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ABSTRACT: The exposome concept aims to consider all
environmental stressors simultaneously. The dimension of the
data and the correlation that may exist between exposures lead to
various statistical challenges. Some methodological studies have
provided insight regarding the efficiency of specific modeling
approaches in the context of exposome data assessed once for each
subject. However, few studies have considered the situation in
which environmental exposures are assessed repeatedly. Here, we
conduct a simulation study to compare the performance of
statistical approaches to assess exposome-health associations in the
context of multiple exposure variables. Different scenarios were
tested, assuming different types and numbers of exposure-outcome causal relationships. An application study using real data
collected within the INMA mother-child cohort (Spain) is also presented. In the simulation experiment, assessed methods showed
varying performance across scenarios, making it challenging to recommend a one-size-fits-all strategy. Generally, methods such as
sparse partial least-squares and the deletion-substitution-addition algorithm tended to outperform the other tested methods
(ExWAS, Elastic-Net, DLNM, or sNPLS). Notably, as the number of true predictors increased, the performance of all methods
declined. The absence of a clearly superior approach underscores the additional challenges posed by repeated exposome data, such as
the presence of more complex correlation structures and interdependencies between variables, and highlights that careful
consideration is essential when selecting the appropriate statistical method. In this regard, we provide recommendations based on
the expected scenario. Given the heightened risk of reporting false positive or negative associations when applying these techniques
to repeated exposome data, we advise interpreting the results with caution, particularly in compromised contexts such as those with a
limited sample size.
KEYWORDS: exposome, statistics, repeated measures, simulation, epidemiology

1. INTRODUCTION
The exposome encompasses all the environmental (i.e.,
nongenetic) factors that an individual experiences from
conception onward.1 The exposome concept aims at consider-
ing many environmental stressors simultaneously, as opposed to
the one-by-one approach classically used in epidemiological
research. The exposome approach leads to some statistical
challenges due to the high number of exposures that need to be
considered, which are sometimes highly correlated. Even though
the exposome is not a statistic, most exposome-health studies to
date have assessed these associations with an exposome
measured at a single time point. The exposome is a life-course
concept, covering all exposures from conception onward, and
variations of the exposome over time can have an influence on
health outcomes. Currently, several cohort studies are collecting
repeated exposome data in order to better capture exposomes at

different points of life. Still, even though some results have been
published on the properties of some statistical methods aiming
to link health outcomes with exposome data assessed at a single
time point,2,3 there is no guidance on how to conduct the
statistical analysis when repeated exposome are available.

Having repeated measurements of the exposome has the
advantage of increasing the odds of assessing exposure at the
toxicologically relevant time window. However, it further
increases the dimensionality problem and may also aggravate
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the problems associated with correlated variables, as the
different time points of the same variable are expected to have
some degree of correlation, although this can vary according to
the type of exposure.

Here, we conduct a simulation study to compare the
performance of different statistical approaches to assess
exposome-health associations in the context of multiple and
repeated exposure variables and a distal health outcome assessed
once. Then, the most promising methods were applied to a real
showcase of exposome data with repeated exposure measure-
ments from pregnancy to 11 years old.

2. METHODS
2.1. Data Simulation. 2.1.1. Exposome Simulation. We

simulated 100 independent data sets, each of them being
composed of 500 variables representing 100 exposures assessed
at 5 time points, in 1200 participants. The exposure matrix was
obtained by summing two components: (1) a subject random
effect that induces correlation between repeated measures from
the same subject; and (2) a residual term that induces
correlation between exposures measured at the same time
point. To generate the random effects, we sampled from a mean-
zero normal distribution with a variance according to three
values for the intraclass correlation coefficient (ICC): low (0.1),
medium (0.5), and high (0.9). Each ICC was used with the same
probability, so that simulated data sets approximately had the
same number of variables with each ICC. Variables with an ICC
of 0.9 represent exposures that are expected to remain similar
over time (e.g., exposures with a long half-life), while those with
an ICC of 0.1 are expected to vary a lot over time (e.g.,
compounds with a short half-life). To generate exposure
variables with a realistic correlation structure, we relied on the
existing HELIX project, in which more than 200 environmental

factors were assessed in 1301 mothers−child pairs during
pregnancy and childhood through questionnaires, geospatial
modeling, and biological monitoring.4 Assessed variables in the
HELIX cohort included macrolevel factors such as climate,
urban environment, and societal factors and an individual
external domain including agents such as environmental
pollutants, tobacco smoke, diet, and physical activity, among
others. Specifically, the residual component for each time point
was generated from a multivariate normal distribution with a
mean zero and a covariance matrix equal to the observed
correlation matrix from HELIX. The correlation matrix of the
simulated data is shown in Figure S1.
2.1.2. Outcome Simulation. The health outcome Y was

simulated by choosing a reduced subset of exposures that were
assumed to be the only ones that directly influenced the
outcome (hereafter “causal exposures”), according to two
scenarios:

• Scenario 1, where all the five exposure time windows of
the causal exposures are directly influencing Y

• Scenario 2, where only a single exposure time window of
the causal exposures is directly influencing Y

For each scenario, Y was simulated with k = 3, 5, and 10 true
exposures. For scenario 1, it means that the total number of
terms in the data-generating model (apart from the intercept)
was 15, 25, and 50 variables (i.e., k multiplied by 5 time points).
For scenario 2, this means that the data-generating model
includes k terms (apart from the intercept). LetX1,...X100, and let
l = (l1,... lk) be a set of indices that indicate which are the k true
exposures. The mean of Ywas calculated asm = ∑j=1

kβjXlj. Then,
the response variable was generated from a normal distribution
with a mean m and a variance that resulted in an R2 of the model
of 5%.

Figure 1. Overview of the statistical methods tested to estimate exposome-health associations in the context of repeated exposure data. Schematic view
of the statistical approaches tested in the simulation study. The statistical methods tested following the one-step approach were performed using all
time-specific exposures; among those, some statistical methods ignore the repeated design, while others consider it. In the 2-step approach, only the
statistical methods that ignore the repeated design of the exposome data were tested. These methods were first performed on an averaged exposure
level across the time points and then performed on the time-specific exposures. For more details, we kindly refer the reader to the Methods section.
Abbreviations: DSA, deletion-substitution-addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery
rate; sPLS, sparse partial least-squares.
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2.2. Statistical Methods to Estimate the Exposome-
Health Association. Different statistical methods that aimed
to select the exposures and time points associated with the
outcome were applied (Figure 1). Two approaches were tested.
In the first one, the statistical methods were applied directly on
the raw data (1-step approach), i.e., including all time-specific
exposures. In the second one, the statistical methods were
applied after averaging the exposure levels across the five time-
windows, and once the averaged exposures were selected, the
same methods were applied in a second step to a data set that
included all time-specific exposures but was restricted to the
averaged exposures selected in the first step (2-step approach).

For the 1-step approach, we first tested a number of methods
that ignore the repeated design of the exposure data (i.e.,
variables corresponding to an exposure measured at different
time points were considered as independent variables):
2.2.1. Exposome-Wide Association Study. Exposome-wide

association study (ExWAS) consists of fitting as many regression
models as there are exposure variables in order to evaluate the
association between each exposure variable and Y independently
for each exposure.5 For the present study, 500 linear regression
models were fitted to assess the association between each
exposure variable and Y, independently of the other exposure
variables and ignoring the dependency between time points. The
results are reported with no correction for multiple testing and
with correction for multiple testing using the Bonferroni, the
Benjamini−Hochberg, and the Benjamini−Yekutieli correction.
2.2.2. ExWAS-Multiple Linear Regression. ExWAS-multiple

linear regression (ExWAS-MLR) is an extension of the ExWAS
where the statistically significant variables from the ExWAS are
introduced simultaneously in a single multiexposure regression
model. Each exposure variable is considered statistically
significant if the two-sided p-value obtained in the multiexposure
regression model is below 5%. The candidate variables to be
introduced into the multiexposure model were selected
according to the ExWAS results, with and without correction
for multiple testing.
2.2.3. Elastic Net. Elastic net (ENET) is a penalized

regression method that performs both regularization and
variable selection.6 It combines the L1 penalty from LASSO,
which shrinks the coefficient of the uninformative variable to 0,
and the L2 penalty from RIDGE, which accommodates
correlated variables and ensures numerical stability. The tuning
parameters were determined by defining the optimal calibration
parameters (in order to prevent overfitting) as those providing
the sparsest model among those yielding an RMSE within 1
standard error of the minimum RMSE.
2.2.4. Sparse Partial Least-Squares Regression. Sparse

partial least-squares regression (sPLS) performs both variable
selection and dimension reduction simultaneously.7 sPLS is an
extension of the partial least-squares regression�a supervised
dimension reduction technique that builds latent variables as
linear combinations of the original set of variables�which
additionally imposes sparsity using a L1 penalty in the
estimation of the linear combination coefficients. The tuning
parameter and the number of components to be included in the
regression model were calibrated by minimizing the RMSE
using 5-fold cross-validation.
2.2.5. Deletion-Substitution-Addition Algorithm. The dele-

tion-substitution-addition algorithm (DSA) is an iterative
regression model search algorithm performing variable
selection.8 It searches for the best model, starting with the
intercept model and identifying an optimal model for each

model size. At each iteration, the following three steps are
allowed: (a) removing a term, (b) replacing one term with
another, and (c) adding a term to the current model. The final
model is selected by minimizing the value of the RMSE using 5-
fold cross-validated data. For this simulation study, we did not
allow polynomial nor interaction terms and considered models
of size up to 25 variables.

In addition, the following statistical methods that account for
repeated measures of exposure variables were tested:
2.2.6. Penalized Distributed Lag (Non-)Linear Models

(DLNMpen) with Variable Selection. Distributed lag models
are regression models that assess how exposure measured at
different time points affects the outcome. Constrained
distributed lag models allow putting constraints on the
regression coefficients at each time point in order to improve
efficiency and to avoid collinearity problems. For example, it is
common to constrain regression coefficients to vary smoothly
over time, thus assuming that the effects of exposure at two
periods that are close in time will be more similar than the effects
for two exposure periods that are further apart.9 DLNMs
describe the bidimensional dose-lag-response associations,
potentially varying nonlinearly in the dimensions of predictor
intensity and lag. Particularly, here we employed an extension of
the standard DLNM framework to penalized splines within
generalized additive models (gam).10 For the specification of the
model, we built a cross-basis matrix (one basis for the predictors
and one basis for the lags) for each exposure and introduced
them all into a linear regression model. To build the basis for
each predictor, we assumed a linear effect on the outcome (Y).
Regarding the shape of the lag space, we assumed it follows a
cubic B-spline with five equally spaced knots (one per time
point). The employed model further incorporated an extra
penalty controlling the degree of smoothing of each term so that
it can be penalized to zero, removing the term from the model
and therefore performing variable selection. To evaluate the
statistical significance of the exposure-outcome association, we
first evaluated the significance of the entire cross-base, applying a
correction for multiple testing. Then, among the significant
cross-bases (with p-value multiple-testing correction), we
considered that a particular lag was statistically significant if
the estimated effect for that lag had a confidence interval that
excluded 0.
2.2.7. Sparse N-Way Partial Least-Squares. Sparse N-way

partial least-squares (NPLS) is an extension of the ordinary
sPLS regression algorithm to temporal data where the bilinear
model of predictors is replaced by a multilinear model.11 sNPLS
studies relationships between some three-way (or N-way) X
data structure (individuals-variables-times) and any Y data. As
sPLS, sNPLS tries to find latent spaces that maximize the
covariance between X and Y. Additionally, sNPLS imposes
sparsity using an L1 penalty in the estimation of the linear
combination coefficients, so feature-selection is performed at
both the level of variables and time points influencing the latent
variables. Thanks to that, sNPLS improves the interpretability of
the results and also greatly reduces the variables involved in
performing new predictions from the model. This model is
especially suitable for data structures showing strong correla-
tions over time. The optimal hyperparameters (number of latent
components and variables/time points contributing to them)
were estimated through 50-times repeated fold-cross validation.

For the 2-step approach, the first step aims to summarize the
exposure levels measured at different time points into a single
measure by calculating the averaged level of exposure across
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time points, which could be seen as being proportional to
cumulative exposure. This step reduces the number of variables
from 500 to 100. Methods 1 to 5 are then applied to the reduced
data set. At the second step, we applied methods 1 to 5 to the
subset of exposures selected in the first step but now including all
time points. The 2-step approach was not performed for DLNM
nor sNPLS, which both considered the temporal structure of the
data and required time-specific variables as input variables. All
selected methods were methods that provided an estimate for
the linear relationship of an individual exposure and the health
outcome. This choice was motivated by the practical
applicability of our findings, since many exposome researchers
prefer to obtain this type of results.

2.3. Statistical Performance Assessment. For all
methods and under each scenario, we calculated the sensitivity

as a measure of the capacity to identify the true exposure and the
false discovery rate (FDR) as a measure of the proportion of false
discoveries. The performance of each method was assessed at
two different levels:

(1) at the variable level, to calculate the performance of
identifying the true exposure at the true time point
(denominator = 500 variables = 100 exposures measured
at 5 time points)

(2) at the exposure level, to calculate the performance of
identifying the true exposure independently of which time
point was selected (denominator = 100 exposures).

For example, if exposure X1 at time 2 was selected while the
true exposure was X1 at time 4, this is considered as a false

Table 1. Performances of Each Method When All Time Points Are Truly Associated with Y (Scenario 1)a

performance to identify the true exposures independently of the true
time point (s) performance to identify the true exposures at the true time point (s)

sensitivity FDR sensitivity FDR

N true predictors
(×5)b 3 5 10 3 5 10 3 5 10 3 5 10

Raw Data (1-Step Approach)
ExWAS.none 99.7

(3.3)
97.4

(6.8)
91.1

(8.7)
89.5

(2.9)
84.8

(3.6)
76.5

(3.9)
93.3

(8.6)
86.2

(9.2)
72.6

(9.4)
79.1

(6.8)
72.2

(7.7)
63.9

(6.7)
ExWAS.bon 84

(18.6)
68

(19.3)
43.5

(14.5)
37.2

(27.5)
29.1

(24.3)
25.7

(19.3)
71.9

(19.7)
51.8

(15.7)
26

(12.4)
28.6

(24.8)
22.4

(22.1)
19.8

(17.6)
ExWAS.by 86.3

(17.8)
74.6

(19.9)
49.1

(19.4)
42.5

(28.4)
34.7

(24.2)
30.8

(19.9)
74.5

(19.9)
57.4

(17.5)
32.2

(15.9)
33.1

(26.3)
27

(23.1)
23 (18)

ExWAS-MLR.none 53.3
(30)

37.2
(23.1)

27.7
(16.4)

73.3
(16.1)

71.8
(19.4)

64.7
(18.3)

15.3
(11.3)

8.8 (6.2) 6.1 (3.7) 68.3
(19.3)

70.2
(20.6)

63.5
(18.9)

ExWAS-MLR.bon 55.3
(30.4)

34.6
(20.3)

21.9
(11.8)

19.8
(27.2)

17.9
(26)

19.1
(24.7)

15.3
(10)

7.7 (4.5) 4.8 (2.7) 18.5
(26.6)

17.4
(25.5)

18.3
(24.3)

ExWAS-MLR.by 55
(27.8)

37
(20.2)

22.7
(11.6)

23.1
(27.9)

23.6
(29.4)

20
(23.9)

15.5
(9.9)

8.5 (4.9) 5 (2.7) 20.8
(26.5)

22.8
(29.1)

19.3
(23.3)

ENET 77
(25.8)

60.8
(29.8)

40
(27.1)

13.7
(19.8)

17
(21.9)

15.8
(18.3)

33.3
(16)

21.8
(14.1)

11.8
(9.2)

8.9
(13.6)

13.4
(18.7)

13.6
(16)

sPLS 87
(17.6)

82.6
(18.8)

72.6
(22.5)

26.5
(30.2)

34.8
(27.3)

49.8
(27.4)

61.5
(27.5)

55.3
(24.9)

49.4
(26.3)

19.3
(24.2)

25.3
(22.5)

39.8
(24.9)

DSA 81.3
(22.4)

67.6
(20.1)

41.4
(20.1)

14.7
(22.2)

11.1
(16.7)

14.4
(18.6)

18.5
(7.9)

13.7
(4.3)

8.3 (4) 13.7
(21.1)

11
(16.8)

14.5
(18.6)

sNPLS 88.3
(16)

78.6
(19.1)

68.1
(18.1)

11.1
(20.8)

24.5
(22.3)

39.1
(19.2)

86
(18.8)

75.6
(21.5)

62.2
(21.5)

11
(20.5)

24.4
(22.2)

38.7
(19)

DLNM 91.7
(15.2)

71.4
(18)

35.4
(17.4)

11.7
(16.9)

12.2
(16.1)

9.6
(15.4)

60.9
(16.2)

39
(15.3)

16.4
(9.3)

10.2
(15.9)

12.4
(16.7)

10.4
(17.8)

Averaged Data (2-Step)
ExWAS.none 99.7

(3.3)
96.8

(7.4)
86.5

(9.5)
81 (7.8) 73.7 (9) 65.2

(7.4)
93.3

(8.6)
86 (9.4) 71.5

(9.8)
72.8

(11.8)
64.6

(12.3)
57.6

(8.9)
ExWAS.bon 94

(12.9)
79.2

(16.1)
52.3

(13.8)
43.9

(25.2)
35.2

(21.7)
28.5

(17.5)
82.1

(15.4)
65.3

(14.8)
38.7

(11.5)
37.4

(24.7)
30.2

(21.2)
24.7

(16.7)
ExWAS.by 97 (9.6) 83.4

(16.6)
58.5

(16.8)
45.2

(27)
36.8

(23.2)
34.6

(18.1)
87.5

(13.8)
73.3

(15.2)
50

(15.2)
42.6

(26.7)
34.9

(22.6)
31.2

(17.6)
ExWAS-MLR.none 67.3

(29.2)
44.8

(24.6)
29.9

(16.6)
23

(27.9)
21.6

(27)
16.5

(23)
23.2

(15.3)
12.4

(8.6)
7.3 (4.5) 19.6

(26.7)
20.6

(27.2)
16.2

(23.1)
ExWAS-MLR.bon 66.3

(29)
38.6

(23)
23.4

(13.8)
5 (16.3) 9.6

(21.3)
7.5

(18.8)
21.2

(13.8)
9.6 (6.6) 5.3 (3.3) 4.4

(15.2)
9 (20.5) 7.2

(18.5)
ExWAS-MLR.by 68

(27.6)
40.8

(24.6)
23.1

(13.1)
8.3

(19.6)
8.7

(20.6)
7.3

(17.1)
23.1

(14.6)
10.6

(7.8)
5.5 (3.4) 7.3

(18.4)
8.4

(20.3)
6.9

(16.6)
ENET 76.3

(25.2)
65

(25.3)
44.1

(26.1)
6.2

(14.6)
10.9

(14.4)
14.3

(18.5)
37.9

(19.6)
30.1

(17.6)
16.9

(11.6)
3.9 (9.6) 7.9

(11.8)
11.8

(16.5)
sPLS 95.3

(11.6)
84.4

(16.5)
70.1

(19.4)
19.2

(23.7)
19.8

(24.2)
31.8

(23.7)
90

(18.2)
80.5

(18.7)
65.5

(23.3)
18

(22.8)
19.1

(23.6)
30.9

(23.5)
DSA 97 (9.6) 85.6

(15.6)
63.4

(19.8)
7.7 (15) 10

(15.1)
19.2

(16.5)
67.9

(23.3)
48.1

(24.4)
23.1

(11.7)
6.5

(13.2)
8.5

(13.4)
18.1

(16.4)
aAbbreviations: DSA, deletion-substitution-addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery
rate; MLR, multiple linear regression; sPLS, sparse partial least-squares. bThe number of true predictors refers to the number of features presenting
a causal relationship with the outcome in the simulated data. Since we here present results from scenario 1 (where all time points are truly
associated with Y), the number of true predictors needs to be multiplied by 5 time points.
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positive at the variable level (wrong time point) but as a true
positive at the exposure level (right exposure).

We also compared the performance of the methods to identify
the true exposure at the true time point according to the ICC of
the exposures across time points.

The threshold for the statistical significance was set to 0.05.
All of the analyses were performed using R software. The main
packages used included MASS, glmnet, spls, DSA, dlnm, sNPLS,
splines, and mgcv. The code used to generate the simulated data,
to apply the methods, and to compare the performances is
available on GitHub repository (see Supporting Information).

2.4. Application with Real Data. The top methods,
according to their performance in the simulated data, were
applied to a real exposome data set with repeated exposure
measurements from pregnancy to 11 years old. The real data set
belongs to the INMA mother-child cohort, a prospective
population-based cohort for the study of the associations

between pre- and postnatal environmental exposures and
growth, health, and development from early fetal life until
adolescence in Spain.12 For the present study, the study
population was composed of 495 Spanish children from
Sabadell.

The outcome of interest here was the waist circumference z-
score of children at the age of 11 years old, properly standardized
by sex and age using the reference values of children aged 5−19 y
in NHANES III.13 The population was composed of 82 children
with overweight and obesity and 413 normal-weight individuals
(Table S1).

As exposures, repeated data on the lifestyle patterns and
environmental factors to which children are exposed during
pregnancy and early childhood were investigated (Table S2).
Specifically, environmental exposure data concerning air
pollution, built environment, natural spaces and noise and
traffic were assessed at 5 time points (ages of 4, 6, 7, 9, and 11).

Table 2. Performances of Each Method When Only a Single Time Point Is Truly Associated with Y (Scenario 2)a

performance to identify the true exposures independently of the true
time point (s) performance to identify the true exposures at the true time point (s)

sensitivity FDR sensitivity FDR

N true predictors 3 5 10 3 5 10 3 5 10 3 5 10

Raw Data (1-Step)
ExWAS.none 99 (5.7) 93.8

(10.5)
78.5

(11.8)
87.9

(3.1)
82.4

(4.1)
73.4

(6.1)
99 (5.7) 92

(11.7)
72.5

(14)
93.5

(1.9)
90.3

(3.4)
87 (4)

ExWAS.bon 75.7
(24.1)

39.4
(20.2)

16
(13.1)

15
(22.3)

14.6
(22.5)

20.9
(28.3)

74
(24.9)

38.4
(20)

15.1
(12.6)

42
(30.4)

34.1
(31.8)

34.1
(33.8)

ExWAS.by 69.7
(29.2)

35.2
(23.6)

11.8
(14.7)

12.5
(20.7)

12.6
(22.7)

16.6
(26.2)

69
(29.3)

34.8
(23.5)

11.5
(14.4)

35.7
(33.3)

28.7
(33.3)

24.1
(32.4)

ExWAS-MLR.none 68.7
(28)

51
(19.8)

25.4
(13.8)

70.3
(14.7)

66.3
(14)

64.4
(15.5)

66.3
(27.4)

47.6
(20.1)

20.7
(13.9)

71.9
(14.5)

69.4
(13.9)

72.6
(15.9)

ExWAS-MLR.bon 63 (28) 29.6
(19)

11.1
(11.9)

8.2
(22.7)

5.7
(14.8)

14.7
(30.1)

60.7
(28.2)

28
(18.9)

10.2
(11.1)

14
(26.4)

10.5
(21.8)

18.9
(32.2)

ExWAS-MLR.by 58
(30.2)

27.4
(19.6)

7.7
(10.8)

6.2 (20) 7.5 (20) 11.2
(24.8)

56
(29.9)

26
(19.4)

7.2
(10.3)

10.4
(24.1)

11.2
(25.2)

12.9
(27.3)

ENET 36
(34.7)

15.2
(23.8)

5.5
(11.8)

2.5
(10.3)

4.1
(15.2)

8.2 (25) 33.7
(33.3)

13
(20.4)

4.9
(10.7)

7.2
(18.9)

9.3
(22.9)

12.2
(30.5)

sPLS 84.3
(22.4)

58.2
(26.2)

28.8
(23.6)

17.3
(22.9)

23
(25.3)

28.8
(30.7)

78.3
(24.8)

54.2
(26.1)

25.6
(22.5)

29
(29.8)

35.5
(30)

43.4
(34.9)

DSA 78.3
(27)

45.6
(27.3)

15.1
(15.1)

13.5
(20.6)

14.8
(21.8)

14.3
(26.6)

70.7
(27.7)

39.6
(24.9)

12.2
(12.4)

21.5
(24.4)

22.3
(27.6)

23
(32.5)

sNPLS 72
(23.6)

54.4
(27.6)

42.5
(29.3)

32.4
(32)

43.8
(33.5)

46.6
(29.8)

71
(23.5)

52.4
(28.3)

40.4
(29.8)

53.7
(33.1)

65.7
(27)

60.6
(31.7)

DLNM 53
(29.3)

25
(20.2)

6.7 (9.2) 14
(23.7)

14.3
(26.3)

24.7
(38.7)

43.3
(26.6)

19.2
(16.3)

4.7 (7.2) 54.1
(31.7)

49.4
(35.8)

48.4
(43.2)

Averaged Data (2-Step)
ExWAS.none 89

(15.7)
73.6

(21.6)
51.2

(15.5)
74.1

(10.2)
66.7

(15.2)
60.2

(14.6)
89

(15.7)
72.6

(22)
49.4

(15.9)
90.7 (4) 87.8 (6) 86.3

(5.8)
ExWAS.bon 52.3

(27.3)
23.8

(20.4)
11.4

(12.1)
14.7

(24.2)
12.9

(24.5)
24.3

(32.9)
52.3

(27.3)
23.6

(20.2)
11.3

(12)
65.5

(27.4)
53.2

(37.2)
55

(38.5)
ExWAS.by 43.3

(32.3)
21.2

(23.4)
8.2

(12.8)
11.8

(23.3)
11.6

(24.4)
13

(24.9)
43.3

(32.3)
21.2

(23.4)
8.2

(12.8)
60.5

(35.5)
47.3

(40.8)
33.5

(41.6)
ExWAS-MLR.none 49 (29) 31.6

(20.9)
12.1

(9.5)
32

(30.7)
31.5

(32.4)
30.7

(37.3)
46.3

(27.6)
28.6

(21.1)
9.7 (8.2) 39.2

(31.2)
42.5

(33.9)
43.6

(38.6)
ExWAS-MLR.bon 39

(26.8)
14.2

(14.6)
5.6 (6.7) 5 (19.5) 4.3

(17.3)
7.5 (24) 35.7

(26.5)
12.4

(13.9)
4.7 (6.1) 14.3

(29.7)
13.8

(30.2)
14.3

(31.9)
ExWAS-MLR.by 32

(29.2)
12.6

(15.2)
3.3 (5.7) 2.5

(14.9)
3.7

(16.8)
3 (13.9) 29

(27.9)
10.4

(13.8)
2.7 (5.1) 10.8

(26.7)
13.8

(30.7)
7.5 (24)

ENET 11
(22.7)

2.6
(10.1)

1.4 (5.9) 2.8 (15) 1.3
(10.5)

0.7 (5.3) 10.3
(22.1)

1.2 (5.6) 1.2 (5) 4.6
(19.3)

6.3
(23.5)

1.8
(11.6)

sPLS 63.7
(29.6)

42.8
(28.7)

29
(23.3)

22.1
(28.4)

28.8
(31.2)

28.9
(32.3)

60
(31.1)

39.8
(28.4)

26.8
(23.9)

49.1
(36)

56.9
(33.8)

59.1
(36.5)

DSA 59.7
(29.3)

27.6
(26.8)

13 (14) 13.6
(23.1)

19.6
(30.6)

18
(28.5)

53.3
(29.6)

21.6
(23)

10.1
(11.3)

34.9
(33.2)

43.9
(37.8)

35.6
(35.7)

aAbbreviations: DSA, deletion-substitution-addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery
rate; MLR, multiple linear regression; sPLS, sparse partial least-squares.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c04805
Environ. Sci. Technol. 2023, 57, 16232−16243

16236

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c04805/suppl_file/es3c04805_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c04805/suppl_file/es3c04805_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c04805/suppl_file/es3c04805_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c04805?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Additionally, diet was assessed through food frequency
questionnaires at 3 time points (pregnancy, and at the age of 4
and 7 years old). Diet data constituted average intakes of
macronutrients (total sugars, fats, and proteins) and micro-
nutrients (vitamins, essential minerals, etc.).

Categorical variables, or those with more than 70% of the
missing values, were excluded. Additionally, variables with more
than 80% of zeros were transformed to binary exposures and
treated as numeric (values >0 were converted to 1). For the built
environment domain, measurements were taken at a buffer of
300 m from home. Normalization of all exposures was
conducted using the bestNormalize R package, which renders
data Gaussian through the use of different functions according to
the Pearson P statistic, as calculated by the nortest package. The
transformations contained in the package and implemented in
bestNormalize are reversible (i.e., 1−1), which allows for
straightforward interpretation and consistency. In other words,
any analysis performed on the normalized data can be
interpreted using the original unit. Imputation was performed
with multivariate imputation by chained equations. Only the
first imputed data set was used for the showcase.

In total, the number of exposure features in the data set was
83, of which 32 had repeated measures at 3 time points and 51
had repeated measures at 5 time points. The cross-sectional and
longitudinal cumulative effect of multiple and repeated
exposures on the waist circumference of children at 11 years
old was evaluated following the approaches described in the
Methods section.

3. RESULTS
The performances of each method are detailed in Tables 1 and 2
for Scenario 1 and Scenario 2, respectively. Figure 2 visually
summarizes the performances of each method when the number
of true predictors is fixed to k = 3.

3.1. Scenario 1. All Time Points Are Truly Associated
with Y. 3.1.1. Performance to Detect the True Exposure
(Independently of the True Time Points) (Table 1). The best
performance to identify the “causal” exposures was achieved
when the number of true predictors k was low (k = 3) for all
methods. We start describing the performance for this scenario
(k = 3). All methods but ExWAS-MLR had a good sensitivity
(>75%) but showed varying levels of FDR. When using all time-
specific exposures (raw data), DSA, sNPLS, DLNM, and ENET
showed a good performance, with sensitivities close to or higher
than 80 and FDRs below 20%.

The strategy of averaging the exposure at all time points and
performing variable selection using the average variable
provided, in general, some improvements in both sensitivity
and FDR when we evaluated the capacity to select the true
exposures. Still focusing on k = 3, DSA, which already provided
good results with raw data, improved performance. sPLS
reached high sensitivity and had an FDR close to 20%. For
DLNM, we did not see a difference in performance if we tested
the entire crossbasis (i.e., an association across all time points,
similar to testing the average) or if we tested the specific time
points. ENET also improved, although its performance was
worse than that of the previously mentioned methods. ExWAS
did not provide a good performance. Further testing of the
separate time points among the ones selected using the average

Figure 2. Comparison of the performances of each method under scenarios 1 and 2 (when k = 3). Scatter plot representing the sensitivity (x-axis) and
the FDR (y-axis) obtained from each method under scenario 1 (all time points are associated with Y) and scenario 2 (a single time point is associated
with Y). Labels are in black if the performances correspond to a method performed using raw data and in red if the performances correspond to a
method performed using averaged data (2-step). The green square represents the area under which the sensitivity is above 75% and the FDR is below
25%. Abbreviations: Bon; Bonferroni multiple-testing correction; BY; Benjamini−Yekutieli multiple-testing correction (FDR); DSA, deletion-
substitution-addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery rate; none, no multiple-testing
correction applied; sPLS, sparse partial least-squares.
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(i.e., implementing a 2-step process) did not change much the

performance, except for ExWAS-MLR.by, which decreased its

performance and performed worse than ENET (results in the

supplement).

Table 3. Results from the Real Showcase on INMA Data; Number of Selected Variables and the Top 10 Most Relevant
Associations with Waist Circumference Z-Score at the Age of 11 Years Olda

method N significant features N significant features (−coef) N significant features (+coef) top 10 most relevant features (estimate)

ExWAS.bon 0 0 0
ExWAS-MLR.bon 0 0 0
ENET 0 0 0
sPLS 8 1 7 land use other at 9 y (0.15)

calories at pregnancy (−0.12)
beta carotene at pregnancy (0.11)
total sugars at 4 y (0.10)
omega 6 fatty acid at 7 y (0.08)
polyunsaturated fat at 7 y (0.08)
inverse distance to nearest road at 7 y (0.07)
inverse distance to nearest road at 6 y (0.07)

DSA 0 0 0
sNPLS 13 4 9 vitamin C at 4 y (0.17)

folato at 4 y (−0.14)
inverse distance to nearest road at 6 y (0.09)
omega 6 fatty acid at 7 y (0.09)
land use other at 6 y (0.09)
omega 6 fatty acid at pregnancy (0.09)
vitamin C at 7 y (0.07)
folato at 7 y (−0.06)
inverse distance to nearest road at 7 y (0.06)
land use other at 7 y (0.05)

DLNM 13 5 8 PM10fe at 4 y (−0.33)
PM10fe at 7 y (0.33)
PM10fe at 11 y (−0.33)
omega 6 fatty acid at 7 y (0.13)
difference between PM10 and PM2.5 at 11 y (0.12)
traffic load all roads at 4 y (−0.12)
traffic load all roads at 11 y (0.12)
beta carotene at pregnancy (0.12)
beta carotene at 4 y (−0.10)
omega 6 fatty acid at 4 y (0.07)

ENET AVG 7 2 5 omega 6 fatty acid at 7 y (0.032)
inverse distance to nearest road at 7 y (0.03)
calories at pregnancy (−0.02)
PM2.5v at 7 y (−0.01)
land use other at 9 y (0.01)
inverse distance to nearest road at 6 y (0.006)
vitamin C at 4 y (0.002)

sPLS AVG 21 5 16 vitamin C at 4 y (0.17)
folato at 4 y (−0.14)
inverse distance to nearest road at 6 y (0.09)
omega 6 fatty acid at 7 y (0.09)
land use other at 6 y (0.09)
omega 6 fatty acid at pregnancy (0.09)
vitamin C at 7 y (0.07)
folato at 7 y (−0.06)
inverse distance to nearest road at 7 y (0.06)
land use other at 7 y (0.05)

DSA_AVG 0 0 0
aEnvironmental exposure data concerning air pollution, built environment, natural spaces and noise and traffic were assessed at 5 time points (ages
of 4, 6, 7, 9, and 11 y). Additionally, diet was assessed through food frequency questionnaires at 3 time points (pregnancy, and at the age of 4 and 7
y). Top 10 most relevant features were selected according to the reported effect sizes among those selected features (a feature was considered as
selected if P-value <0.05 for the EWAS or DLNM or if beta distinct from 0 for the rest of algorithms). Abbreviations: DSA, deletion-substitution-
addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery rate; MLR, multiple linear regression; sPLS,
sparse partial least-squares.
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As the number of true predictors k increased, the sensitivity of
all methods decreased. DSA, DLNM, and ExWAS-MLR
managed to keep FDR low, but sPLS and sNPLS showed
increases in FDR when k increased.
3.1.2. Performance to Detect the True Exposure at the True

Time Points (Table 1). In scenario 1, selecting the true time
points means selecting all time points, as all of them were
associated with the outcome by design. When performance was
evaluated in terms of selecting the true time points, only sNPLS
provided acceptable performance for k = 3, with sPLS and
DLNM providing results that were not optimal but were
substantially better than the other methods. DSA, which
performed well in selecting the variable regardless of the time
point (as described in the previous paragraph), had a very low
sensitivity for selecting all time points. Taking a two-step
strategy in which (1) we take the average across time points and
perform selection based on the average and (2) we test
individual time points among the selected in the first step
provided improvements for sPLS and DSA, which obtained
acceptable results. Still, DSA had low sensitivity, while sPLS had
worse FDR, which worsened when increasing k.

3.2. Scenario 2. A Single Time Point Is Truly Associated
with Y. 3.2.1. Performance to Detect the True Exposure

(Independently of the True Time Point) (Table 2). As in
previous cases, performance was better for k = 3. Focusing on k =
3, when using the raw data, the methods that had a sensitivity
greater than 70% and a FDR lower than 20% were DSA,
ExWAS.bon, and sPLS. ExWAS-MLR and DLNM performed
slightly worse, while ENET had low sensitivity and sNPLS had
high FDR. Increasing the true number of predictors reduced the
sensitivity for all methods and increased the FDR for all methods
except DSA.
3.2.2. Performance to Detect the True Exposure at the True

Time Point (Table 2). When we evaluated the capacity to detect
the true time point, the performance of the different methods
was reduced, as expected. DSA was still among the best methods,
now with an FDR slightly higher than 20%, followed by sPLS but
showing a higher FDR. ExWAS-MLR had a much lower FDR
but with a sensitivity close to 60%. The strategy of doing a 2-step
approach using the average across time points provided much
worse results than using the raw data directly (1-step approach).

3.3. Influence of the ICCs between Time-Specific
Exposures on Models’ Performance. The performances of
each method according to the ICC between time points are
presented in Figure S2.

Figure 3. Overlaps in selected exposures by each of the tested methods on the real INMA data set. The lower left part of the upset plot shows the
number of selected exposures by each of the methods (a feature is considered as selected if its P-value <0.05 for the EWAS or DLNM, or if its beta is
distinct from 0 for the rest of algorithms). The vertical red lines and upper histogram part of the figure refer to the overlapping findings between
methods (e.g., the first vertical line connecting ENET.opt_AVG, sPLS, sNPLS, DLNMpen_select.by, and sPLS_AVG refers that all these methods
identified the same feature, omega-6 fatty acids at the age of 7 y, associated with the waist circumferenceZ-score at the age of 11 y). The red/green color
in exposure names indicates that the exposure has been evidenced as a risk/protective factor by the methods. Abbreviations: DSA, deletion-
substitution-addition algorithm; ExWAS, exposome-wide association study; ENET, elastic net; FDR, false discovery rate; MLR, multiple linear
regression; sPLS, sparse partial least-squares.
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Scenario 1. In comparison with the main results, we observed
that in case of low ICC between time points (<0.1), then several
methods did not show good performances (ENET, sPLS, DSA,
including in the 2-step approach). Conversely, the performances
of sPLS, sNPLS, DSA, ExWAS, ExWAS_AVG, and sPLS_AVG
were improved in the case of moderate to high ICC between
time points (>0.5), including when the number of true
predictors increased to k = 5 and, in a lesser extent, when k = 10.

Scenario 2. Results observed with different ICCs were similar
to the results that did not consider the ICC; none of the methods
performed well for k = 5 and 10. Overall, for k = 3, ExWAS-MLR,
sPLS, and DSA seem to perform slightly better in identifying the
true exposure at the true time point when the ICC between time
points is low (<0.1) to moderate (>0.1 to <0.5). The 2-step
approaches did not perform well, whatever the ICC between
time points.

3.4. Application to Real Data. According to their
performance in the different scenarios with simulated data, a
total of 10 methods were selected and applied to the real
showcase with INMA data: ExWAS.bon, ExWAS-MLR.bon,
ENET, sPLS, DSA, sNPLS, DLNM, ENET_AVG, sPLS_AVG,
and DSA_AVG. In Table 3, the number of selected variables and
the top 10 most relevant associations (according to the reported
effect sizes among those selected features) for each method are
presented. The overlaps between the different methods can be
observed in Figure 3. None of the ExWAS approaches, the
ENET, and DSA (including DSA_AVG) found any significant
association in this real data set (to be selected, an exposure needs
to present a P-value <0.05 for the EWAS or DLNM or a beta
distinct from 0 for the rest of algorithms). Conversely, sPLS on
averaged data (2-step approach) and sNPLS and DLNM on raw
data (1-step approach) were the methods identifying the highest
number of associations (21, 13, and 13, respectively). The most
singular method (giving results more different from the rest) was
the DLNM.

Regarding the findings, the daily intake of polyunsaturated
fatty acids omega-6 at the age of 7 years and the inverse distance
to the nearest road from home at the age of 6 and 7 years were
identified as risk factors for increased waist circumference at the
age of 11 years by most of the methods.

According to simulated data, sNPLS was among the top
methods for scenario 1 (in which all time points or windows of
exposures were associated with the outcome), especially in
referring to the identification of the true time point associated
with the outcome (Table 1). Since we reckon that this might be
the scenario that best fits the INMA exposome data (at least for
the air pollution and built environment domain), we focused on
its interpretation. The estimated coefficients for each of the
significant variables identified by the method can be found in
Figure S3. Interestingly, the intake of omega 6 fatty acids at
pregnancy and at the age of 7 years was identified by sNPLS as
risk factors for higher waist circumference values at 11 years.
Another factor identified by the method, not previously
highlighted by the rest methods, was the intake of folate at
pregnancy, 4 and 7 years, which was inversely associated with
waist circumference. Similarly, urban environmental factors such
as the distance to the nearest road and the proximity to areas
dedicated to other human uses (e.g., dump sites, mineral
extraction sites) at the age of 6 and 7 years old were reported to
negatively affect waist circumference at 11 years. Interestingly,
these associations reinforce previous evidence for the negative
effect of omega 6 intake on obesity,14,15 the protective role of
folate (B9 vitamin) on metabolic health and adiposity,16,17 as

well as the obesogenic role of some built environmental
factors.18 Although these findings would need to be validated
in replication cohorts, they could be argued on the fact that the
developmental processes ongoing during those stages (preg-
nancy, 4, 7, and 9 years old) are crucial for the future health
status of the children and raise awareness of the importance of
initiating preventive measurements already from the very early
stages of life.

Some unexpected associations were also found by the
method, highlighting the risk association between vitamin C
intake at pregnancy, 4 and 7 years, and the outcome, which
would need further investigation, or the protective role of omega
6 intake at age of 4 years, which could be actually a falsely
detected signal since its estimate was very close to zero.

4. DISCUSSION
In this article, we used simulations to test the performance of
different methods and strategies to perform variable selection in
an exposome context with repeated exposome data that affects a
health outcome at a single time point. If the analysts expect that
an exposure causally linked to the outcome will have an effect at
all time points, good strategies include. sPLS and sNPLS also
provided good performance, but their FDR tended to increase
more rapidly as the number of exposures associated with the
outcome increased. Taking a 2-step strategy, in which the
average across time points is screened first, is a good strategy to
improve performance, and this is especially true in the case of
high correlation between time points. If, alternatively, the
analyst expects that only a single time point will be associated
with the outcome, DSA (used in a single step) is still a good
option; the 2-step approach using the average drastically reduces
performance. ExWAS with Bonferroni multiple testing correc-
tion also produced good results to detect the right exposure
(regardless of the true time point).

Overall, ExWAS with no correction for multiple testing shows
a good sensitivity, whatever the scenario. However, it should be
kept in mind that this is also the method that showed the highest
FDR (∼70−90%; i.e., the methods tend to select many variables,
which allows to capture the true ones but also many noncausal
exposures, which is overall not very informative); applying a
correction for multiple testing, such as a Bonferroni or
Benjamini−Hochberg, drastically reduced the FDR (∼20−
40%) but also the sensitivity. Similar trends were observed for
ExWAS-MLR, but with a clearly lower sensitivity compared to
ExWAS. Applying the 2-step approach did not improve the
performance of ExWAS but slightly lowered the FDR of
ExWAS-MLR, especially under scenario 1. In addition, we
observed that, under scenario 1, the ExWAS performances were
reasonable in the case of high ICC between the time points. In
summary, ExWAS would be the method of choice in the context
of a discovery study in which one does not want to leave out
predictors truly associated with the outcome, but in view of the
high FDR, other methods should be considered in a validation
study.

The other variable selection methods tested (ENET, sPLS,
and DSA) had an opposite performance to EXWAS: overall,
these methods showed low FDR (∼10−30%) but relatively low
sensitivity (mostly <60%) in both scenarios. However, accept-
able sensitivity (∼70−90%) was reached by sPLS and DSA
under scenario 2 and after applying the 2-step approach under
scenario 1. The ICC between time points had little impact on
these performances. Finally, for the two methods that
considered the structure of the data, i.e., that the same variable
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was measured at different time points, sNPLS and DLNM, we
observed good sensitivity for sNPLS but not for DLNM in both
scenarios, along with low FDR under scenario 1 and high FDR
under scenario 2. The ICC between time points had little impact
on these performances.

Data sets were simulated to be as realistic as possible by taking
the correlation structure from the existing exposome study
HELIX project, which presents many variables from multiple
exposome domains (including factors such as climate, urban
environment and societal factors, environmental pollutants,
tobacco smoke, diet, and physical activity, among others).
However, we acknowledge that even though we have explored
several scenarios, there are countless possibilities for exposome
studies, and indeed, we cannot generalize our findings to all
settings. For example, for a given health outcome in a real
exposome study, it is difficult to know a priori the number of
truly associated exposures. Normally, the variables that are
included in an exposome analysis are preselected because there
is some plausibility that they may have an effect (usually small)
on studied outcomes, so a situation with many causal hits is in
principle plausible. Nevertheless, this will always depend on the
context, facing sometimes scenarios with just a few causal
exposures or others with many of them. Keeping this in mind
and considering that some of the most important conducted
exposome studies have found between ∼5 and ∼25 factors
associated with the examined health outcomes,18,21−23 we here
opted for simulating three different scenarios ranging from only
a few to 15 truly associated exposures. This approach, though an
oversimplification of the complex realities faced in exposome
research, is still the first one providing some guidance in a
reasonably realistic setting.

At the same time, we acknowledge that we explored a
nonexhaustive list of statistical methods in this simulation study,
and there may be many other methods or strategies that could be
tested. For example, we a priori ruled out mixture models (i.e.,
statistical models estimating the combined effect of multiple
exposures). In the context of a few numbers of exposure to be
tested, some mixture models might be a good alternative, such as
the lagged weighted quantile sum regression (which estimates
the mixture effect using a weighted index and attempts to model
the complex exposure trajectory as a continuous function of
time) or the Bayesian kernel machine regression distributed lag
model (which estimates nonlinear and nonadditive effects of
exposure mixtures while assuming these effects vary over
time).19,20 Strategies involving dimension reduction techniques
or classifiers could also be of interest but were not considered in
the present study. For all intents and purposes, the code used to
simulate data and evaluate the results is available on GitHub
repository (see Supporting Information), which gives the
possibility to the research community to try other approaches
and methods and compare the results. In addition, the situation
with repeated measures of both the exposome and the outcome,
as frequently encountered in longitudinal cohort studies, was not
explored. Some methods, such as penalized generalized
estimating equations24 or penalized generalized mixed effect
models,25 may be suitable to deal with such design but would
need to be tested in the context of a very high number of
exposure data. In such a longitudinal study, more scenarios and
techniques (e.g., those focusing on trajectories) could be
envisioned. Advice on which statistical methods to use in
longitudinal exposome studies is still needed.

Besides the simulation experiment, we further applied all
tested methods to a “real-world” problem using the prospective

population-based Spanish INMA cohort,12 which shared some
common characteristics with the HELIX cohort employed for
simulations. For example; INMA is one of the 6 cohorts
composing the HELIX population. Likewise, it presents
variables belonging to exposome domains that are also present
in the full exposome HELIX data (mainly, urban environment,
air pollution, and diet). The inclusion of the INMA data as a
“real-world” problem, complementary to the “full exposome”
simulation experiment, allowed us to highlight some problems
not covered during the simulation (“ideal situation”), which are
indeed closer to what is of practical applicability for individuals
performing exposomic studies. For example, some methods
cannot handle categorical exposure variables that were part of
the original real data set (e.g., smoking status). We decided to
exclude these variables for the demo, but an alternative could be
to create dummy variables. Another constraint related to
differences in the number of repeated time measurements
available by exposure and exposome domains; some exposures
were assessed at 3 time points (i.e., diet), while others were
available at 5 time points (i.e., air pollution). In that case, we
were not able to introduce all exposure variables in a single
sNPLS model, and two separated models had to be run, i.e., one
with all variables measured three times and another with the
variables measured five times. Other specificities of the analysis
plan that should be considered before choosing the statistical
method are related to the need to be able to adjust for the effects
of potential confounding variables and/or to deal with the
presence of missing data or multiple imputed data sets. A
summary of the main strengths and weaknesses of each method
is presented in Table 4.

The results of the simulation study suggest that DSA is one of
the best-performing methods in the context of the tested data
structure. When these were applied to the real data, no exposures
were selected by this method. DSA is known to be restrictive in
including terms, which protects against false positives.2 Even
though the true result could be that there are no associations or
that they cannot be detected with the available sample size, it is
likely that analysts seek other methods if no exposures are
selected. This could be seen as p-hacking and could increase the
number of false positives. However, relevant information could
be obtained using other methods with more sensitivity, and
more trust in the results can be placed on exposures that are
selected by several methods. In our application study, 2
exposures (omega-6 fatty acid intake and proximity to near
road) have been selected by almost all the other methods.
Ideally, analysts should specify a priori the set of methods that
they are going to apply to their data and interpret the results
cautiously, owing to the imperfect sensitivity and FDR of these
methods, as shown in our simulation study.

In summary, our simulation study based on a realistic
exposome study shows that available statistical methods show
variable performance across scenarios, making it hard to
recommend a strategy that fits all scenarios. Still, some
recommendations could be done based on the expected
scenario. Our results also show that data-driven results from
repeated exposome studies should be interpreted with caution,
especially in contexts with a limited sample size, given the
elevated chance of reporting false positive or negative
associations.

Our approach does not fully cover the complex reality of the
exposome, and other exposome studies can reflect issues not
covered here. This therefore suggests that more methodological
studies are needed for the definition of the best analytical
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strategy to approach the life-course concept of the exposome,
encouraging future research in the field.
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