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Abstract

Anatomical complexity and data dimensionality present major issues when analysing brain

connectivity data. The functional and anatomical aspects of the connections taking place

in the brain are in fact equally relevant and strongly intertwined. However, due to theoreti-

cal challenges and computational issues, their relationship is often overlooked in neurosci-

ence and clinical research. In this work, we propose to tackle this problem through Smooth

Functional Principal Component Analysis, which enables to perform dimensional reduction

and exploration of the variability in functional connectivity maps, complying with the formi-

dably complicated anatomy of the grey matter volume. In particular, we analyse a popula-

tion that includes controls and subjects affected by schizophrenia, starting from fMRI data

acquired at rest and during a task-switching paradigm. For both sessions, we first identify

the common modes of variation in the entire population. We hence explore whether the

subjects’ expressions along these common modes of variation differ between controls and

pathological subjects. In each session, we find principal components that are significantly

differently expressed in the healthy vs pathological subjects (with p-values < 0.001),

highlighting clearly interpretable differences in the connectivity in the two subpopulations.

For instance, the second and third principal components for the rest session capture the

imbalance between the Default Mode and Executive Networks characterizing schizophre-

nia patients.

Introduction

Functional Magnetic Resonance Imaging (fMRI) based studies are standard in neuroscience to

explore functional connections in the brain and how they can be affected by psychiatric and

neurological diseases [1]. Neurodegenerative pathologies, indeed, affect both anatomical and

functional connections in the brain, resulting also in modifications in their relationship (see,

e.g., [2, 3]). Nonetheless, the analysis of this type of data still presents relevant theoretical and

technical challenges, due for instance to the data dimensionality and to the complicated anat-

omy of the brain.
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The high dimensionality of fMRI data poses major statistical and computational issues, yet

to be fully addressed [4–6]. Various alternative approaches to dimensionality reduction of

fMRI data have been proposed in the literature, including adaptations of Principal Component

Analysis (PCA) to the context of large-scale datasets (see, e.g., [7]). Moreover, Blood-Oxygen-

ation Level Dependent (BOLD) signals have also been considered as functional data [8–11],

and analysed through functional PCA methods (see, e.g., [12, 13]). However, high dimension-

ality is not the only challenge when applying PCA to the analysis of fMRI data.

Other critical issues are posed for instance by anatomical complexity. Indeed, the brain cor-

tex has a highly complicated anatomy, characterized by the presence of gyri and sulci, funda-

mental to its correct functioning. Of course, fMRI signals observed within the same brain area

are usually related. It should though be noted that areas carrying out distinct functions may be

close in three-dimensional space, due to the aforementioned highly-folded structure of the

brain. Because of these aspects, the application of classical multivariate dimensional reduction

techniques, as well as of state-of-the arts methods for functional data, such as functional PCA,

may lead to unsatisfactory or misleading results. The former techniques may present unsatis-

factory results, since they disregard the spatial structure in the data, and are hence incapable of

borrowing information from signals observed at nearby locations, where they are correlated.

The latter techniques, based on functional data analysis, may instead produce artifacts, since

these methods rely on the Euclidean metrics, and hence neglect the highly non-Euclidean

brain anatomy, and its effects on the BOLD signals. See also the discussions in [14–16].

For these reasons, [15] proposed a form of PCA able to handle observations located over a

complicated two-dimensional manifold, and applied it to Functional Connectivity (FC) maps

computed over the cortical surface of the brain. In particular, they consider a penalization

term that permits to include the manifold geometry into the estimation problem, thus appro-

priately accounting for the complicated shape of the cerebral cortex [17]. The extracted eigen-

functions may hence be treated with classical Functional Data Analysis tools. Others advanced

data analysis methods capable of complying with the complex anatomy of the cortex have been

proposed in, e.g., [14, 18–20].

In this work, we aim to expand the approach proposed by [15] to data observed within volu-

metric domains with complicated shapes, considering FC maps computed within the grey

matter volume. We propose a method to compute principal components of connectivity maps,

where we appropriately consider domain-specific distances, within the grey matter volume,

respecting the highly non-Euclidean anatomy of the brain. In particular, the method features a

regularizing term, defined over the grey matter volume, that leads to the computation of dis-

tances within this volume, and not across sulci or other concavities in the grey matter. More-

over, to address the computational issues linked to the dimensionality of data, the considered

technique leverages an appropriate finite element discretization, defined over the tetrahedral

mesh representing the grey matter volume, over which the fMRI data are mapped. By merging

approaches and ideas from statistics and from scientific computing, the considered Smooth

Functional Principal Component Analysis (SF-PCA) tackles the challenges posed by both ana-

tomical complexity and data dimensionality, permitting to explore the variability in neuroim-

aging signals associated with neural connectivity in the grey matter, complying with its

complicated structure, at a sustainable computational cost.

To prove the validity of SF-PCA in this context, we analyze data from an experimental pop-

ulation composed of subjects affected by schizophrenia and by controls. Schizophrenia is a

severe psychiatric condition characterized by hallucinations, delusions, and impaired cognitive

function, hypothesized to result from abnormal anatomical neural connectivity, and a conse-

quent decoupling of the brain’s integrative thought processes [21–24]. The impact of this

pathology on brain connectivity has been widely explored, both through resting-state and
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task-based fMRI experiments, leading to a well-defined description of the impact of schizo-

phrenia on brain connections [25–27]. For this purpose, we consider the FC maps computed

on fMRI data acquired during resting-state and also while carrying out a task based on the

switching paradigm. We assess the adequacy of the proposed SF-PCA method to analyze FC

maps computed on grey matter volume domains. In particular, we first consider the entire

population, including both controls and subjects affected by schizophrenia, and we extract the

main common modes of variation of brain connectivity, identified by the Smooth Functional

Principal Components (SF-PCs) of the FC maps. We then explore whether the corresponding

SF-PCs scores, that describe the subjects’ expression along these common modes of variation,

differ significantly between the healthy and pathological subgroups. A significant difference in

the expression of the main modes of variation would indeed highlight differences in the

expression of the associated connectivity patterns. This aspect is further explored by Linear

Discriminant Analysis of the SF-PCs scores, considering the Area Under the Curve of its

receiver operating characteristic curve [28]. A comparison with standard MV-PCA highlights

the advantages of the proposed method in terms of interpretability of the obtained principal

components. Finally, we discuss how the differences in the expression of the SF-PCs corrobo-

rate previous findings in literature and also shed new light on connectivity impairment in

schizophrenia.

Materials and methods

This section describes the fMRI dataset employed in the present study, the experimental proto-

col, and the population enrolled, alongside the preprocessing and analysis pipelines.

Data

The data analyzed in this work has been originally collected and made available by [29]. Partic-

ipants were reached through a patient-oriented strategy involving local clinics and online por-

tals, different from the methods employed to recruit healthy volunteers, who were enlisted by

community advertisements from the Los Angeles area. After receiving a verbal explanation of

the study, participants gave written informed consent following procedures approved by the

Institutional Review Boards at UCLA and the Los Angeles County Department of Mental

Health [29]. All data was collected before 2016 (the date on which the acquisition started is

undisclosed) and first published on 27 January 2016. In this work we are employing the pre-

processed version of the dataset by [30], made available by the Consortium for Neuropsychiat-

ric Phenomics at UCLA. The last update of the preprocessed version of the dataset is dated

21st April 2020. In none of the stages of this work, we had access to information that could

identify the participants in the study. The fMRI data were acquired through a 3T Siemens Trio

scanner. T1-weighted high-resolution anatomical scans were collected with the following

parameters: slice thickness = 1mm for 176 slices, TR = 1.9s, TE = 2.26ms, matrix = 256x256,

FOV = 250mm. The T2*-weighted BOLD fMRI sequence parameters instead are: slice

thickness = 4mm for 34 slices, TR = 2s, TE = 30ms, flip angle = 90˚, matrix = 64×64,

FOV = 192mm. For both the considered sessions, the authors acquired 34 volumes. The data

are made available as coregistered to the skull-stripped ICBM 152 Nonlinear Asymmetrical

template version 2009c [31, 32]. The registration to the template allows to indirectly account

for structural dissimilarities characterizing the two groups, among which the atrophy affecting

schizophrenia patients.

The complete preprocessing and alignment pipeline, firstly proposed and standardized in

[33], is described in [30]. Nonetheless, for better clarity, the main steps performed can be sum-

marized in three main blocks:
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• T1w preprocessing: bias field is addressed via ANTs N4BiasFieldCorrection v2.1.08 [34],

skullstripping using antsBrainExtraction.sh v2.1.0, and coregistration to the ICBM 152 Non-

linear Asymmetrical template version 2009c9 [31, 32] through ANTs v2.1.0 [35].

• Surface estimation from the bias field corrected T1w, through antsBrainExtraction. The

skull-stripping is then performed via FreeSurfer v6.0.0 [36].

• EPI preprocessing: motion artifacts and geometric distortions are removed through

MCFLIRT v5.0.9 [37]. Skull-stripping is perfomed via BET and 3d AutoMask, finally core-

gistration to T1w is applied via FreeSurfer. The EPI preprocessing is performed in a single

step using antsApplyTransformations v2.1.0, a tool performing a non-linear registration step

addressing motion correcting, transformation to T1 weighted space and MNI template

warp.

Participants

The dataset contains the fMRI scans of patients affected by either schizophrenia, bipolar disor-

der, or ADHD plus the control group. The fMRI were acquired during rest and while perform-

ing different tasks. Exclusion criteria were: left-handedness, pregnancy, history of head injury

with loss of consciousness, diagnoses ascribable to more than one patient group or contraindi-

cations to undergo fMRI scanning.

For the present study, we select a subsample of the dataset, referring to 120 subjects from

the control (CTRL) group, and 50 affected by schizophrenia (SCHZ). We analyze their rest-

ing state (REST) fMRI. Among the available task-based fMRIs, we consider those referring

to the task-switching (SWITCH) paradigm. A control subject did not perform the switching

task, thus the resulting population comprises 120 CTRL fMRIs for the REST session and 119

fMRIs for the SWITCH one. Instead, all the 50 SCHZ subjects participated in both sessions.

Median age is 28 years (interquartile range: 15 years) for CTRL and 37 years (interquartile

range: 14 years) for SCHZ. The percentage of males is 51.26% for CTRL and 76.00% for

SCHZ.

Experimental paradigm

The experimental paradigm consists of two separate sessions. During each session, the

fMRI is acquired while the subject performs a task. All the procedures were approved by the

Institutional Review Boards at UCLA and the Los Angeles County Department of Mental

Health. In the present work, as above mentioned, we consider two fMRI sessions, acquired

during:

• REST: the participants were asked to relax and keep their eyes open. They were not pre-

sented any stimuli or asked to respond during the scan. This session lasted 304 seconds.

• SWITCH: the participants were presented an image plus an instruction cue describing how

to react to the image. Each image included a shape and a colour, from a set of four (either a

red triangle, a red circle, a green triangle, or a green circle). Participants were given instruc-

tion to respond either to the stimuli’s color (possible cues: “COLOR” or “C”) or shape (possi-

ble cues: “SHAPE” or “S”). On 33% of trials, the instructions switched, such that participants

were instructed to switch from responding from shape to color, or vice versa. On the remain-

ing 67% of trials, the instructions remained the same, but the cues changed (e.g. from

“SHAPE” to “S”). This task was designed to measure the changes in reaction time between

trials requiring versus not requiring a switch in responding.
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Analysis

This subsection describes in detail the analysis pipeline, providing also indications on the

Matlab [38] and R [39] software used.

Brain mesh creation and data preprocessing. In order to apply Smooth Functional Prin-

cipal Component Analysis (SF-PCA) we need a Finite Element mesh that discretizes the com-

mon brain volume, given by the ICBM 152 Nonlinear Asymmetrical template (version 2009c)

[31, 32], to which all subjects’ data have been aligned, as detailed in the preprocessing steps

above. With some abuse of notation, we denote by D both the original template domain, as well

as the tetrahedral mesh discretizing it. The mesh D is computed through the Brain2Mesh
Matlab toolbox (version 0.80) [40, 41]. The number of mesh nodes is automatically computed

by the Brain2Mesh tool, with an algorithm that considers the tissues to be segmented and

the desired mesh density. In this work, we selected the finest mesh possible with respect to the

data resolution. Specifically, approximately 46 000 voxels of the original fMRI contain informa-

tion regarding brain activity, including both the grey and the white matter. Since we only con-

sider the grey matter, this leads to a mesh of 36 035 nodes. Each mesh node is associated with a

cerebral region according to the Hammers’ atlas (rigidly registered to the template) [42, 43] and

to a voxel of the fMRI. Thus, each node in the grey matter mesh corresponds to a BOLD signal,

that we highpass filter at 0.01 Hz to remove the linear drift and low-frequency noise [1].

Connectivity map. For each subject, we compute the Functional Connectivity (FC) maps

through a seed-based technique, a straightforward approach to FC computation [1]. Previous

research has shown the effectiveness of this method, also in comparison to more sophisticated

approaches (see, e.g., [44, 45]). The seeds, named regions of interest, are selected regions

which, according to previous findings, are of particular interest with respect to the considered

task. In particular, we consider the following seeds:

• Seed for REST session: we consider as the region of interest the anterior part of the cingulate

gyrus, in the left hemisphere, that corresponds to the label number 24 of the Hammer’s atlas

[27]. In the considered brain discretization, this seed region is discretized in mseed = 113

nodes. Previous studies observed anatomical abnormalities in the grey matter of patients

affected by schizophrenia [46] in association with a loss of connectivity in this region [47,

48]. Moreover, this region is hypothesized to play a pivotal role in the onset and progression

of the pathology [49].

• Seed for SWITCH session: we consider as the region of interest the middle frontal gyrus of

the right hemisphere, corresponding to the Hammer’s atlas label number 29. This seed

region is discretized in mseed = 1007 nodes. The strength of functional connections between

the right and left middle frontal gyrus has been found to predict performances in task-

switching in subjects affected by cognitive impairment [50, 51].

For each subject, we compute the FC maps through the following preprocessing steps:

1. we associate to each node pj (for j = 1, . . ., m and m = 36 035), of the grey matter volume D,

its BOLD signal tj;

2. we compute the mean BOLD signal �t over the seed region;

3. we associate to each node pj a single value of correlation ρj, that corresponds to the Pearson

correlation coefficient between the mean time series over the seed region �t and the BOLD tj

in pj;

4. we compute the z-Fisher’s transform of the Pearson’s correlation in each node, in order to

stabilize variance [1].
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Finally, for both the REST and SWITCH, we organize the extracted z-scores in a matrix Z

of size n ×m, where n is the number of subjects enrolled in the study and m the number of

nodes in the mesh. As indicated above, the number of subjects n is 170 for REST and 169 for

SWITCH. The number of mesh nodes m is 36 035 for each session, as it does not depend on

the considered seed.

Smooth functional principal component analysis. In our data setting, each row of the

data matrix Z is the noisy evaluation of the connectivity map for one subject, defined over the

grey matter volume D, and evaluated at the m nodes pj of its tetrahedral mesh discretization.

Our goal is to extract some components that describe the strongest modes of variations in the

computed connectivity maps, that is in the data matrix Z, similarly to the standard MultiVari-

ate Principal Component Analysis (MV-PCA). However, differently from MV-PCA, where

the components are vectors in Rm
, we would like these components to be functions f defined

over the whole domain D, i.e., f : D! R, and to be smooth. This would permit to appropri-

ately consider the spatial structure in the observed map. To do so, we embed our analysis in

the framework of Functional Data Analysis [8–11]. In particular, we consider the Smooth

Functional Principal Component Analysis (SF-PCA) method, previously proposed by [15] for

the analysis of functional maps referring to the cortical surface, and we extend it to the case of

data referred to the grey matter.

The proposed SF-PCA approach relies on the computation of the principal components as

a low-rank approximation of the data matrix [52], and proceeds to estimate the components

sequentially, starting from the first one. Specifically, for each component, we consider a rank-1

approximation to a PCA problem for zero-centered random variables. With abuse of notation,

we continue to denote by Z the zero-centered data matrix. The rank-1 approximation problem

involves the minimization of the functional

Xm

j¼1

Xn

i¼1

fzji � si f ðpjÞg
2

where zji is the value of the zero-centered connectivity map, evaluated at the mesh node pj for

the i-th subject, f is the component we aim to estimate, and s = (s1, . . ., sn)> is the associated

score vector. The above functional does not account for the desired smoothness of the PC f.
Therefore, following a common approach in regularized regression, we add to the functional

the term s>s
R

DðDf Þ
2
, which penalizes functions with high oscillations. Specifically, the opera-

tor Δf is the Laplacian of f, defined as

Df ¼
@

2f
@p2

x

þ
@

2f
@p2

y

þ
@

2f
@p2

z

and measures the local curvature of the function f, as defined on the domain D. Therefore, the

first principal component f̂ and the first score vector ŝ are computed minimizing the func-

tional:

Xm

j¼1

Xn

i¼1

fzji � si f ðpjÞg
2
þ ls>s

Z

D
ðDf Þ2 ð1Þ

where λ> 0 is a tuning parameter, usually referred to as smoothing parameter, that regulates

the relative magnitude of the two terms in the functional. In particular, large values of λ pro-

duce a very smooth functional component, while small values of λ return a noisier principal

component, closer to the multivariate one. It should be noticed that the inclusion in the esti-

mation functional of the regularizing term s>s
R

DðDf Þ
2
, that is defined over the spatial domain
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D, makes the estimation problem domain-specific. Indeed, to return a smooth PC f, the

method borrows information from data observed at nearby locations, i.e., data zji observed at

spatial locations pj that are close in the grey matter volume D, where the distance is naturally

computed within the domain D. Because of this, the method returns estimated PC functions

that comply with the complex brain shape and do not artificially smooth data at locations that

are close in 3D space, but far away in the grey matter volume, as they are for instance separated

by a sulcus.

The functional in Eq (1) is written in a continuous form for f on the grey matter volume.

However, to carry out the minimization problem, such a problem is discretized with linear

finite elements. In particular, we represent the PC function f by a linear finite element func-

tion, defined on the grey matter mesh. A linear finite element function is defined by the values

that it assumes at the mesh nodes and it is linear over each mesh element, i.e., over each tetra-

hedron. Therefore, each linear finite element function is uniquely associated with a vector of

dimension m, the number of mesh nodes. The discretization of the integral of the square of the

Laplacian of f, in the second term of the functional (1), is computed following a mixed finite

element approach, similarly to the manifold case in [15]. Moreover, the minimization problem

is solved in a 2-step iterative algorithm: in the first step f is kept fixed and the optimization is

performed in s, while in the second step s is kept fix and the optimization is performed in f. As

initial value for f, the first multivariate PC is used. Finally, as mentioned above, the subsequent

components are computed with the same 2-step iterative algorithm, after subtracting the previ-

ous principal components from the data matrix Z.

We apply the described SF-PCA separately to the two sessions, REST and SWITCH, setting

λ = 10−1. Alongside, we extract the corresponding PC scores, that indicate the subjects’ expres-

sions on the common modes of variation. The method is implemented through the R/C++
library fdaPDE [53].

Group comparison and SF-PCs interpretation. For each session, we carry out SF-PCA

on the entire population, including healthy and pathological traces, to identify the common

modes of variation. Once the main modes of variation, in the entire population, are identified,

we look for differences in their expression between the two subgroups of healthy and pathologi-

cal subjects. Indeed, a significant difference in the expression of the main modes of variation,

i.e., on the PC scores, can highlight differences in the expressions of the associated connectivity

patterns. To do so, we first compare the SF-PCs’ scores distribution of the SCHZ and CTRL

groups through a Wilcoxon test. We set the significance threshold at α = 0.01. We further

explore differences in the SF-PC scores through an Linear Discriminant Analysis (LDA) in a

leave-one-out cross-validation; the metric employed for evaluation is the Area Under the

Curve (AUC) of its receiving operating curve [28]. For a comparison with previous approaches

present in literature, we replicate such analysis with the standard multivariate PCA (MV-PCA).

We finally evaluate if the diagnosis-based differences highlighted by SF-PCA can provide

meaningful insights into the pathology in analysis. To do so, we investigate if the modes of var-

iation highlighted by the SF-PCs comply with previous findings in the state of the art.

Given the unbalance, in terms of sex and age, of the SCHZ and CTRL groups, we also evalu-

ate if the emerged differences can be linked to such covariates. For this purpose, we compare

the SF-PCs’ scores distributions for the two sexes through Wilcoxon tests, and the Pearson cor-

relation between the SF-PCs’ scores and the age.

Results

Before describing the results of the proposed analysis pipeline, we show that simple depiction

of raw connectivity fails to highlight differences between clinically different populations. Fig 1
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depicts the mean connectivity maps of the two populations, CTRL and SCHZ, during the

REST and the SWITCH task. Indeed, these pictures do not capture any visible difference in

the two populations.

For both sessions, we extract four SF-PCs, named SF-PCj_REST and SF-PCj_SWITCH, for

j = 1, . . ., 4, respectively. We obtain a total explained variance of 20.40% for the REST session

(cumulative explained variance for each component: 13.49%, 16.16%, 18.88%, 20.40%) and

20.54% for the SWITCH session (cumulative explained variance for each component: 15.24%,

18.83%, 19.38%, 20.54%).

The AUC resulting from the LDA of the scores of the four SF-PCs is 63.5% for REST and of

65.5% for SWITCH. Standard MV-PCA has the same discrimination power, having an AUC

of 63.6% for REST and of 65.4% for SWITCH.

More generally, for the two considered sessions, SF-PCA and MV-PCA have the same clas-

sification performances also when considering other classification techniques, such as qua-

dratic discriminant analysis, support vector machines and random forests. Random

classification of each subject as healthy or affected by schizophrenia leads to an AUC of 54.6%

for REST and of 53.6% for SWITCH.

To better investigate the distributions of the SF-PC scores in the two population subgroups,

in Figs 2 and 3 we display the boxplots of the SF-PCs scores, plotted separately for CTRL and

SCHZ, alongside with the results of the correspondent Wilcoxon tests that compare the distri-

butions of the scores for CTRL vs SCHZ groups, in REST and SWITCH sessions respectively.

SF-PC2_REST, SF-PC3_REST and SF-PC2_SWITCH result significantly different, with p-val-

ues respectively: p = 2 � 10−4 for SF-PC2_REST, p = 1 � 10−3 for SF-PC3_REST, and p = 6 � 10−4

for SF-PC2_SWITCH. Similarly, for standard MV-PCA, the scores that are significantly differ-

ent according to the Wilcoxon tests are: MV-PC3_REST (p = 8 � 10−4), MV-PC4_REST (p = 2 �

10−3), MV-PC2_SWITCH (p = 6 #x22C5; 10−4), and MV-PC3_SWITCH (p = 2 � 10−3).

Fig 1. Mean connectivity maps of REST and SWITCH session. The first row depicts the mean z-score of the CTRL group for the two sessions, while

the second depicts the mean z-score of the SCHZ group.

https://doi.org/10.1371/journal.pone.0292450.g001
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To interpret the principal components and visualize their impact on different brain regions,

we plot the median behaviour along each component, for subjects in the two populations. In

particular, Figs 4 to 6 display in the top panels the median(sCTRL) � PCj and in the bottom pan-

els the median(sSCHZ) � PCj, where s are the scores relative to each principal component. Figs 4

and 5 depict such representations for SF-PCs and MV-PCs for REST; Fig 6 shows the same

representation for the SF-PCs for SWITCH (whilst the MV-PCs for SWITCH are not reported

for sake of space). These pictures show how each connectivity pattern extracted by the princi-

pal component is expressed in the two groups.

We now explore the distributions of the scores for males and females, and across age. For

the REST session, the distributions of scores of the 4 computed SF-PCs are not significantly

different in males vs females. For the SWITCH session, the distribution of the scores for

SF-PC3_SWITCH is different in males vs females, with p = 9 � 10−3. For what concerns the

Pearson correlation between the PCs scores and the subjects’ age, the maximum correlation

present in absolute value is r = 0.33.

Discussion

Healthy vs affected by schizophrenia: Mean connectivity maps

Fig 1 depicts the mean maps of the two populations. This qualitative representation fails to

detail the patterns characterizing different clinical groups. The only noticeable aspect is that

the global functional connectivity for the SCHZ is slightly lower during REST as well as during

the SWITCH task, coherently with what highlighted in literature (see, e.g., [50, 54]). The

Fig 2. SF-PC scores for REST. Boxplots of scores of the first four SF-PC functions obtained by the proposed SF-PCA, computed on the entire

population during REST, and plotted separately for CTRL and SCHZ groups. P-values of Wilcoxon tests that compares the distributions of the PCs

scores for CTRL and SCHZ groups.

https://doi.org/10.1371/journal.pone.0292450.g002

Fig 3. SF-PC scores for SWITCH. Same as Fig 2 but for SWITCH.

https://doi.org/10.1371/journal.pone.0292450.g003
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compliance with literature suggests that our experimental population, although of limited size,

is nevertheless representative of the pathology under study.

Entire population: Common modes of variation

Through SF-PCA we extract K = 4 SF-PCs for each session on the entire population, meaning

that each subject is associated with 4 SF-PC_REST scores and 4 SF-PC_SWITCH scores. The

percentage of explained variance (that is for both sessions approximately 20%) must be evalu-

ated in the light of the present work’s aim, which is individuating common patterns in

Fig 4. SF-PC functions for REST. Visualizations of the first four SF-PC functions obtained by the proposed SF-PCA, computed on the entire

population during REST, and plotted separately for CTRL and SCHZ groups. Top: median(sCTRL) � SF-PC. Bottom: median(sSCHZ)� SF-PC. The figure

highlights the median behaviour on each component, for subjects in the two populations.

https://doi.org/10.1371/journal.pone.0292450.g004

Fig 5. MV-PC for REST. Same as Fig 4 but for standard MV-PCA.

https://doi.org/10.1371/journal.pone.0292450.g005
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connectivity and evaluating possible differences between the two population subgroups, rather

than explaining the most part of variability in the dataset. In fact, a dimension reduction from

an initial set of approximately 36 000 covariates to 4 would, inevitably, be ineffective, in terms

of explained total variance. Even more so when taking into account the extent of interpersonal

differences in neural data, and considering the heterogeneity of manifestation and pathology

evolution in schizophrenia.

Healthy vs affected by schizophrenia: Different expressions of the common

modes of variation

The proposed SF-PCs has the same discrimination power as standard MV-PCA (about 63%

for REST and 65% for SWITCH), but has the valuable advantage of identifying clearly inter-

pretable patterns. In any case, we point out that our objective is not classification, but rather

than the identification of clinically relevant patterns in the main modes of variation of func-

tional connectivity. Discrimination on the PC scores indicates these patterns capture signifi-

cant differences in the two subpopulations, highlighting aspects related to the pathology.

The SF-PCs appear differently expressed in the two subpopulations, as shown by Figs 4 and

6, which plot the median patterns in two groups. At this point, we assess the neurological inter-

pretation of the SF-PCs, with a special emphasis on those diverging between groups. As it is

common in classic MV-PCA, the first SF-PCs for REST and SWITCH, i.e., SF-PC1_REST and

SF-PC1_SWITCH, depict a grand mean of the entire population. For what concerns the

REST, two SF-PCs, SF-PC2_REST and SF-PC3_REST, present different distributions of the

scores between CTRL and SCHZ, with p-values p = 2 � 10−4 and p = 1 � 10−3, respectively; see

Fig 2. SF-PC2_REST shows a distinct pattern associated with well defined regions; see Fig 4. In

particular, it involves, on the one hand, the superior parietal gyrus, and, on the other, the

cuneus and the medial prefrontal cortex. The first region is part of the Executive Control Net-

work, while the latter has been associated with the Default Mode Network. SF-PC2_REST may

thus suggest a difference in the correlation and uncoupling of such networks among the

groups, a phenomenon known to affect schizophrenia patients (see, e.g., [55]). SF-PC3_REST

Fig 6. SF-PC functions for SWITCH. Same as Fig 4 but for SWITCH.

https://doi.org/10.1371/journal.pone.0292450.g006
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captures additional contrasts among the areas highlighted by SF-PC2_REST, substantiating

the importance of the modifications affecting the Default Mode Network in schizophrenia

patients. Moreover, a hub of activation in the prefrontal region is highlighted for the SCHZ

group. This brain region plays a pivotal role in the cognitive impairment, and in other mani-

festations of this pathology [56]. As a comparison, we note that standard MV-PCA, although

reaching the same classification performances as SF-PCA, it fails to capture clearly identifiable

patterns. For instance, while the involvement of the Default Mode Network is partially cap-

tured by MV-PC3_REST, no relevant pattern is highlighted by MV-PC2_REST; see Fig 5.

Overall, all the extracted MV-PCs are highly noisy, making it difficult to propose

interpretations.

For what concerns the modes of variations associated with the SWITCH paradigm, the

scores of SF-PC2_SWITCH point out a difference in the SF-PC’s expression, with a p-value

p = 6 � 10−4; see Fig 3. The pattern identified by SF-PC2_SWITCH, depicted in Fig 6, mainly

involves the frontal and parietal regions, coherently with previous findings regarding task-

switching paradigm (see, e.g., [57]), showing how the mechanisms and connections involved

in this activity are impaired by the pathology under study.

It thus emerges that the modes of variations computed through SF-PCA are informative of

the pathology in analysis, as they successfully highlight relevant differences between the popu-

lations, as also confirmed by the compliance with previous literature.

Gender and age: No significant difference in the expressions of the

common modes of variation

It is very interesting to note that the scores of the obtained PCs are not significantly different

between males and females (p> 0.05), with the exception of SF-PC3_SWITCH (p = 9 � 10−3),

and are also unrelated to age (max Pearson’s correlation in absolute value r = 0.33). This sup-

ports that the signal captured by SF-PCA is related to the pathology under study, rather than

these other covariates. Hence, the unbalance in the considerate population does not hinder the

validity of the obtained results. SF-PC3_SWITCH indicates a hub of activation in the prefron-

tal region, which might be an interesting phenomenon to explore in further studies.

Conclusions

In the present work, we proposed to extend the use of SF-PCA method, previously validated

for FC maps computed over the cortical surface, for the analysis of grey matter volume data.

The FC maps considered refer to two separate fMRI sessions: one resting-state and one during

a task based on the switching paradigm.

The adequacy of the proposed approach is assessed through classification performance and

compliance of the extracted features with previous findings. During both sessions, the

extracted SF-PCs scores significantly differ in the two subpopulations of CTRL and SCHZ.

Linear Discriminant Analysis of the SF-PC scores discriminates the subjects’ diagnosis with an

above-chance Area Under the Curve. More significantly, the extracted features are coherent

with previous literature. In particular, during REST, the SF-PCs highlight the disruption of the

physiological alternation between the Default Mode and the Executive Control networks, one

of the key mechanisms in schizophrenia’s physiopathology. Analogously, SF-PC2_SWITCH

identifies the regions known to be involved in task-switching and impaired by schizophrenia.

Unlike the standard MV-PCA, the proposed SF-PCA, succeeds in identifying readable and rel-

evant patterns. We believe that the gained interpretability is a valuable asset for studies in the

field.
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Given the unbalance of the experimental population, in terms of sex and age, we have veri-

fied that the main modes of variations do not significantly differ across age and gender. The

only resulting difference between genders, indicated by SF-PC3_SWITCH, does not overlap

with phenomena related to the pathology; hence, the population unbalance does not invalidate

our results. In clinical applications, it would nevertheless be desirable to have more balanced

groups. Moreover, an improvement in the sample size and in data quality and resolution

would certainly lead to the individuation of additional patterns and to higher explained vari-

ability and discrimination performances. In any case, we stress that the aim of the present

work is not to derive clinical evidence about schizophrenia, but rather to propose an innova-

tive data analysis method that can be profitably applied in neuroscience research. In particular,

we have shown that SF-PCA is a valuable tool to explore the variability in functional connectiv-

ity maps in the complex tridimensional domain of the grey matter. Furthermore, by reducing

the dimensionality of data and simultaneously maintaining their interpretability, SF-PCA also

addresses some of the computational issues, very relevant in the field. For these reasons,

SF-PCA may be especially useful for the study of brain connectivity in connection with neuro-

logical and psychiatric illnesses, as it may identify significant differences between subpopula-

tions, and shed new light on the considered pathology. Moreover, the ability of the proposed

method to include in the data analysis the volume brain anatomy constitutes a relevant addi-

tion with respect to the available literature. In future research, we aim to extend this valuable

modeling feature to other data analysis techniques, commonly used in neuroimaging studies,

such as independent component analysis and generalized linear models, and develop their

anatomically compliant versions. Furthermore, following the approaches described in [58, 59]

for cortical surface data, we may aim at developing methods capable to handle subject-specific

anatomies. This would enable to jointly analyse functional aspects and subject-specific struc-

tural changes induced by the considered pathology [60], such as atrophy.

Finally, the present approach could be extended to different ways of computation of FC

maps, for instance through nonlinear metrics, or by considering activation maps. In future

works, we plan to apply the hereby validated method to further pathologies and to employ the

extracted SF-PCs to evaluate the correlation between connectivity and the outcomes of clinical

assessment tests. We also aim to approach only pathological samples, to be able to explore in

more detail the heterogeneity characterizing psychiatric illnesses. Finally, we plan to assess the

proposed approach in clinical settings, to monitor patients enrolled in rehabilitation

programs.
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