, which was
available for a subset of 62 patients (Fig. 3b, Extended Data Fig. 3 and
Supplementary Table 6). These findings were validated in anindepend-
ent cohort of 115 samples where the model had an AUC of 0.80 (+0.04)
(Fig. 3¢, Extended Data Fig. 3 and Supplementary Table 6).

In this study, we have identified proteo-transcriptomic con-
nections associated with features of progressive NAFLD. While only
CFHR4 is uniquely expressed in healthy liver (Extended Data Fig. 2),
ADAMTSL2, AKR1B10 and TREM2 have been previously beenreported
toplayaroleinthe progression of liver diseases and NAFLD. Single-cell
RNA-seq has showed that TREM2-positive macrophages are associ-
ated with hepatic portal fibrosis, while ADAMTSL2 reflects a zonal
activation of hepatic stellate cells™'°. Soluble ADAMTSL2 proved to
be a good biomarker to identify significant and advanced fibrosis in
patients with NAFLD, while circulating TREM2 levels have proved to
stratify patients with NASH*”. Soluble levels of TREM2 are believed to
reflect the recruitment and expansion of TREM2-positive macrophages
localizing to fibrotic areas in the liver, in aresponse to resolve steato-
hepatitis'®. Using a high-throughput RNA-seq approach ina cohort of
206 NAFLD biopsies to understand the pathogenesis disease progres-
sion, we recently showed that changes in transcription of the epithe-
lial markers AKR1B10 and GDFI5 can also lead to altered circulating
concentrations of these proteins, serving as putative biomarkers for
fibrosing-steatohepatitis*. To support these findings, we performed
immunohistochemical stainings on series of 30 NAFLD biopsies.
AKR1B10 positivity was more prominentin advanced NAFLD, and was
observed in ballooned hepatocytes and hepatocytes neighbouring
necro-inflammatory foci and periportal/periseptal areas (Fig. 2d).
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Fig.2|Proteo-transcriptomics correlation. a, Pearson correlation analysis between plasma proteome (4,584 protein probes, matching 4,292 proteins and/or
genes) and matching hepatic mRNA in a subset of the discovery cohort (n =52). b, Integrated single-cell RNA-seq analysis to deconvolute the 31 signatures of proteins

associated with hepatic mRNA.

This study has some limitations as we assessed linear associations
between protein and hepatic mRNA in a European White cohort only,
which does not exclude the potential contribution of other organs to
the expression of the circulating proteins or that other factors con-
tribute in different ethnic groups. We were also limited in our ability to
confirmsome proteomic findings in hepatic tissue due to limited avail-
ability of appropriate antibodies. Nevertheless, we have highlighted
the complexity of the differentliver cell populations and showed that
circulating proteins correlating with hepatic mRNA can be used to
identify patients with at-risk NASH.

Methods

Patient selection

Atotal of 336 histologically characterized cases were derived from the
European NAFLD Registry (NCT04442334); samples were collected as
previously described™. European White patients have been treated and
diagnosed for NAFLD on the basis of histology at specialized centres
including Angers and Paris (France), Mainz (Germany), Turin (Italy),
Linkoping (Sweden) and Newcastle upon Tyne (UK). The discovery
cohortcomprised 191 plasmasamples and theindependent validation
cohortsincluded 115 serumsamples and 30 paraffinliver biopsies sec-
tions (Table 1 and Supplementary Table 1). A subset of the discovery
cohort, comprising 52 of these cases had frozen liver tissue available
for RNA extraction. All liver samples were centrally scored according
to the semiquantitative NASH-CRN Scoring System by an expert liver
pathologist. Fibrosis stage ranged from FO to F4 (cirrhosis) and the
NAS was defined as the sum of the scores for steatosis, hepatocyte
ballooning and lobular inflammation®. Alternative diagnoses and
aetiologies such as excessive alcohol intake, autoimmune liver dis-
eases, viral hepatitis and steatogenic medication use were excluded.
Sex and/or gender of participants was determined on the basis of
self-report. This study hasbeen approved by the relevant Ethical Com-
mittees in the participating centres and all patients having provided
informed consent.

Proteomics

The proteomic aptamer-based SomaScan Platform (SomalLogic) was
used to process 191 plasma and 115 serum human samples (20 pl, 1in
20 dilution)®. To each sample slow off-rate modified labelled aptam-
ers were added to form SOMAmer-protein bead complexes. The
beads were captured, and non-specifically bound reagents were sub-
sequently removed. SOMAmers were quantified by hybridization to
DNA microarrays. Relative quantity of SOMAmer reagents measured by
the SomaScan assay reflecting original protein concentrations (thatis,
relative fluorescent units, RFUs). Counts were analysed for differential
expression using linear models asimplemented by the R package limma
(https://www.bioconductor.org/) and correcting for centre, sex and
T2DM. Statistical significance was determined by a corrected Pvalue
less than 0.05 (Benjamini-Hochberg false discovery rate) and a fold
change of more than1.25.

RNA-seq

As previously described, mRNA was extracted from frozen liver biopsy
samples and processed with the TruSeq RNA Library Prep Kit v.2 and
sequenced on the NextSeq 550 System (Illumina)™. Data are available
on the NCBI GEO repository (GSE135251). Raw sequencing quality
assessmentand alignment to thereference genome (GRCh38, Ensembl
release 76) was done using Fastqc (v.0.11.5) and MultiQC (v.1.2dev), and
gene count tables were produced with HT-Seq. Counts were normal-
ized using the trimmed mean of M values method and transformed
using limma’s voom methodology. A correction for centre, sex and
batch was implemented. Pearson correlation was used to investigate
linearity between hepatic mRNA and circulating proteins. A P< 0.01
was considered significant. Tissue expression analysis was conducted
using GTEx (https://gtexportal.org/). Supervised analysis was done
as previously described™. Deconvolution to identify cell of origin was
done using publicly available single-cell RNA-seq data (GSE115469)
from liver samples obtained from neurological deceased individuals”.
Thetransformed normalized and cluster identifiers were obtained from
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Fig.3|Non-invasive diagnostic tool to identify patients with at-risk NASH.
a, Binary logistic regression modelling identified a composite model in the
discovery cohort (n =191 patients) that could classify patients with at-risk
NASH on the basis of the variables BMI, T2DM and circulating ADAMTSL2,
AKR1B10, CFHR4 and TREM2. b, Performance of the classification model in two
independent cohorts (discovery n =191 patients, validation n = 115 patients)

in comparison with NFS, Fibrosis-4 (FIB-4) and AST:ALT ratio. Bar charts
present AUC for each score with the corresponding standard error of area,

as calculated by ROC analysis. Paired-sample area difference under the ROC

curve test was used to compare the classification model with the other scores
(discovery cohort NFS P=0.000001, FIB-4 P=7.8667 x 107 and AST:ALT ratio
P=6.85x107% validation cohort NFS P= 0.000429, FIB-4 P= 0.000949 and
AST:ALT ratio P=0.000036) (****P < 0.0001, **P < 0.001). ¢, Representative
images of immunohistochemistry and quantification for AKR1B10 in human liver
biopsies (n =30 biologically independent patient samples). Scale bars, 100 pm.
Data are presented as mean + s.e.m. (Kruskal-Wallis with Bonferroni correction
and Mann-Whitney U-test). Arrows indicate necro-inflammatory region with
ballooned hepatocytes.

the Human Protein Atlas (https://www.proteinatlas.org/). For each
marker of interest, the Zscore was calculated to visualize expression
per cell cluster. The DAVID annotation tool was used for functional
protein pathway enrichment on the basis of UniprotkKB Keywords and
Homo Sapiens background®.

Immunohistochemistry

Human formalin-fixed paraffin-embedded liver biopsies (n=30)
were immunostained with antibody directed against human
AKRI1B10 (ab232623, Abcam; EDTA, 1/500). Immunostains were
performed manually at room temperature using Envision Flex+
reagent (Dako) as secondary antibody with 3’,3’-diaminobenzidine
visualization. Immunopositive cells were quantified in three dif-
ferent high power fields (magnification x400) using a bright field
microscope.

Statistics

The Kolmogorov-Smirnov and Shapiro-Wilk normality tests, one-way
analysis of variance with Dunnett’s test, Chi-square, Mann-Whitney
U-test and Kruskal-Wallis test with Bonferroni correction were

performed in IBM SPSS v.s27 or GraphPad Prism 9. Binary logistic
regression analysis was carried out in IBM SPSS v.27 using Backward
Stepwise Likelihood Ratio model including clinical parameters sex,
age, BMI, ALT, AST, albumin, platelet count and T2DM, and the uncor-
rected values of the circulating proteins as measured by SomaScan
identified as hepatic markers associated with F3-4 and NAS > 4. The
model identifying patients with NASH + F > 2 + NAS > 4 with at least
one pointderiving fromeach NAS component, and the FIB-4, NFS and
FAST scores were calculated as follows:

(1) Classification model =-6.236112 + (0.082163 x BMI) + (1.110341
x T2DM) +(0.001084 x ADAMTSL2) - (0.000031 x CFHR4) + (0.
000060 x TREM2) +(0.000048 x AKR1B10)

FIB-4* = (age (years) x AST (U1™))/((platelets (10° per 1)) x VALT
wrh)

NFS*=1.675+0.037 x age (years) + 0.094 x BMI (kg m™) + 1.1

3 x T2DM + (0.99 x AST:ALT ratio) (0.013 x platelet (10° per 1))
(0.66 x albumin (g dI™))

FAST = (€ (~1.65+1.07xIn(LSM)+2.66x10~8 CAP3—63.3xAST ™))/

(1 + e(-1.65+1.07xIn(LSM)+2.66x10~8 CAP3—63.3xAST "))

@
3)

“@)
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Receiver operating characteristic (ROC) analyses and AUC cal-
culations were performed with IBM SPSS v.27. Paired-Sample Area
Difference under the ROC curve was used as statistical test. The binary
cut-off for the classification model was set at greater than -0.4491 to
rule in patients with NASH + F >2 + NAS > 4, the FIB-4 score was set at
more than 1.3, the FAST score at more than 0.67 to rule in and equal
to or less than 0.35 to rule out. Graphs have been generated using
R ggplot2, R pheatmap and GraphPad Prism 9. lllustrations within
Fig.1a were created with BioRender.com.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

RNA-seq dataare available on the NCBI GEO repository (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135251). Source dataare
provided with this paper.

Code availability

The analysis investigating the differentially expressed proteins and
transcripts was carried out following the vignette for the R package
limma (https://bioconductor.org/packages/release/bioc/html/limma.
html).
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characteristic (ROC) analysis. Paired-Sample Area Difference under the ROC
curve test was used to compare the classification model with other scores
(discovery cohort FAST p = 0.111826, NFS p = 0.050406, FIB-4 p = 0.003247
and AST/ALT ratio p = 0.016038; validation cohort FAST p = 0.045552, NFS
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