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The first order transition between the confining and the center symmetry breaking phases of the SU(3)
Yang-Mills theory is marked by discontinuities in various thermodynamics functions, such as the energy
density or the value of the Polyakov loop. We investigate the nonanalytical behavior of the topological
susceptibility and its higher cumulant around the transition temperature and make the connection to the
curvature of the phase diagram in the T − θ plane and to the latent heat.
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I. INTRODUCTION

Quantum chromodynamics, the theory of strong inter-
actions, features a broad cross-over around 155 MeV
temperature [1–3]. In the high temperature phase chiral
symmetry is restored, and quarks are no longer localized in
hadrons. The order of this deconfining transition depends
on the values of the quark masses [4–7]. The best studied
special case is the theory with infinite quark masses, where
a first order transition was predicted by renormalization
group arguments [8,9] and later shown numerically on the
lattice [10–12].
The topological features of hot QCD matter came into

focus mainly because of their impact on axion search
experiments [13]. Axions are hypothetical particles linked
to the Peccei-Quinn mechanism, a proposed solution to the
strong CP problem [14–16], which are also candidate dark
matter constituents. Their abundance in our present world

is determined by the temperature of the hot early Universe
at the point of their production: lighter axions are produced
at a later stage in a colder Universe, resulting in a larger
density today, because of the shorter period of expansion in
comparison to a heavier axion that would have had more
time for dilution [17]. It must be noted that this picture is
not complete without the details of the production mecha-
nism, such as the interplay with the formation and decay of
global cosmic strings [18,19].
Lattice QCD has provided essential input for con-

straining a class of axions, the QCD axion. In particular,
the relation between the temperature and the axion mass
was determined up to a constant factor in a broad temper-
ature range [20,21]. The mass of the QCD axion is
controlled by the strongly temperature dependent topologi-
cal fluctuations. The relevant observable is the topological
susceptibility

χ ¼ hQ2i
V

; ð1Þ

where V is the Euclidean four-volume and Q is the
topological charge, defined in the continuum theory as

Q ¼ 1

32π2

Z
V
d4xTrϵμνρσFμνFρσ: ð2Þ
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Analytic arguments require a power-law drop of χ with
logarithmic corrections as the temperature is increased in
the weak coupling regime [22]. This behavior was, indeed,
observed in exploratory studies on the lattice [23,24] both
in the quenched case [25] and in full QCD [26]. While most
studies used the field theoretic definition of Q of Eq. (2),
the conclusion was unaltered by using the index theorem to
define Q [27].
The precise value of the susceptibility in the high

temperature phase determines the axion potential in the
hot early Universe. Its calculation at high temperatures is
challenging even in the quarkless SU(3) theory and
required large scale studies [28]. Research within the lattice
QCD community was pursued in several directions: (i) to
calculate the susceptibility at high temperatures, (ii) to
address higher cumulants, and (iii) to understand the
topological features in the context of the large-N limit of
the SU(N) theory.
The smallness of χðTÞ at the axion production temper-

ature (which can be several GeVs) requires the computation
of hQ2i based on extremely rare events. This means, that
the variance of the integer valued charge Q has to be
determined, which can be several orders of magnitude
below one, and most of the sampling will result in Q ¼ 0
on the course of a simulation. The integral method was first
suggested to mitigate this algorithmic challenge [21,29]. It
extracts χ from the difference of the free energy between
the Q ¼ 0 and Q ¼ 1 sectors. Another idea, based on [30],
is to add an extra Q dependent term to the action and
removing it by reweighting [31,32]. Further ideas include a
multicanonical approach [33], and density of states meth-
ods [34,35]. In the case of dynamical QCD the calculation
of the susceptibility was further refined by using the
spectral features of the Dirac operator [36], or by using
reweighting and eliminating known staggered artefacts [21]
to reduce cutoff effects.
In the temperature region around and below the transition,

the computation of higher moments of the topological
charge requires very high statistics [37]. For instance, the
kurtosis is expressed through the b2 coefficient:

b2ðTÞ ¼ −
χ4ðTÞ
12χðTÞ ; χ4 ¼

1

V
½hQ4i − 3hQ2i2�: ð3Þ

It was observed, that simulations at imaginary values of a θ
parameter are feasible without the emergence of a sign
problem, and enable the precise study of higher cumulants of
the topological charge at θ ¼ 0 [38,39].
The SU(3) theory can be seen as a special case of the SU

(N) gauge theories, and it can be studied in the framework
of the large-N expansion [40]. In the large-N limit the
topological susceptibility is constant up to the deconfine-
ment temperature, but on the high temperature side of the
transition it is suppressed exponentially with N [41,42], in
agreement with the semiclassical expectations [43].

The topological susceptibility χ is the second derivative of
the thermodynamic potentialwith respect to theCP-breaking
θ parameter. χ and the higher moments are the Taylor
coefficients of the QCD pressure when it is extrapolated
to nonzero θ. It is, thus, to be expected, that the behavior of
the susceptibility near the transition is linked to the details of
the phase diagram in the T − θ plane. It was pointed out in
Refs. [44,45] that in the case of a first order transition the
curvature parameter Rθ, defined as

TcðθÞ
Tcð0Þ

¼ 1þ Rθθ
2 þOðθ4Þ ð4Þ

is related to the latent heat Δϵ and the discontinuity of the
topological susceptibility across the transition Δχ by a
Clausius-Clapeyron-like equation

Δχ ¼ 2ΔϵRθ: ð5Þ

To make our discussion self-contained we revisit its
derivation here. The first order deconfinement transition
can be described with the free energy densities of the two
phases of the system, fcðTÞ and fdðTÞ, which are equal at
the transition point, and the difference of their temperature
derivatives is connected to the latent heat Δϵ

Δϵ ¼ ϵd − ϵc ¼ T2ð−∂Tðfd=TÞ þ ∂Tðfc=TÞÞjT¼Tc
ð6Þ

Near the transition, the free energy densities [using the
reduced temperature (t)] are approximated as

fαðt; θÞ ¼ f0 þ TcAαtþ
χα
2
θ2; ð7Þ

where we have neglected higher order terms, and Δϵ ¼
TcðAc − AdÞ. At finite θ, the coincidence of fcðt; θÞ and
fdðt; θÞ signifies the shifted transition temperature, yielding
the equation

Actþ
χc
2Tc

θ2 ¼ Adtþ
χd
2Tc

θ2 ð8Þ

which simplifies to

TcðθÞ
Tcð0Þ

¼ 1þ χd − χc
2Δϵ

θ2 ð9Þ

proving the relation Rθ ¼ Δχ=2Δϵ.
If the susceptibility drops in value as the transition is

traversed from the cold, confined phase, the curvature Rθ

must be negative. Rθ was extracted from the dependence
of the transition temperature at various imaginary θ
values in a large scale lattice study which yielded Rθ ¼
−0.0178ð5Þ [44,45].
In a recent work we used an algorithmic development,

parallel tempering, to reach higher precision of the latent
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heat of the SU(3) Yang-Mills theory [12]. Our result
Δϵ=T4

c ¼ 1.025ð21Þð27Þ can be combined with [45] to
find Δχ=T4

c ¼ −0.0365ð18Þ, which corresponds to an error
of 5%. The same relation was investigated at a finite lattice
spacing in Ref. [46].
The goal of this work is to quantify the discontinuity Δχ

as a direct lattice result in the continuum limit. The
topological features near Tc were rarely addressed in the
continuum limit in the existing literature, and finite volume
scaling was often neglected. After introducing the lattice
setup in Sec. II, we show high-statistics results for the basic
observables, χðTÞ and b2ðTÞ in Sec. III. In Secs. IV and V
we calculate the continuum and infinite volume limits of
Δχ and Rθ, respectively. In the discussion of Sec. VI we
give an account of the fourth moment near Tc to comple-
ment earlier works that report an early onset of the dilute
instanton gas picture [47].

II. THE TOPOLOGICAL CHARGE
ON THE LATTICE

According to Eq. (1), in order to directly obtain Δχ we
needed to determine the lattice version of Q corresponding
to gauge configurations of different ensembles generated at
the transition point. We simulated the pure SU(3) Yang-
Mills theory with the Symanzik-improved gauge action in
narrow range of gauge couplings around βc using parallel
tempering. The center of this range was fine tuned to the
critical coupling βc with a per mille precision in T=Tc, at
this coupling we stored the configurations for further
analysis. The use of parallel tempering has significantly
reduced the autocorrelation time by allowing a frequent
exchange of configurations between T < Tc, T ≈ Tc, and
T > Tc subensembles. The number of gauge configura-
tions stored and later evaluated at βc are summarized
in Table I.
On each lattice configuration we measured the

Symanzik-improved topological charge defined similarly
as in [48–50]

Q ¼
X

mn∈f11;12g
cnmQmn; ð10Þ

where the coefficients cmn are

c11 ¼ 10=3; c12 ¼ −1=3

andQmn is the naive topological charge defined through the
lattice version of the field strength tensor (F̂μν)

Qmn ¼
1

32π2
1

m2n2
X
x

X
μ;ν;ρ;σ

ϵμνρσ·

· TrðF̂μνðx;m; nÞF̂ρσðx;m; nÞÞ: ð11Þ

F̂μνðx;m; nÞ is built by averaging clover terms of m × n
plaquettes at site x on the μν plane. We visualize
F̂μνðx;m; nÞ in Fig. 1 (see Ref. [49]).
We introduced smearing on the gauge field via the

Wilson flow, which allowed us to measure a renormalized
topological charge which we defined at a given flow time t.
We integrated the Wilson flow using a 3rd order adaptive
step-size variant of the Runge-Kutta scheme in Ref. [51].
All moments ofQ are a constant function of the flow time t
in the continuum. In practice one selects a fixed flow time t
in physical units, e.g. relative to the actual temperature T at
which the continuum extrapolation can be carried out using
the lattices at hand. The choice of t is, thus, a compromise,
such that t should be small enough to avoid high computa-
tional costs but also to avoid finite volume effects t ≪ L2,
yet large enough to maintain t ≫ a2.
To make a practical choice for this study we examined

the t dependence of χ, which can be seen in Fig. 2.
In the figures we show the normalized susceptibility
χ=T4

c ¼ ðT=TcÞ4hQ2iðN4
τ=VÞ, so that the comparison of

lattices with different resolution is meaningful. Different
curves within the same color represent different lattice
spacings, and with different colors we show data that were
calculated from the improved or unimproved topological
charge. By unimproved we mean the standard 1 × 1 clover
definition. We defined Q at a flow time that fell into the
plateau region even in the case of the coarsest lattices. Our
choice of the flow time tT2 ¼ 1=18 is highlighted with a
black vertical line in Fig. 2. Fixing t we could calculate χ
and determine a continuum limit for Symanzik-improved
and unimproved datasets, which we compare in Fig. 3,
together with results that we calculated at a smaller flow
time tT2 ¼ 1=36. With Q that is renormalized correctly the

TABLE I. Number of gauge configurations generated at the
transition point. LT ¼ Nx=Nτ means the aspect ratio and Nx and
Nτ are the spatial and the temporal extensions in lattice units.

Nτ

6 7 8 10 12

LT 2 18977 13055 10098 8552 11882
4 49747 64901 77902 40054 20604
4.5 � � � � � � 30544 � � � � � �
5 20041 6524 36610 13473 � � �
6 67185 7875 53325 24475 � � �
8 30581 6677 7372 � � � � � �

FIG. 1. 1 × 2 plaquettes in the improved clover discretization of
the topological charge.
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continuum limits obtained from improved and unimproved
data should agree. This is true in the case with our choice of
t (right-hand side), whereas at a smaller t (left-hand side)
finite size effects are still significant and improved and
unimproved continuum extrapolations slightly differ. The
blue bands show a shorter range fit on the improved data,
excluding the Nτ ¼ 6 lattice. The continuum limit from the
smaller fit range extrapolation is compatible with results
using the whole dataset, therefore we will use one or the
other of the two cases in the following sections depending
on the χ2 of the fit on the actual data.

In the next section we describe a broader temperature
scan throughout the transition 0.9T=Tc − 1.1T=Tc.
Calculating the Wilson flow at several temperatures would
have a large computational cost, therefore in this case we
calculated Q after using stout smearing on the gauge field
corresponding to the same physical smearing radius as in
the case of the Wilson flow.
In practice, we performed a number of stout smearings

(ρ ¼ 0.125), such that tT2
c ¼ 1=18 ¼ Nsmearρ=N2

τ . This
means Nsmear ¼ 16 for the coarsest lattice (Nτ ¼ 6) and
21:7̄ steps for Nτ ¼ 7, 28:4̄ for Nτ ¼ 8, and 44:4̄ steps for
Nτ ¼ 10. Non integers steps were realized through an
interpolation of Q in the step number.
To determine the systematic error coming from using an

alternative cooling method we calculated χ both ways from
the LT ¼ 2 lattice data. Results are shown in Table II.
There is a precise agreement in χ calculated in the two
different cases at allNτ values. This justifies the use of stout
smearing on configurations generated at several temper-
atures. We also used stout smearing on configurations of
imaginary θ simulations discussed in Secs. V and VI.
We note that there are other effective smoothing methods

that we did not consider in this work, e.g., cooling. Its
equivalence to gradient flow has been discussed in detail in
Refs. [52,53].

III. THE SUSCEPTIBILITY AND b2ðTÞ
IN THE TRANSITION REGION

In addition to the simulations we carried out by tuning
precisely at the transition temperature, we measured Q for
ensembles generated in the vicinity of the transition
temperature. Employing parallel tempering—as in our
recent work [12]—we were able to cover the temperature
range 0.9Tc < T < 1.1Tc in a fine mesh of 64 or more
gauge couplings. In the previous section we observed that
the topological susceptibility can be extracted both from the
flow based definition and through a sequence of stout
smearings (ρ ¼ 0.125), the difference between the two
methods is statistically insignificant. We perform a temper-
ature scan, evaluating Q at 64 or more temperatures, thus,
we opted for the cheaper smearing sequence.

FIG. 2. Topological susceptibility calculated on lattices of
aspect ratio LT ¼ 2 with different resolutions. Data represented
with black filled points are determined from the Symanzik-
improved topological charge compared to unimproved data
shown as blue empty points.

FIG. 3. Continuum extrapolations of the topological suscep-
tibility at the transition temperature calculated on lattices with
aspect ratio LT ¼ 2. On the right hand side we show results
calculated from improved and unimproved charge defined at
t ¼ 1=18. On the left hand side we show the data obtained in the
case of t ¼ 1=36. The colored bands show linear fits on the data.
The shorter bands of color blue are linear fits on the improved
data using data only from finer lattices Nτ > 6. In the case of
t=T2

c ¼ 1=36 the reduced chi square χ2r ¼ χ2/(degrees of free-
dom) of the fits for the unimproved, improved and the short range
improved data are respectively χ2unimp ¼ 1.06=3, χ2imp ¼ 3.25=3,
and χ2imp;s ¼ 0.14=2. In the case of t=T2

c ¼ 1=18 we got
χ2unimp ¼ 0.85=3, χ2imp ¼ 1.57=3, and χ2imp;s ¼ 0.17=2.

TABLE II. Topological susceptibility calculated at t=T2
c ¼

1=18 at temporal extents Nτ ¼ 6, 7, 8, 10, 12 via the Wilson
flow (second column) compared to χ calculated after stout
smearing steps (third column) corresponding to the same physical
flow time.

χ=T4
c

Nτ Wilson flow Stout smearing

6 0.11702(156) 0.11718(155)
7 0.11882(176) 0.11884(176)
8 0.11720(231) 0.11722(233)
10 0.11652(248) 0.11655(248)
12 0.11416(311) 0.11413(311)
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Obtaining the charge Q allowed us to examine the
temperature dependence of both the topological suscep-
tibility and b2 in the transition region. We report in this
section our results for the aspect ratio LT ¼ 4, in which
case we could carry out the continuum extrapolation that
we show in the following.
In Fig. 4 we show the normalized topological suscep-

tibility χ=T4
c (top panel) and the coefficient b2 (bottom

panel). The colored points correspond to lattices with LT ¼
4 and Nτ ¼ 6, 7, 8, 10. In order to carry out a continuum
extrapolation, we used a spline interpolation in the gauge
coupling to extract data at equal temperatures for all Nτ.
The gauge couplings we actually used depend on the scale
setting choice. We analyzed our data with two different
scale setting functions [TcaðβÞ]. For both settings we relied
on the results of our previous project [12].
The first scale setting is defined through w0: we used the

w0=aðβÞ dataset from 484 lattice simulations in the same β

range. These w0=a data were translated to TcaðβÞ scale by
the factor w0Tc ¼ 0.25265 valid for the aspect ratio LT ¼
4 (and neglecting its per-mille level error).
The second scale setting was defined through the

sequence of the transition gauge couplings [βcðNτÞ] for
various Nτ as determined in Ref. [12]. We, thus, set
TcaðβcðNτÞÞ ¼ 1=Nτ and interpolate to the other gauge
couplings (using a polynomial fit).
The continuum limit is then performed at fixed temper-

atures independently. For the susceptibility the statistical
errors are small enough on all lattices, and we can estimate
the systematic error of the continuum extrapolation by first
fitting with the Nτ ¼ 6 and omitting it in a second fit. The
statistical errors on the b2ðTÞ result on the finest lattice
(403 × 10) is too large for this estimation for b2; there all
four lattices were included in the continuum limit.
In Fig. 4 we also show the corresponding T ¼ 0 results.

Durr et al. presented their result in r0 units [54]. We
combined w0Tc ¼ 0.25384ð23Þ from our recent Ref. [12]
with w0=r0¼0.341ð2Þ from Ref. [55] and obtained χ=T4

c ¼
0.1707ð55Þ. This is in agreement with newer continuum
results of Athenodorou and Teper χ=T4

c ¼ 0.18ð1Þ [56] and
Bonati et al. χ=T4

c ¼ 0.16ð1Þ [39]. The b2ðT ¼ 0Þ ¼
−0.0216ð15Þ continuum result is from Ref. [39].

IV. THE DISCONTINUITY OF THE
TOPOLOGICAL SUSCEPTIBILITY

The rapid drop of χðTÞ near Tc is well known from early
lattice works [25]. The strong temperature dependence is a
characteristic feature throughout the high temperature
phase. To quantify the discontinuity [ΔχðTcÞ] at Tc one
requires a dedicated study complete with continuum limit
and volume extrapolation. This is the subject of the present
section.
We start with showing lattice data for χðTÞ=T4

c using four
different aspect ratios LT ¼ 3, 4, 5 and 6 for one Nτ in
Fig 5. The curves behave visibly differently below and
above Tc. In the deconfined phase we see no significant
volume dependence, but below Tc the slope rapidly grows
with the volume. The inset plot shows this on a rescaled
temperature axis. The approximate overlap of the χ=T4

c
curves then is a manifestation of the discontinuity at the
temperature of the first order transition.
For the lower panel of Fig. 5 we analyzed the same lattice

configurations by splitting the ensembles into confined
(jPj < Pc) and deconfined (jPj > Pc) subensembles,
where Pc is a suitable cut in the Polyakov loop absolute
value. This splitting is an ambiguous procedure away from
Tc and for finite volumes. For simplicity we let Pc be the
position of the local minimum of the renormalized
Polyakov loop histogram at Tc for all temperatures. We
see that, at Tc, χ takes very distinct values in the two
phases, and this extends to a small vicinity of the transition
temperature, depending on the volume.
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Durr et al. T=0 result
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FIG. 4. Normalized topological susceptibility (top) and b2
coefficient as functions of the normalized temperature. Results
for lattices with physical volume LT ¼ 4 and Nτ ¼ 6, 7, 8, 10 are
shown in blue, green, red and orange respectively. The continuum
extrapolation, which includes statistical and systematic uncer-
tainties, is shown in black. For each quantity we quote a zero
temperature result from the literature, the precision study for χ
from [54] and the imaginary-θ based result of [39] for b2.
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The splitting method has already been used several times
in the literature to calculate the latent heat [12,57,58] and
was also introduced for the discontinuity of χ in Ref. [41].
Recently the method was also applied in Ref. [46] to
investigate the Clausius-Clapeyron relation (5). In this
work we combine the technique with parallel tempering.
Though the splitting can be defined both for bare and

renormalized Polyakov loops, we prefer to work with
renormalized quantities. The details for the renormalization
procedure can be summarized as follows. The absolute
value jPj is defined as

PðT;Nx; NτÞ ¼ P0ðβðTNτÞ;Nx;NτÞZðβðTNτÞÞNτ ; ð12Þ

where Nx and Nτ specify the lattice volume and
P0ðβðTNτÞ;Nx; NτÞ is the ensemble average of the volume
averaged bare Polyakov loop at the given parameters.
βðTNτÞ is the gauge coupling at the a−1 ¼ TNτ scale.
The renormalization factor ZðβÞ is determined by setting a
renormalization condition PðTÞ≡ 1 at T ¼ Tc. Thus, we
can calculate ZðβÞ at the βcðNτÞ values. We determined Z

using LT ¼ 4 lattices with Nτ ¼ 5, 6, 7, 8, 10 and 12. A
polynomial fit to logZðβÞ allows an interpolation in β. In
the following systematic analysis the error coming from the
Polyakov loop renormalization refers to the ambiguity in
the ZðβÞ interpolation scheme.
We illustrate the behavior of the topological fluctuations

at Tc in Fig. 6. We show data for four volumes taken at
Nτ ¼ 7. The lower curves are the histograms of jPj. The cut
value Pc is the fitted local minimum between the peaks for
the respective volume.
The data in Fig. 6 and the complete dataset used in this

and the next section are taken using the tempering
algorithm in a narrow range around βc. We stored only
the configurations simulated at βc. Since βc itself has an
error, we reweighted our stored ensemble such that the
expectation value of the third Binder cumulant of the bare
Polyakov loop exactly vanishes. In a jackknife-based error
analysis this means that for every jackknife sample a
slightly different βc was used.
The top curves in Fig. 6 show the topological suscep-

tibility for each Polyakov loop bin of the reweighted
ensembles. We observe a smooth function for each volume,
with a mild volume dependence. We extrapolated the
infinite volume limit of this dependence with a 2D fit of
a second degree polynomial. At T ¼ Tc the infinite volume
Polyakov loop histogram is a double Dirac delta. Our
results show that χ is a decreasing function of jPj. It also
suggests that there should be a discontinuity at the
transition temperature in the following way: In the infinite
volume case we would have to subtract from the value of
the function χðjPjÞ at the position of the “deconfined peak”
the value in the confined phase χðjPj ¼ 0Þ. In finite
volumes, however, the Polyakov loop histogram does
not have a sharp distinction between the two phases,

FIG. 6. Topological susceptibility as a function of the absolute
value of the renormalized Polyakov loop. The red curve is the
infinite volume limit obtained from a two dimensional fit. In the
lower region of the figure we show Polyakov loop histograms
belonging to different lattice volumes. The temporal extension of
the lattices used for this figure is Nτ ¼ 7. The curves look similar
for other lattices with Nτ ¼ 6, 8, 10.

FIG. 5. Normalized topological susceptibility as a function of
temperature near Tc. In the top panel we compare four volumes.
The increasing slope indicates a discontinuity. The inset plot
normalizes the temperature axis with the volume: there the curves
overlap at and below Tc. The bottom panel shows the suscep-
tibility for the same runs, but the high and low temperature phases
were separated into two subensembles.
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therefore we have to define what we mean by one
configuration being in one or the other phase. The
Polyakov loop histograms have two peaks that become
sharper as we increase the volume. A natural way to
identify which phase the configurations belong to is to
cut Pc the Polyakov loop histogram at its minimum
between the two peaks. Then we can assign topological
susceptibilities to both phases for each ensemble.
We determined Δχ at the transition ensemble-by-

ensemble by subtracting the value of χ in cold phase
from that of the hot phase. Then we extrapolated the
infinite volume and the continuum limit via a two
dimensional fit. In Fig. 7 we show a linear fit on data
projected to the infinite volume plane (top panel) and
data projected to the continuum plane (bottom panel).
The main result for the discontinuity of the topological
susceptibility with the statistical and systematic errors is
shown in Table III. The systematic error is coming from
the following four systematic variables. First we varied

the fit range by including and excluding data with the
smallest aspect ratio LT ¼ 4, then we used two different
fit formulas for the infinite volume and continuum
extrapolations, one was a function with three parameters
fðx; yÞ ¼ aþ b · xþ c · y and the other was a function
with four parameters gðx; yÞ ¼ aþ b · xþ c · yþ d · xy,
with x ¼ 1=N2

τ and y ¼ 1=ðLTÞ3. Furthermore we varied
the fit range of the function that was used to determine
the minima of Polyakov loop histograms, the smaller
range being 0.15jPj − 1.85jPj and the larger range was
0.1jPj − 1.9jPj. Finally we used two different schemes to
interpolate the renormalization factors of the Polyakov
loop. As expected, the systematics is dominated by the
ambiguities in the infinite volume extrapolation.
Our directly calculated resultΔχ=T4

c ¼ −0.0344ð44Þð32Þ
agrees with the estimated discontinuity of χ obtained
from Eq. (5).

V. THE θ-DEPENDENCE OF THE TRANSITION
TEMPERATURE

As we mentioned in the introduction, and was explained
in the study of the Pisa group of Ref. [44] [see Eqs. (4) and
(5)], the discontinuity of the topological susceptibility at Tc
is linked, through the latent heat, to the curvature of the first
order line in the θ − T phase diagram.
The method to determine Rθ in Ref. [44] uses simu-

lations at imaginary values of the θ parameter (θI). This
procedure is very similar to the study of Tc as a function of
the chemical potential in full QCD, where, again, the use of
imaginary chemical potentials is one of the standard
techniques [3,59–61].
Just like with θ, the curvature can alternatively be

obtained employing high statistics μB ¼ 0 ensembles [2],
and the equivalence of the two approaches can be dem-
onstrated [62].

FIG. 7. Discontinuity of χ at the transition temperature of
ensembles listed in Table I. Results of different lattices are
projected onto the infinite volume plane (top) and the continuum
plane (bottom). The blue bands are linear (three parameter) fits of
the projected data using the same parameters as in the two
dimensional fit.

TABLE III. Result for the discontinuity of the topological
susceptibility with its statistical (second row) and systematic
(third row) errors. In the bottom four rows we show constituents
of the systematic error. From top to bottom these are errors
coming from the change in results by including data with LT ¼ 4
or not, the use of different fit formulas for the two dimensional
extrapolation, the range of the fit on Polyakov-loop histograms
when calculating their minima and the change in the renormaliz-
ing factor Z of jPj.

Δχ=T4
c

Median −0.034378

Statistical error 0.0044 13%
Full systematic error 0.0032 9.3%

Fit range 0.0026 7.43%
Fit formula 0.0026 7.54%
Fit range of histogram 0.0000 0.05%
Renormalizing 0.0000 0.11%
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In most of these works the transition temperature was
identified as the peak of a susceptibility (Polyakov loop in
the SU(3) theory, and the chiral susceptibility in full QCD).
In the case of the SU(3) Yang-Mills theory we have
exploited in Ref. [12] the definition of the transition
temperature as the location where b3ðβcÞ ¼ 0, b3 being
the third Binder cumulant of the Polyakov loop absolute
value. This third order cumulant could be obtained with
high precision thanks to parallel tempering. The zero-
crossing of b3 was found through reweighting in β from a
single gauge coupling, since all streams in the tempered
simulation are roughly equally represented at each β. This
eliminated the need for fitting the curve b3ðβÞ.
Analogously to the study of the T − μB phase diagram,

we can also extract Rθ from θ ¼ 0 ensembles. To achieve
this we start from the subensemble of the tempered θ ¼ 0
simulation corresponding to β ≈ βcð0Þ, that we already
used to obtain Δχ. In these subensemble Qwas determined
using the gradient flow. We perform a simultaneous
reweighting in θ and β in order to maintain b3 ¼ 0. The
ratio Δβ=Δθ can then be used to extract Rθ in the Δθ → 0
limit (in practice, we used a very small value of θ ¼ 0.02i).
In addition to this, we performed simulations at imagi-

nary θ. In previous works the hybrid-Monte-Carlo algo-
rithm has been often used to sample Q-dependent actions,
where forQ a proxy charge was introduced [33,35,44]. The
proxy charge was often a nonsmeared clover expression or
one with lesser smearing. The difference between the proxy
and the actually used charge definition was taken into
account through multiplicative renormalization [38].
Instead of the hybrid Monte-Carlo technique we use

the pseudo-heatbath algorithm (with overrelaxation
sweeps) to propose updates that undergo a Metropolis step
to accept or reject the update according to the action
Stopo ¼ QθI . This Q is defined using a sequence of stout
smearings and the improved clover definition as described
in Sec. III and Appendix B, such that the renormalization
step is no longer necessary. For modest θI parameters (e.g.
θI < 2) and volumes ðLT ≤ 6Þ we find reasonable accep-
tance (> 10%). The range of accessible θI parameters
diminishes with the inverse volume. This, however, does
not prohibit the use of larger lattices, since the slope of
b3ðβÞ scales proportionally to the volume, increasing the
achievable precision on βcðθIÞ accordingly. Thus, in a
larger volume we can extract Rθ with a smaller lever arm (a
smaller value of θI). Considering that the hybrid-Monte-
Carlo algorithm is at least 10× less efficient for the Yang-
Mills theory than the heatbath update, even without
counting the costs for the Q-dependent forces, we see this
strategy as a resource-saving alternative.
The following proxy quantity can be defined both at

θ ¼ 0 as well as for imaginary θ:

TcðθÞ
Tcð0Þ − 1

θ2
¼ F ðθ2; 1=N2

τ ; 1=ðLTÞ3Þ: ð13Þ

Its value at vanishing arguments is Rθ in the thermody-
namic and continuum limits.
In total we used 40 ensembles (see Table V in

Appendix B). We perform a global fit to the data
F ðx; y; zÞ ¼ Rθ þ Axþ Byþ Cz, where A, B and C are
the leading slopes for the residual θ2, lattice spacing and
volume dependence of F , respectively.
We consider three sources of systematic errors. First, the

scale setting ambiguity, here using different interpolations to
the w0aðβÞ function. Second, we varied the fit formula, by
enabling or disabling the C=ðLTÞ3 term. Most importantly,
the third option controlled the continuum limit range:
whether we included or excluded the coarsest lattice
Nτ ¼ 6 in the continuum extrapolation. Finally we arrive at:

Rθ

Median 0.0181

Statistical error 0.00045 2.5%
Full systematic error 0.00064 3.5%

w0 interpolation 5 × 10−6 0.03%
Choice of the fit function F 0.00003 0.14%
Continuum extrapolation range 0.0006 3.5%

This result is in remarkable agreement with the earlier
continuum extrapolated (though not infinite volume
extrapolated) value given by the Pisa group 0.0178(5) [45].

VI. ON THE KURTOSIS OF THE TOPOLOGICAL
CHARGE DISTRIBUTION

Just above Tc, the structure of the topological fluctua-
tions of pure SUð3Þ undergoes a significant transition from
a dense medium without discrete localizations of charge to
an ideal gas of sparse lumps of charge described by the
dilute instanton gas approximation (DIGA) [47]. How close
“just above” is, however, has been an uncertain matter, but
recent work has shown that the structure of topological
objects is already consistent with that of an ideal gas
between 1.045Tc and 1.15Tc [37,47].
The DIGA model makes distinct predictions for the

values of high-order cumulants of the topological charge
such as the kurtosis b2, which is then a useful quantity in
the determination of the onset of the ideal gas behavior. In
the infinite volume limit, the topological charge in the
DIGA model follows a Skellam distribution, [47],

PðQÞ ¼ e−ðμiþμaÞIQð2 ffiffiffiffiffiffiffiffiffi
μiμa

p Þ ¼ e−VχIQðVχÞ; ð14Þ

where μi and μa are the means of the independent Poisson
distributions of instantons and anti-instantons respectively,
and μi ¼ μa ¼ Vχ=2 ¼ hQ2i=2. From Eq. (3), b2 has the
analytic value of −1=12 for this distribution. At T ¼ 0,
empirical results on the lattice indicate that b2 assumes a
value of approximately −0.02 [38,39,63–65], and does not
depart much from this value for T < Tc. How quickly the
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onset of the DIGA picture occurs across the phase
transition can then be seen in how b2ðTÞ departs from
this empirical value and approaches the DIGA limit.
Unfortunately, the determination of b2ðTÞ is hampered

by the requirement of very high statistics for the precise
measurement of the fourth moment of the topological
charge, hQ4i, which is what makes direct measurement
of the kurtosis difficult at large volumes. We saw in Fig. 4
how the errors for b2 are much larger than for χ. Finite-
volume effects obscure whether b2 approaches the DIGA
limit from above or below.
To peel away some of the uncertainty in the behavior of

b2 due to the low statistics, we derive an identity for b2 and
apply a model that allows us to reconstruct the b2 using
the more easily measurable topological susceptibility χ.
(The derivation of this identity is shown in detail in
Appendix A.) At a given T, b2 can be written as

b2 ¼
R
dPb2ðPÞχðPÞρðPÞR

dPχðPÞρðPÞ

−
V
4

R
dPχ2ðPÞρðPÞ − ðR dPχðPÞρðPÞÞ2R

dPχðPÞρðPÞ ; ð15Þ

where P is the absolute value of the renormalized Polyakov
loop, ρðPÞ is the distribution of P values in the ensemble (in
practice, a histogram), while χðPÞ and b2ðPÞ are respec-
tively the susceptibility and kurtosis as functions of P at
fixed temperature. In an ensemble at a given temperature,
by binning the charge Q according to the values of P, χðPÞ
and b2ðPÞ can be easily determined bin by bin. However,
the issue of low statistics becomes exacerbated for b2ðPÞ
due to the binning, making it unfeasible to compute b2ðPÞ
directly.
In Fig. 8, we plot the two terms of Eq. (15) separately for

three lattice volumes at Nτ ¼ 8. The first term, containing
b2ðPÞ, is found by subtracting the second term, containing
the variance of χðPÞ, from the b2ðTÞ data.
The crucial point is that, while the second term shows

clear volume scaling, the first one does not. For the present
statistics the volume dependence of the kurtosis is isolated
within the χðPÞ term. If we expect a discontinuity in χðTÞ at
T ¼ Tc in the thermodynamic limit, the χðPÞ term becomes
a downward delta function at T ¼ Tc in this limit; the
b2ðPÞ term in Fig. 8 may, therefore, be the thermodynamic
limit of b2ðTÞ. For this we assumed that b2ðPÞ is analytic,
which is natural to think, since χðPÞ, too, is analytic
throughout the transition. In that case, the kurtosis
approaches the DIGA limit gradually from above across
the transition. We compared the b2ðPÞ terms of other
lattices atNτ ¼ 6 and 7 and found that they lie on top of the
same curve as the Nτ ¼ 8 lattices.
Assuming, then, that the volume dependence of b2ðPÞ is

negligible, as well as the temperature and cutoff depend-
ence, we substituted for b2ðPÞ a simple rational ansatz:

b2ðPÞ ¼ −
a0 þ a1Pþ a2P2

1þ c1Pþ c2P2
: ð16Þ

We treated this as a lowest-order approximation of the true
b2ðPÞ. We enforced the constraint that c2 ¼ 12a2, moti-
vated by the following thought. For T > Tc, as b2
approaches the DIGA limit of −1=12, the distribution of
P values, ρðPÞ, becomes a single peak located at P > 1.
The second term of Eq. (15), containing the variance of
χðPÞ, only significantly contributes at T ≈ Tc when ρðPÞ
shows two peaks, and vanishes otherwise leaving only the
b2ðPÞ term. Thus, since T > Tc corresponds to sampling
increasingly from P > 1, in order for b2;model → −1=12 at
large T, limP→∞ b2ðPÞ ¼ −1=12.
We fitted the parameters of b2ðPÞ for a particular lattice

by minimizing

R2 ¼
X
T

ðb2;dataðTÞ − b2ðTÞÞ2
σ2ðTÞ ; ð17Þ

where the sum is over all the simulated T values and σ is the
jackknife error of the b2ðTÞ data. Because the 243 × 6 lattice
had the most statistics, we used its fit parameters to recon-
structb2ðTÞ for several lattices usingEq. (15),which is shown
in Fig. 9. As a first approximation, neglecting temperature,
volume, and cutoff effects on b2ðPÞ, the reconstructed b2ðTÞ
follows the shape of the data quite well and helps resolve the
volume dependence of the kurtosis more clearly at large
volumes. Indeed, the volume dependence is the surest part of
the reconstructed b2ðTÞ, since the second term of Eq. (15) is
analytic and independent of the ansatz.
To further demonstrate that b2ðPÞ is largely independent

of volume and the lattice spacing, we fitted the parameters
of b2ðPÞ using the b2ðTÞ data of other lattices with good

FIG. 8. The second term from Eq. (15) containing the variance
of χðPÞ for three Nτ ¼ 8 lattices as a function of temperature, as
well as this term subtracted from the b2ðTÞ data. The χðPÞ term
contains the volume dependence of b2ðTÞ.
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statistics. Figure 10 shows the results of these fits. The
b2ðPÞ curves from all five lattices lie in general agreement
with one another. The parameter a0 tended not to be
constrained very well due to the low statistical weight at
P ¼ 0, resulting in the “horn” shape of the plot in Fig. 10;
however, it is worth noting that for 243 × 6, the fit was
constrained enough to yield a0 ¼ 0.0155ð75Þ, which is in
surprising agreement with the empirical results from

Refs. [38,39,63–65]. The pinch in the plot at the base of
the horn is where the fit was heavily constrained by the
peak of ρðPÞ corresponding to the confined phase.

VII. CONCLUSIONS

In this work we studied the distribution of the topolo-
gical charge in the SU(3) Yang-Mills theory within the
framework of lattice QCD. The first order transition
manifests itself in the discontinuity of several observables,
most notably, the Polyakov loop and the energy density, but
also the topological susceptibility.
Our investigations are centered around the three quan-

tities linked by Eq. (5) [44].
We have performed simulations of the Symanzik

improved gauge action in the vicinity of the phase transition
temperature, using parallel tempering to reduce autocorre-
lations. For the topological density the Symanzik improved
clover definition was used. To negate cutoff effects, we
have defined the physical topological charge Q at a finite
physical Wilson flow time to allow for continuum extrap-
olations. A simplified definition of Q using stout smearing
steps to approximate the Wilson flow was also used, after
confirming that this choice gives rise to negligible system-
atic errors.
Similarly to the latent heat [12], the drop of the

topological susceptibility across the deconfinement tran-
sition can be measured by noticing that the average
susceptibility has a smooth dependence on the average

FIG. 10. The kurtosis b2 as a function of the absolute value of
the (renormalized) Polyakov loop fitted to the b2ðTÞ data for
several lattices by minimizing Eq. (17).

FIG. 9. The kurtosis b2 of the topological charge distribution as a function of the normalized temperature for several lattices computed
(black) directly from the topological charge data and (red) using the identity in Eq. (15) with a rational ansatz for b2ðPÞ. The parameters
of the model were found by fitting to the b2 data from the 243 × 6 lattice. These parameters were used to compute b2 using the model for
all the other lattices. The DIGA limit b2 ¼ −1=12 is indicated with a dashed line.
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Polyakov loop variable with mild volume dependence.
The discontinuity may then be read off as the values of the
average susceptibility at the peaks of the Polyakov loop
distribution. Alternatively, one separates all configurations
into the confined and deconfined phase by a cut in the
Polyakov loop, corresponding to the minimum of the
double-peaked histogram. In the thermodynamic limit
and at the transition temperature this distribution is a
double Dirac delta, corresponding to the two distinct phases
of the theory. Only in this limit can we define Δχ
unambiguously. For the volume extrapolation we use
lattices with an aspect ratio LT ¼ Nx=Nτ up to 8. Our
continuum and infinite volume extrapolated result
is Δχ=T4

c ¼ −0.0344ð44Þð32Þ.
We have also measured the Rθ parameter by investigat-

ing the phase transition at finite imaginary θ parameters
by performing reweighting of simulations at θ ¼ 0, as
well as simulations at Imθ > 0 taking the topological term
into account using an extra accept-reject step. Our con-
tinuum and infinite volume extrapolated result is Rθ ¼
−0.01810ð45Þð64Þ.
The behavior of the b2 parameter of the topological

charge distribution was also studied across the phase
transition. At low temperatures b2 is roughly constant with
the value ≈ − 0.02 [39]. At high temperatures it converges
to b2 ¼ −1=12, which can be understood in terms of the
DIGA (dilute instanton gas approximation) picture. Using
an identity for b2 in terms of binned averages as a function
of the Polyakov average, we have successfully identified
the main source of the volume dependence in b2ðTÞ,
suggesting that in the infinite volume limit, b2 approaches
the DIGA limit from above. On realistic system volumes,
however, we observe the dominance of a negative delta
peak, which is due to phase coexistence near Tc.
Finally, using our result Δϵ=T4

c ¼ 1.025ð21Þð27Þ
for the latent heat from a recent study [12], we can con-
firm the validity of the relation 2ΔϵRθ ¼ Δχ, which in
this form can be used for the estimation of the discon-
tinuity of the susceptibility to yield 2ΔϵRθ=T4

c ¼ Δχ=T4
c ¼

−0.0371 with 11% combined statistical and systematic
errors. The direct calculation yields the compatible result
Δχ=T4

c ¼ −0.0344, with 22% combined statistical and
systematic errors.

ACKNOWLEDGMENTS

The project received support from the DFG under Grant.
No. 496127839. This work is also supported by the MKW
NRW under the funding code NW21-024-A. The authors
gratefully acknowledge the Gauss Centre for Super-
computing e.V. ([66]) for funding this project by providing

computing time on the GCS Supercomputer HAWK at
HLRS, Stuttgart and on the Juwels/Booster at FZ-Juelich.
Part of the computation was performed on the cluster at the
University of Graz.

APPENDIX A: KURTOSIS IDENTITY

The nth moment of the topological charge Q at a fixed
temperature T on the lattice can be calculated as a weighted
average via

hQni ¼
Z

dPhQniPρðPÞ; ðA1Þ

where P is the Polyakov loop magnitude, ρðPÞ is the
probability distribution function of the P values of the
lattice configurations computed in an ensemble at a given
temperature, and hQniP is the nth moment ofQ among just
those configurations with a Polyakov loop magnitude of P.
We define the topological susceptibility and kurtosis as
functions of P at fixed temperature:

χðPÞ ¼ hQ2iP
V

; ðA2Þ

b2ðPÞ ¼ −
χ4ðPÞ
12χðPÞ ; χ4ðPÞ ¼

1

V
½hQ4iP − 3hQ2i2P�:

ðA3Þ

We recover the susceptibility in Eq. (1) directly via

χ ¼
Z

dPχðPÞρðPÞ; ðA4Þ

and we recover b2 in Eq. (3), a nonlinear combination of
moments, via

b2 ¼ −
R
dPhQ4iPρðPÞ − 3ðR dPhQ2iPρðPÞÞ2

12V
R
dPχðPÞρðPÞ

¼ −
R
dPhQ4iPρðPÞ − 3V2ðR dPχðPÞρðPÞÞ2

12V
R
dPχðPÞρðPÞ : ðA5Þ

hQ4iP can be eliminated by solving Eq. (A3) for hQ4iP and
then inserting this into Eq. (A5) to yield

b2 ¼
R
dPb2ðPÞχðPÞρðPÞR

dPχðPÞρðPÞ

−
V
4

R
dPχ2ðPÞρðPÞ − ðR dPχðPÞρðPÞÞ2R

dPχðPÞρðPÞ : ðA6Þ
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APPENDIX B: TABULATED DATA

In this appendix we give some of the intermediate
simulation results that entered our analyses. Table IV
was used in Sec. IV and Table V entered the fits in Sec. V.
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