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s → τ+ντ via τ+ → µ+νµν̄τ is measured to
be BD+

s →τ+ντ
= (5.37± 0.17stat ± 0.15syst)%. Combining this branching fraction with the

world averages of the measurements of the masses of τ+ and D+
s as well as the lifetime of

D+
s , we extract the product of the decay constant of D+

s and the c→ s Cabibbo-Kobayashi-
Maskawa matrix element to be fD+

s
|Vcs| = (246.7±3.9stat±3.6syst)MeV. Taking |Vcs| from a

global fit in the standard model we obtain fD+
s

= (253.4±4.0stat±3.7syst)MeV. Conversely,
taking fD+

s
from lattice quantum chromodynamics calculations, we obtain |Vcs| = 0.987±

0.016stat ± 0.014syst.
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1 Introduction

Leptonic decays offer an ideal laboratory for studying strong and weak interaction effects
in the charmed meson system. In the standard model (SM) of particle physics, the D+

s

meson decays into `+ν` (` = e, µ or τ) via annihilation mediated by a virtual W+ boson.
Throughout this paper, the inclusion of charge conjugate channels is always implied. The
partial width of D+

s → `+ν` at lowest order can be related to the D+
s decay constant fD+

s

via [1]

ΓD+
s →`+ν` = G2

F
8π |Vcs|

2f2
D+
s
m2
`mD+

s

1− m2
`

m2
D+
s

2

, (1.1)

where GF is the Fermi coupling constant, |Vcs| is the c → s Cabibbo-Kobayashi-Maskawa
(CKM) matrix element, m` is the mass of the lepton, andmD+

s
is the mass of theD+

s meson.
Extraction of fD+

s
in experiments is important for testing various theoretical calculations

based on different approaches [2–10]. In recent years, the precision of calculations of fD+
s

based on Lattice Quantum Chromodynamics (LQCD) has reached a level of 0.2% [7], and
much progress has been achieved in the experimental studies of D+

s → `+ν` decays by the
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CLEO [11–13], BaBar [14], Belle [15], and BESIII [16, 17, 19–22] collaborations. Based
on the average of the branching fractions (BFs) reported by these experiments, one can
derive fD+

s
with a precision of 1.0%. Precise and intensive estimations of fD+

s
are still

desirable to test theoretical calculations with higher precision. Improved measurements of
fDs × |Vcs| are therefore important for testing the unitarity of the CKM matrix [23] with
higher sensitivity.

In the SM, the ratio of the BFs of D+
s → τ+ντ and D+

s → µ+νµ can be written as

Rτ/µ =
BD+

s →τ+ντ

BD+
s →µ+νµ

=
m2
τ+

(
1−

m2
τ+

m2
D+
s

)2

m2
µ+

(
1−

m2
µ+

m2
D+
s

)2 , (1.2)

which only depends on the charged lepton and D+
s meson masses. Inserting the world

averages of mτ , mµ, and mDs [24] in the above equation gives Rτ/µ = 9.75 ± 0.01. Mea-
surements of the BFs of D+

s → `+ν` allow this ratio to be determined experimentally and
provide an important test of τ − µ lepton flavor universality.

In this paper, we present a measurement of the BF ofD+
s → τ+ντ via the decay of τ+ →

µ+νµν̄τ , by analyzing 7.33 fb−1 of e+e− collision data taken at the center-of-mass energies√
s = 4.128GeV, 4.157GeV, 4.178GeV, 4.189GeV, 4.199GeV, 4.209GeV, 4.219GeV, and

4.226GeV [25–27] with the BESIII detector [28]. Following previous measurements, we
have not corrected the BF of D+

s → τ+ντ by the effect of radiative photons since their
uncertainties can be considered individually later, details of which are reviewed in “Leptonic
Decays of Charged Pseudoscalar Mesons” by the Particle Data Group (PDG) [24]. Based
on this measurement, we determine fD+

s
× |Vcs| with an improved accuracy, and test τ − µ

lepton flavor universality with D+
s → `+ν` decays.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [28] records symmetric e+e− collisions provided by the BEPCII storage
ring [29] in the center-of-mass energy range from 2.00 to 4.95GeV, with a peak luminosity of
1×1033 cm−2 s−1 achieved at

√
s = 3.77GeV. BESIII has collected large data samples in this

energy region [30]. The cylindrical core of the BESIII detector covers 93% of the full solid
angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator
time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are
all enclosed in a superconducting solenoidal magnet providing a 1.0T magnetic field [31].
The solenoid is supported by an octagonal flux-return yoke with modules of resistive plate
muon counters (MUC) interleaved with steel. The charged-particle momentum resolution
at 1GeV/c is 0.5%, and specific ionization energy loss dE/dx resolution is 6% for electrons
from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%
(5%) at 1GeV in the barrel (end-cap) region. The time resolution in the TOF barrel region
is 68 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate
chamber technology, providing a time resolution of 60 ps [32–34]. Approximately 83% of
the data used here was collected after this upgrade.
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Simulated data samples, namely inclusive MC samples, produced with a geant4-
based [35] Monte Carlo (MC) package, which includes the geometric description of the
BESIII detector and the detector response, are used to determine detection efficiencies and
to estimate backgrounds. The simulation models the beam-energy spread and initial-state
radiation (ISR) in the e+e− annihilations with the generator kkmc [36, 37]. In the sim-
ulation, the production of open-charm processes directly produced via e+e− annihilations
are modeled with the generator conexc [38], and their subsequent decays are modeled
by evtgen [39, 40] with known BFs from the Particle Data Group [24]. The ISR pro-
duction of vector charmonium (-like) states and the continuum processes are incorporated
in kkmc [36, 37]. The remaining unknown charmonium decays are modeled with lund-
charm [41, 42]. Final-state radiation from charged final-state particles is incorporated
using the photos package [43]. The input cross section line shape of e+e− → D∗±s D∓s is
based on the cross section measurement in the energy range from threshold to 4.7GeV.

3 Analysis method

In e+e− collisions with data taken at the center-of-mass energies between 4.128 and
4.226GeV, the D±s mesons are produced mainly via the e+e− → D∗±s D∓s → γ(π0)D+

s D
−
s

process. For our analysis we adopt the double-tag (DT) method pioneered by the MARK
III collaboration [44]. The D−s meson, when fully reconstructed via any hadronic decay
mode, is referred to as the single-tag (ST) D−s meson. Events in which the transition γ(π0)
from the D∗+s meson and the leptonic decay of D+

s → τ+ντ are reconstructed, in addition
to the ST D−s meson, are denoted as DT events. The BF of D+

s → τ+ντ is determined by

Bj
D+
s →τ+ντ

= N j
DT/ε

j
DT

Bτ+→µ+νµν̄τ ·N
j
ST/ε

j
ST
, (3.1)

where N j
DT and N j

ST are the yields of the DT events and ST D−s mesons in data, respec-
tively; and εjDT and εjST are the efficiencies of the DT events and ST D−s mesons estimated
with MC simulation, respectively. Here, εjDT, which includes the efficiency of simultane-
ously finding the tag side, the transition γ(π0) and D+

s → τ+ντ as well as the BF of
D∗+s → γ(π0)D+

s , Bτ+→µ+νµν̄τ is the BF of τ+ → µ+νµν̄τ and j denotes the ST mode. The
weighted mean method [45] is utilized to calculate the final BF, taking into account the
statistical and tag mode dependent uncertainty as discussed later.

4 Single-tag candidates

To reconstruct ST D−s candidates, we use the fourteen hadronic decay modes D−s →
K+K−π−, K+K−π−π0, K0

SK
−, K0

SK
−π0, K0

SK
0
Sπ
−, K0

SK
+π−π−, K0

SK
−π+π−,

π+π−π−, ηγγπ−, ηπ0π+π−π−, η′ηγγπ+π−π−, η′γρ0π−, ηγγρ−, and ηπ+π−π0ρ−. Throughout
this paper, ρ denotes ρ(770) and the subscripts of η(′) denote individual decay modes
adopted for the η(′) reconstruction.

In selecting K±, π±, K0
S , γ, π0, and η candidates, we use the same selection criteria

as those adopted in our previous studies [17, 46, 49]. For each good charged track, the
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polar angle (θ) with respect to the beam direction is required to be within the MDC
acceptance |cos θ| < 0.93, where θ is defined with respect to the z axis, which is the
symmetry axis of the MDC. The distance of its closest approach relative to the interaction
point is required to be within 10.0 cm along the beam direction (|Vz|) and within 1.0 cm in
the plane transverse to the beam direction (|Vxy|). Particle identification (PID) for good
charged tracks combines the measurements of the dE/dx in the MDC and the flight time
in the TOF to form probabilities L(h)(h = K,π) for each hadron (h) hypothesis. The
charged tracks are assigned as kaons or pions if their probabilities satisfy L(K) > L(π)
and L(π) > L(K), respectively.

The K0
S candidates are reconstructed via K0

S → π+π− decays. The two charged
pions are required to satisfy |Vz| < 20 cm and |cos θ| < 0.93. They are assumed to
be π+π− without PID requirements and their invariant mass is required to be within
(0.486, 0.510)GeV/c2. The distance from the K0

S decay vertex to the interaction point is
required to be greater than twice the vertex resolution.

Photon candidates are selected by using the information measured by the EMC and
are required to satisfy the following criteria. The energy of each shower in the barrel
(end-cap) region of the EMC [28] is required to be greater than 25 (50)MeV. To suppress
backgrounds associated with charged tracks, the angle between the shower position and
the closest intersection point of any charged track with the EMC inner surface, projected
from the interaction point, must be greater than 10 degrees. To suppress electronic noise
and energy deposits unrelated to the event of interest, any candidate shower is required to
start within [0, 700] ns from the event start time.

The π0 and ηγγ candidates are formed from γγ pairs with invariant masses lying in the
mass intervals (0.115, 0.150) and (0.50, 0.57)GeV/c2, respectively. To improve momentum
resolution, each selected γγ pair is subjected to a kinematic fit that constrains their invari-
ant mass to the known π0 or η mass [24]. In order to form ρ+(0), ηπ0π+π− , η′ηπ+π− , and η′γρ0

candidates, the invariant masses of the π+π0(−), π0π+π−, ηπ+π−, and γρ0 combinations
are required to lie within the mass intervals of (0.57, 0.97)GeV/c2, (0.53, 0.57)GeV/c2,
(0.946, 0.970)GeV/c2 and (0.940, 0.976)GeV/c2, respectively. In addition, the energy of
the photon from the η′γρ0 decay is required to be greater than 0.1GeV.

Soft pions from D∗+ decays are suppressed by requiring the momentum of any pion
which is not from K0

S , η, or η′ to be greater than 0.1GeV/c. In order to reject the
peaking background from D−s → K0

Sπ
− decays in the selection of D−s → π+π−π− STs,

the invariant mass of any π+π− combination is required to lie outside the mass window of
(0.468, 0.528)GeV/c2.

The backgrounds from non-D±s D∗∓s processes are suppressed by using the beam-con-
strained mass of the ST D−s candidate defined as

MBC ≡
√
E2

beam − |~pST|2, (4.1)

where Ebeam is the beam energy (
√
s/2) and ~pST is the momentum of the ST D−s candidate

in the e+e− rest frame. Figure 1 shows the MBC distribution of the ST candidates at
4.178GeV. The MBC value is required to be within (2.010, 2.061+ i×0.003)GeV/c2, where
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Figure 1. The MBC distributions of the ST D−s candidates in data and inclusive MC samples at
4.178GeV. The candidates between the two red arrows are retained for further analysis.

i takes the value 0, 3, 4, 5, 6, 7, 8, 9 for the energy points 4.128, 4.157, 4.178, 4.189, 4.199,
4.209, 4.219, 4.226, respectively. This requirement retains most of the D−s and D+

s mesons
from e+e− → D∗∓s D±s production.

If there are multiple candidates present per tag mode per charge, only the one with
the D−s recoil mass

Mrec ≡
√(√

s−
√
|~pST|2 +m2

D−
s

)2
− |~pST|2 (4.2)

closest to the D∗+s nominal mass [24] is kept for further analysis.
The distributions of the invariant masses (MST) of the accepted ST candidates from

data for each tag mode are shown in figure 2. The yields of ST D−s mesons reconstructed
in each tag mode are determined from fits to their individual MST distributions. In the
fits, the signal is described by the simulated shape convolved with a Gaussian function
that represents the resolution difference between data and simulation. In the fit to the
D−s → K0

SK
− tag mode, the shape of the peaking background D− → K0

Sπ
− is modeled

by the simulated shape convolved with the same Gaussian resolution function as used for
the signal shape and its size is left free. The fraction of the D− → K0

Sπ
− over D−s →

K0
SK
− yields is about 2.0%. The combinatorial background is described by a first to

third order Chebychev function, which is validated by analyzing the inclusive MC sample.
Figure 2 shows the fit results for the data sample at

√
s = 4.178GeV. In each sub-figure,

the red arrows show the chosen MST signal regions. The candidates located in these signal
regions are retained for further analysis. Based on simulation, the e+e− → (γISR)D+

s D
−
s

process is found to contribute about (0.7–1.1)% in the fitted number of ST D−s mesons for
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Figure 2. The fits to the MST distributions of the surviving ST D−s candidates for each tag
mode. The points with error bars denote the data sample at

√
s = 4.178GeV. The blue solid curves

represent the best fit results. The red dashed curves represent the fitted backgrounds. For the
D−s → K0

SK
− tag mode, the blue dotted curve is the peaking background from D− → K0

Sπ
−. In

each figure, the range within the two arrows indicate the chosen MST signal regions and the brown
line segments indicate the sideband regions.

each tag mode. The reported yields have this contribution subtracted. The efficiencies of
reconstructing ST D−s mesons (NST) are estimated by analyzing the inclusive MC sample
in the same way as real data.

The second and third columns of table 2 summarize the yields of ST D−s mesons
(NST) for each tag mode obtained in data and the corresponding detection efficiencies
(εST), respectively. In this table, the NST quantities are obtained by summing over all
energy points, and the εST quantities are obtained by weighting the corresponding yields
of ST D−s mesons in data at each energy points.

5 Double-tag candidates

The D+
s → τ+ντ candidates are selected in the system recoiling against the ST D−s mesons

via the decay of τ+ → µ+νµν̄τ by using the residual neutral showers and charged tracks
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|cos θµ| pµ (GeV/c) dµ (cm)

(0.50, 0.61) > 3.0

(0.61, 0.75) > 100.0× pµ − 58.0

(0.0, 0.2) (0.75, 0.88) > 17.0

(0.88, 1.04) > 100.0× pµ − 71.0

(1.04, 1.20) > 33.0

(0.50, 0.64) > 3.0

(0.64, 0.78) > 100.0× pµ − 61.0

(0.2, 0.4) (0.78, 0.91) > 17.0

(0.91, 1.07) > 100.0× pµ − 74.0

(1.07, 1.20) > 33.0

(0.50, 0.67) > 3.0

(0.67, 0.81) > 100.0× pµ − 64.0

(0.4, 0.6) (0.81, 0.94) > 17.0

(0.94, 1.10) > 100.0× pµ − 77.0

(1.10, 1.20) > 33.0

(0.6, 0.8) > 9.0

(0.8, 0.93) > 9.0

Table 1. Identification criteria for muon candidates.

which have not been used in the ST selection. As the detection efficiencies and back-
ground levels do not vary greatly with

√
s, the analysis combines the samples over all the

energy points.
Excluding the daughter particles originating from the tag side, only one good charged

track is allowed in each DT candidate and its charge must be opposite to that of the tag-
side decay. The deposited energy of muon candidates in the EMC is required to be within
(0.0, 0.3)GeV. To separate muons from hadrons, the muon candidates must have momenta
greater than 0.5GeV/c, and fulfill requirements on the muon travelling length in the MUC
(dµ) with dependence of momentum (pµ) and flight direction (cos θµ) in the MUC [17] as
shown in table 1 and figure 3 based on the control sample of e+e− → γµ+µ−.

To select the D+
s → τ+ντ signals and the transition γ(π0) from D∗+s , we define two

kinematic variables: the energy difference

∆E ≡
√
s− EST − Emiss − Eγ(π0), (5.1)

where Emiss is defined as
√
|~pmiss|2 +m2

D+
s

with ~pmiss ≡ −~pST − ~pγ(π0), and the missing
mass squared of the neutrinos

M2
3ν ≡

(√
s− ΣkEk

)2 − |Σk~pk|2, (5.2)
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Figure 3. The distributions of dµ vs. pµ in different |cos θµ| regions of e+e− → γµ+µ− candidates
in data. The regions above the red line are retained for further analysis.

in which Ek and ~pk are the energy and momentum of ST D−s , transition γ(π0), or µ+,
respectively. All γ and π0 candidates that have not been used in tag selection are looped
over. If there are multiple γ or π0 combinations satisfying the selection criteria, we choose
the one leading to the minimum |∆E|.

To suppress the backgrounds from D+
s → µ+νµ and D+

s → ηπ+ decays, which peak in
the M2

3ν distribution around 0 and 0.3GeV2/c4, respectively, the value of M2
3ν is required

to be within (0.5, 2.0)GeV2/c4 as shown in figure 4.

6 Branching fraction determination

Following refs. [13, 21, 50], we discriminate signal from background by using the variable
Etot

extra γ . It is defined as the total energy of the good isolated EMC showers which have not
been used in tag selection. The distributions of Etot

extra γ of the accepted DT candidates in
data are shown in figure 5.

Study of the inclusive MC sample shows that the background events can be divided into
three categories: BKGI, BKGII, and BKGIII. The BKGI component corresponds to events
with an incorrectly reconstructed ST D−s . The BKGII component corresponds to events
with a correctly reconstructed ST D−s and D+

s → K0
Lµ

+νµ, in which the K0
L meson passes

through the detector without undergoing decay or significant interaction. The BKGIII
component consists of events with a correctly reconstructed ST D−s and a D+

s decaying to
any other background final state apart from K0

Lµ
+νµ,

The DT signal yield is extracted by analyzing the Etot
extra γ distribution as shown in

figure 5. To minimize the effect of the imperfect signal shape, we adopt an extrapolation

– 8 –
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Figure 4. The M2
3ν distributions of accepted candidates in data and inclusive MC samples with

the Etot
extra γ <0.4GeV requirement. Candidates with M2

3ν within the two red arrows are retained
for further analysis.

technique following refs. [13, 21, 50]. A bin maximum likelihood fit is performed on the
events with Etot

extra γ > 0.6GeV, where the signal is negligible, and the sizes and shapes of
BKGI and BKGII are fixed. The signal DT yield is obtained by subtracting the yields of
BKGI, BKGII, and BKGIII from the yield of all events (N j

tot) in the Etot
extraγ signal region.

In the D∗s rest frame, the transition photon has a monochromatic energy of 139MeV. When
evaluated in the laboratory rest frame, the D∗s momentum causes a smearing of ±15MeV
on the photon energy. After further considering the resolution effect, we define Etot

extraγ <

0.4GeV as the signal region. Details of BKGI, BKGII, and BKGIII are given below.
The shape of the BKGI component is derived using the data DT events situated

in the corresponding MST sideband regions. The MST sideband regions are indicated
inside the brown line segments in figure 2. For tag modes with neutrals, the remaining
contamination from signal in sideband regions is subtracted. The size of this component
is fixed at f j1 · N

I j
Class, where f

j
1 is the sideband scale factor, defined as the ratio of the

numbers of background events in the MST sideband and signal ranges. The f j1 value is
obtained by fitting the MST distribution from the inclusive MC sample after imposing the
DT requirements. N I j

Class is obtained by counting events in the Etot
extra γ signal region in data.

The shape of the BKGII component is modeled by the simulated events corrected by a
2D data-MC difference for the K0

L detector response. The correction factors are obtained
by using a control sample of D0 → K0

Lπ
+π− decays from 2.93 fb−1 of e+e− collision data

collected at
√
s = 3.773GeV [51, 52]. The yield of this component is fixed at N II j

Class, which is
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Figure 5. The distributions of Etot
extra γ of the DT candidates for D+

s → τ+ντ with τ+ → µ+νµν̄τ .
Black points with error bars are the combined data sample. Solid blue histograms denote the
resutlts. Filled pink shadows, open circles with error bars, filled green histograms, and dashed blue
histograms are Signal, BKGI, BKGII, and BKGIII, respectively.

calculated by taking the probability not to reconstruct the K0
L meson from MC simulation

and assuming the BF of D+
s → K0µ+νµ decays to be the same as the corresponding decay

mode involving electrons [24].
The shape of the BKGIII component is estimated from the inclusive MC sample. The

MC simulation shows that the leading six D+
s non-peaking background components are

D+
s → ηµ+νµ (36.0%), D+

s → ηπ+π0 (11.4%), D+
s → π+π0ντ ν̄τ (2.5%), D+

s → φπ+ (2.5%),
D+
s → η′π+ (2.5%), and D+

s → φµ+νµ (2.0%), where the numbers shown in parentheses
are their proportional contribution to the total BKGIII in the full Etot

extra γ region. The
yield of this component is represented by f j2 ·N

III j
Class, where f

j
2 is the extrapolation factor,

defined as the ratio of the numbers of BKGIII events between Etot
extra γ < 0.4GeV and

Etot
extra γ > 0.6GeV derived from the inclusive MC sample. The N III j

Class is obtained from the
fit with Etot

extra γ > 0.6GeV.
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Finally, the signal DT yield in data is obtained by

N j
DT = N j

tot − f
j
1 ·N

I j
Class −N

II j
Class − f

j
2 ·N

III j
Class. (6.1)

The efficiencies of detecting DT events (εjDT) are estimated by using the signal MC
samples of e+e− → D∓s D

∗±
s with the D−s meson decaying to the tag mode and D+

s → τ+ντ
with τ+ → µ+νµν̄τ . All numbers discussed above are summarized in table 2. For each
tag mode, inserting the individual values of N j

ST, ε
j
ST, N

j
DT, and ε

j
DT in eq. (3.1) gives the

corresponding BF. The systematic uncertainties in the BF measurement are estimated in
the next section. The obtained BFs are summarized in the last column of table 2.

7 Systematic uncertainties

Sources of the relative systematic uncertainties in the measurement of the BF of D+
s →

τ+ντ are summarized in table 3 and discussed below. Note that the DT method means
that most uncertainties due to the selection of ST D−s candidates cancel.

7.1 Tag-mode dependent systematic uncertainties

Several sources of potential systematic bias are associated with the tag mode, and are
hence classified as tag-mode dependent.

The systematic uncertainties on the fitted yields of the ST D−s mesons are assessed
by using alternative signal and background shapes. The alternative signal shapes are
obtained by changing the baseline choices derived from inclusive MC sample to those from
the signal MC sample. The alternative background shapes are obtained by varying the
order of the nominal Chebychev function by ±1. For a given ST mode, the differences in
the ratio of the yield of ST D−s mesons over the corresponding efficiency for all variations,
and the background fluctuation of the fitted yield of ST D−s are re-weighted by the yields
of ST D−s mesons in various data samples and are added in quadrature. An additional
component to this uncertainty is statistical in nature, and accounts for the contribution
of background fluctuations to the fitted yields of ST D−s mesons. The effects due to the
signal shape, the background shape, and the background fluctuation are 0.08%, 0.12%,
and 0.46%, respectively. The corresponding overall systematic uncertainty from all these
sources is assigned to be 0.48%, which is the quadrature sum of these three terms.

The ST efficiencies obtained from the inclusive MC sample may differ from those
estimated with the signal MC events generated with events containing the ST D−s and
D+
s → τ+ντ decays, thereby causing possible tag bias. The size of this bias is estimated by

measuring for each tag εD
+
s →τ+ντ

ST , the efficiency in the signal MC sample, and εinclusiveD+
s

ST ,
the efficiency in the inclusive MC sample, and multiplying (εD

+
s →τ+ντ

ST /εinclusiveD+
s

ST − 1)
by the estimated data-MC differences in the tracking and PID efficiencies without any
correction, which are 1.0% for charged pions and kaons, and 2.0% for π0, η(γγ) and K0

S

decays. The resulting numbers are weighted by the ST yields in each tag to yield an overall
systematic uncertainty of 0.37%.

After weighting by the yields of ST D−s mesons in each data sample, the uncertainty
from the limited MC sample sizes is assigned to be 0.29%.
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Source Uncertainty (%)
ST yield 0.48
Tag bias 0.37

MC sample size 0.29

µ+ tracking 0.18

µ+ PID 0.33

γ(π0) reconstruction 1.00

M2
3ν requirement 1.75

N charge
extra requirement 0.41

Etot
extra γ fit 1.56

B(τ+ → µ+νµν̄τ ) 0.23

Total 2.70

Table 3. Systematic uncertainties in the BF measurement.

7.2 Tag-mode independent systematic uncertainties

Systematic uncertainties which do not depend on tag modes are classified as tag-mode
independent.

The systematic uncertainties related to the µ+ tracking and PID efficiencies are investi-
gated by using a control sample of e+e− → γµ+µ− decays. By considering the dependencies
of the µ+ efficiencies on the µ+ momentum, polar angle, and different energy points, the
difference of µ+ tracking efficiencies between data and MC simulation is (−0.32± 0.18)%.
After correcting the signal efficiencies to data, the associated systematic uncertainty is
assigned to be 0.18%. The difference of the µ+ PID efficiencies between data and MC sim-
ulation is found to be −(11.86±0.33)%. A similar large difference in the µ+ PID efficiency
between data and simulation was observed for D+

s → µ+νµ events in previous analyses at
BESIII and is understood to arise from imperfections in the simulation of the length of
the muon traveling in the MUC [17]. After correcting the signal efficiencies to data, the
uncertainty 0.33% is assigned as the corresponding systematic uncertainty.

The efficiency of the γ selection is studied by using a control sample of J/ψ → π+π−π0

decays [53], while the π0 reconstruction efficiency is studied with a sample of e+e− →
K+K−π+π−π0 events [54]. The systematic uncertainty of selecting the transition γ or
π0 is estimated to be 1.00%, accounting for the relative BFs of D∗+s → γD+

s and D∗+s →
π0D+

s [24].
The systematic uncertainty associated with the M2

3ν requirement is assessed by re-
performing the measurement with enlarging or shrinking this requirement by ±1 or ±2 bin
sizes, resulting in 24 variations. Among all variations, the maximum change of BF, 1.75%,
is taken as the corresponding systematic uncertainty.

The systematic uncertainty associated with the requirement of no extra charged tracks
(N charge

extra ) is studied with the DT sample of D+
s → π+φ(→ K+K−) and D+

s → K+K0
S(→

– 13 –
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π+π−). The difference of the acceptance efficiencies between data and MC simulation,
0.41%, is taken as the systematic uncertainty.

The systematic uncertainty in the Etot
extra γ fit has contributions associated with the

three classes of background. The systematic uncertainty arising from the BKGI is estimated
by varying the sideband scale factor by ±1σ and the corresponding change of 0.10% in
the fitted signal yield is taken as the systematic uncertainty. The systematic uncertainty
arising from the shape of BKGII is assessed by replacing the corrected shape of Etot

extra γ
with the uncorrected one and is found to be negligible. We also change the level of BKGII
background by varying the misidentification rate by ±1σ and the BF of D+

s → K0
Lµ

+νµ
within the measurement uncertainty of the D+

s → K0
Le

+νe BF. The relative difference of
the fitted signal yield, 1.39%, is assigned as the associated systematic uncertainty. The
uncertainty due to the non-peaking shape of BKGIII is estimated by varying the f2 by ±1σ
and the relative components of the leading six background modes [24], and is assigned to
be 0.69%. After adding these contributions in quadrature, the uncertainty associated with
the Etot

extra γ fit is assigned to be 1.56%.
The uncertainty on the BF of τ+ → µ+ντ ν̄τ contributes a systematic uncertainty of

0.23% [24].

7.3 Total systematic uncertainties

By adding the individual components in quarature, we determine the total tag-mode de-
pendent and independent systematic uncertainties to be 0.67% and 2.62%, respectively,
and the total relative systematic uncertainty to be 2.70%.

8 Results

The measured values BD+
s →τ+ντ

are listed in table 2 for each tag mode. Weighting each
measurement by the inverse squares of the combined statistical and tag-mode dependent
systematic uncertainties yields

BD+
s →τ+ντ

= (5.37± 0.17stat ± 0.15syst)%.

Here, the first uncertainty is statistical, and the second is the quadrature sum of the
tag-mode dependent and independent systematic uncertainties. Using this BF and the
world average values of GF, mµ, mD+

s
, and τD+

s
[24] with ΓD+

s →τ+ντ
= BD+

s →τ+ντ
/τD+

s
, we

determine the product of fD+
s
and |Vcs| to be

fD+
s
|Vcs| = (246.7± 3.9stat ± 3.6syst)MeV,

where the systematic uncertainty is dominated by that of the measured BF (2.70%) and
the lifetime of D+

s (0.8%). Making use of |Vcs| = 0.97349 ± 0.00016 from the global fit in
the SM [24, 55], we obtain

fD+
s

= (253.4± 4.0stat ± 3.7syst)MeV.
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Alternatively, utilizing fD+
s

= (249.9 ± 0.5)MeV from recent LQCD calculations [2–4, 7],
we obtain

|Vcs| = 0.987± 0.016stat ± 0.014syst.

In the calculation of |Vcs|, one additional uncertainty (0.2%) for the input value of fD+
s

is included. In the determination of fD+
s
, however, the uncertainty from the input value

|Vcs| has negligible effect. Our value |Vcs| agrees with our previous results obtained via
D → K̄`+ν` [56–59], D+

s → µ+νµ [17, 18], and D+
s → η(′)`+ν` decays [46–48].

9 Summary

By analyzing e+e− collision data collected with a total integrated luminosity of 7.33 fb−1

at the center-of-mass energies between 4.128GeV and 4.226GeV, we determine the BF of
D+
s → τ+ντ via τ+ → µ+νµν̄τ to be (5.37± 0.17stat ± 0.15syst)%. This result is consistent

with the previous measurements [24]. Using this BF and the world average values of GF,
mµ,mD+

s
, and τD+

s
[24] with ΓD+

s →τ+ντ
= BD+

s →τ+ντ
/τD+

s
, we determine the product of fD+

s

and |Vcs| to be fD+
s
|Vcs| = (246.7±3.9stat±3.6syst)MeV. Combining the BF measured in this

work with the |Vcs| given by refs. [24, 55], we obtain fD+
s

= (253.4± 4.0stat± 3.7syst) MeV.
Conversely, combining this BF with the fD+

s
calculated by LQCD [2–4, 7], we determine

|Vcs| = 0.987 ± 0.016stat ± 0.014syst. Combining with the BF of D+
s → µ+νµ [24], we

obtain Rτ/µ = 9.89 ± 0.50, which is consistent with the expectation based on lepton
flavor universality.

We determine an average [45] BF for D+
s → τ+ντ and the derived quantities that

follow from this result, taking as input the BF measurement from the current study, and
those BF measurements using the decays τ+ → π+π0ν̄τ [20], τ+ → e+νeν̄τ [21] and τ+ →
π+ν̄τ [22]. The uncertainties from the ST yield, the π+ tracking efficiency, the soft γ(π0)
reconstruction, the best transition γ(π0) selection, the tag bias, τD+

s
, mD+

s
, mτ and |Vcs|

are taken to be correlated between the measurements. We determine the average BF to
be B(D+

s → τ+ντ ) = (5.33 ± 0.07stat ± 0.08syst)%. From this result it follows fD+
s

=
(252.4± 1.7stat± 2.1syst) MeV, |Vcs| = 0.983± 0.007stat± 0.008syst, and Rτ/µ = 9.82± 0.33,
again consistent with the expectation based on the assumption of lepton flavor universality.
Figures 6, 7, and 8 show comparisons of our results for B(D+

s → τ+ντ ), fD+
s
, and |Vcs|

with those of previous results.
Improved measurements of B(D+

s → τ+ντ ) are foreseen with the larger data sets that
BESIII is expected to accumulate in the coming years [30].

Acknowledgments

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for
their strong support. This work is supported in part by National Key R&D Program of
China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Sci-
ence Foundation of China (NSFC) under Contracts Nos. 11875170, 12105076, 11635010,
11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502,
12035009, 12035013, 12061131003, 12192260, 12192261, 12192262, 12192263, 12192264,
12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program;

– 15 –



J
H
E
P
0
9
(
2
0
2
3
)
1
2
4

) (%)ν+τ→ 
s

+
B(D

­5 0 5

BESIII ντ 0.08±0.07±5.33 Combined

­1BESIII 7.33 fb νµτthis work 0.15±0.17±5.37

­1BESIII 7.33 fb νπτarXiv:2303.12600 [hep­ex], 0.13±0.17±5.44

­1BESIII 6.32 fb νeτPRL127(2021)171801, 0.12±0.10±5.27

­1BESIII 6.32 fb νρτPRD104(2021)032001, 0.23±0.25±5.29

­1BESIII 6.32 fb νπτPRD104(2021)052009, 0.17±0.25±5.21

Belle νπ,µe,τJHEP09(2013)139, 0.31±0.21±5.70

BaBar νµe,τPRD82(2010)091103, 0.57±0.37±4.96

CLEO νπτPRD79(2009)052001, 0.22±0.80±6.47

CLEO νρτPRD80(2009)112004, 0.24±0.54±5.50

CLEO νeτPRD79(2009)052002, 0.22±0.47±5.32

Figure 6. Comparison of the BFs measured in this work with previous measurements, where the
inner error bar is the statistical uncertainty and the outer is the combined statistical and systematic
uncertainty. The last line is the BESIII combined result which does not include the BESIII result
in ref. [19].

 (MeV)+
sD

f
0 100 200 300

BESIII ντ 2.1±1.7±252.4 Combined

­1
BESIII 7.33 fb ν

µ
τthis work 3.7±4.0±253.4

­1
BESIII 7.33 fb ν

π
τarXiv:2303.12600 [hep­ex], 3.2±4.0±255.0

­1
BESIII 6.32 fb ν

e
τPRL127(2021)171801, 3.0±2.4±251.1

­1
BESIII 6.32 fb ν

ρ
τPRD104(2021)032001, 4.9±5.9±251.6

­1
BESIII 6.32 fb ν

π
τPRD104(2021)052009, 4.2±6.0±249.7

­1
BESIII 6.32 fb νµPRD104(2021)052009, 3.9±3.0±249.8

­1
BESIII 3.19 fb νµPRL122(2019)071802, 3.6±3.7±253.0

Belle νµJHEP09(2013)139, 4.8±6.6±248.8

BaBar νµPRD82(2010)091103, 7.6±8.4±264.9

CLEO νµPRD79(2009)052001, 4.0±10.2±256.7

­1
BESIII 0.482 fb νµPRD94(2016)072004, 5.1±17.8±245.5

Belle ν
π,µe,

τJHEP09(2013)139, 7.2±4.8±261.1

BaBar ν
µe,

τPRD82(2010)091103, 12.0±8.6±244.6

CLEO ν
π

τPRD79(2009)052001, 4.0±17.5±277.1

CLEO ν
ρ

τPRD80(2009)112004, 5.0±13.3±257.0
CLEO ν

e
τPRD79(2009)052002, 5.3±11.2±251.8

HFLAV21 PRD107(2023)052008 2.5±252.2

FLAG21(2+1+1) EPJC82(2022)869 0.5±249.9

FMILC(2+1+1) PRD98(2018)074512 0.4±249.9

ETM(2+1+1) PRD91(2015)054507 4.1±247.2

Figure 7. Comparison of fD+
s
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experimental results, the inner error bar is the statistical uncertainty and the outer is the combined
statistical and systematic uncertainty. The green band denotes the FLAG average and the yellow
one denotes the experimental average. The last line is the BESIII combined result which does not
include the BESIII result in ref. [19].
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uncertainty. The green band denotes the CKM Fitter average and the yellow one denotes the
experimental average. The last line is the BESIII combined result which does not include the
BESIII result in ref. [19].
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