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ABSTRACT
The data collected from personal devices is intrinsically private
and should be collected through a privacy-guaranteed mechanism.
Local di�erential privacy solves privacy problems by collecting
randomized responses from each user, and it does not need to
rely on a trusted data aggregator/curator. The proposed approach
utilizes the randomized response technique in a novel manner: it
guarantees privacy to users during the data collection and simulta-
neously preserves the high utility of the analysis. It can be seen as a
case of synthetic data generation by producing contingency tables
(marginals) in a privacy-preserving mechanism. This article de-
scribes the proposed randomized response technique and discusses
the motivating applications domains. It justi�es why it satis�es the
property of di�erential privacy and utility guarantees theoretically
and through experimental analysis with excellent results.
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1 INTRODUCTION
Data collected from smart devices have become invaluable assets
for product designers and application developers. Companies and
research centers collect data from end-users and use them to update
their knowledge and tailor their products and services.

The problem with massive data collection is that collecting sensi-
tive personal data poses a signi�cant risk to people’s privacy rights.
To get accurate information from the individuals, the data collection
process should enforce robust privacy-preservation mechanisms
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and consider at the same time the collected data utility. We intro-
duce a novel data collection protocol with randomized responses
to achieve data collection with privacy guarantees. The protocol is
client-server and occurs in a network/cloud environment where the
client represents an end-user or a partner with private data and the
server is the data aggregator/curator which is honest-but-curious: it
correctly performs the protocol for data exchange and aggregation
but might want to know the clients’ private data. The risk is of
privacy leakage and could occur after an attack with adversarial
knowledge or a di�erential attack. Our proposed method provides
strong privacy guarantees combined with a high data utility, as
this work shows. We adopt a local di�erential privacy (LDP) ap-
proach rather than the weaker global di�erential privacy (GDP)
approach, where aggregators store the actual data and are a single
point of failure and a target for attacks. LDP is stronger because
even if adversaries had access to the personal responses, they would
still not be able to learn about individuals since the responses are
randomized.

Our privacy-preservation randomized response is built on the
idea of randomized response proposed by Warner in 1965 [26], a
data collection technique on sensitive data, where the respondent
hesitates to provide a true answer. In Section 1.1 we introduce
the principles of the randomized protocol. As discussed in Sec-
tion 2, surveys generated using randomized responses allow easy
computations of correct population statistics while protecting the
privacy of the individual and preventing reconstruction attacks.
This technique can be used to inject random noise into the an-
swers or the output of a function. Random noise injection protects
from the di�erential attack and is one of the key components of
the di�erential privacy model, the standard de-facto reference for
privacy-preserving query answering [8].

Unfortunately, the level of privacy provided by the randomized
response [26] degrades if the survey is repeated by the same respon-
dent and does not work for multivariate answers. So, to maintain a
strong privacy guarantee with a high utility, we need a better data
collection mechanism, as we present in this work.

Finally, we show that the data collected at the aggregator pro-
vides a high utility value. The proposed solution gives guarantees,
at certain con�dence levels, that the statistical dependencies ob-
served in the reconstructed data correspond to the true ones. The
proposed solution relies on a combination of sophisticated machine
learning modeling and numerical optimization with hypothesis
tests, as we show in Section 6.

In Section 2 we compare the randomized response protocol with
the related work. We present two improved versions of the ran-
domized protocol and discuss its properties in Section 4 and in
Section 5 we discuss its convergence. In Section 6 we present its
robustness in preserving statistical associations among variables.

https://orcid.org/0000-0003-0978-0691
https://orcid.org/0000-0002-0434-4850
https://doi.org/10.1145/3605098.3636024
https://doi.org/10.1145/3605098.3636024


SAC ’24, April 8–12, 2024, Avila, Spain Faisal Imran and Rosa Meo

output true value for  

output

output

Figure 1: The �ow of the randomized protocol and two �ips
of coins, with a binary attribute Att8

In Section 7 we show the excellent experimental results on three
real use cases in comparison with Laplace noise and 2-step MLE
MonteCarlo simulation.

1.1 The principle of the randomised response
protocol

The survey respondent is asked to �ip two fair coins in secret; if
the �rst coin is "Head", the respondent is asked to �ip a second
coin whose outcome will determine if the answer is "Yes" or "No".
Figure 1 shows the �ow of the randomization protocol. It is sim-
ple to see that in a situation where both "Yes" and "No" answers
can be denied (�ipping two fair coins), the true number of "Yes"
answers can be accurately estimated by 2(@ � 0.25), where @ is
the proportion of "Yes" responses. The unknown probability of a
successful event studied on a population, represented by a ran-
dom variable, is correctly and even more e�ciently inferred by
the randomized protocol in Figure 1 if parameter @ is close to the
true probability of the successful event. This observation led to our
proposal that the parameter @ be adjusted to its true value as the
protocol evolves. The natural and more general setting is where
each client has multiple attributes, and the server is interested in
learning their joint distribution after observing only a sample of
the population. Knowledge of the joint distribution opens the way
to powerful descriptive and predictive analytical models, such as
statistical inference models and Bayesian networks. In the adopted
local di�erential privacy (LDP) approach, in the proposed proto-
col, a respondent’s private data is generated (possibly modi�ed by
the randomised protocol itself) after selecting subsets of attributes.
These values are communicated to one or more aggregators in a
distributed environment. As a �nal step, the aggregator receiving
the randomised data has the task of calculating contingency tables
(CTs) with the frequencies of the observed values.

Thanks to the protocol properties, we demonstrate that it is
possible to reconstruct the true joint probability of the attributes
from the possibly noisy values communicated by the individuals.
The transmitted values do not need to correspond to the true ones
for each individual, in virtue of the deniability property of the
protocol. Moreover, the randomization is local to the individual
users, and there is no need for a di�erent, trusted organization to
perform the randomizer or add a veri�ed amount of noise.

Often, Machine Learning algorithms rely on low-order marginals
as a building block and compute accurate approximations by the
Maximum Likelihood principle and vine-copulas [4, 17]. Our pro-
posed method generates low-dimensional tables on m attributes

(m-way). We can generate even lower-dimensional CTs, with : < <
from these m-dimensional ones by further marginalizations. We
call these further CTs higher-level. We propose to apply linear pro-
gramming to the m-way CTs to make consistent the marginals of
the higher level ones (k-way). This approach is also followed by [2].

2 RELATEDWORK
Privacy-preserving data statistics are often considered in a central-
ized setting in which the data is perturbed by adding random noise
from Laplace distribution or applying the Exponential mechanism.
These perturbation techniques reduce the risk for an individual to
be identi�ed [9, 11]. However, in this classical approach, with true
data in the database, individual privacy is still not guaranteed from
external attacks or internal adversaries (e.g., eavesdropping). Our
approach is based instead on the decentralized setting with local
di�erential privacy. Each client randomizes its true values using
a local randomization mechanism. The noisy values are then sent
on the network to the aggregator without the need to be protected
and then aggregated to produce the desired statistics.

A multitude of approaches exist: they combine randomized re-
sponse techniques [26] to create sophisticated noise addition mech-
anisms [10, 12, 18, 21, 24]. Google RAPPOR [10] collects users’
data in a private setting, where the responses are mapped to a
Bloom �lter using a hash function. RAPPOR implements a two-step
randomization technique: �rst, by mapping the user string onto a
Bloom �lter using a hash function, and second by �ipping each bit
in the Bloom �lter with given probabilities.

Apple implements privacy in their iOS to collect user statistics
through users sketching [3, 24]. Microsoft collects users’ app sta-
tistics privately using rounding and memorization techniques [7].
Wang et al [25] proposed an optimization technique with asymmet-
ric randomization response and hashing function. Kairouz et al [14]
propose the optimal generalizations of randomized responses to
estimate the frequency of a single categorical attribute.

3 PRELIMINARIES
We consider a setting where each client owns a set of attributes. The
centralized server collects these attributes in a privacy-preserving
manner and releases the joint distribution of their values.

3.1 Notations
We consider a dataset⇡ with 3 attributes- = (�1,�2, · · · ,�3 ). We
useV8 to denote the domain of the values of�8 and E8 9 to represent
a possible value in V8 . A subset of attributes in - is denoted by
(8 . A contingency table (CT) involving the attributes in (8 is called
)(8 . We use )A ,2 to represent the attributes values (entry points) in
a CT with the values for a subset of attributes A in (8 as rows and
another subset 2 as columns in the CT. We use )A ,2 [E] to represent
the cell value of that CT at those entry points. |)(8 | denotes the
cardinality of the CT. The probability of an attribute value E8 9 is
denoted by ? (E8 9 ). Each row in ⇡ represents a single user or client
D. The notations are summarized in Table 2.

Example 3.1. Database⇡ in Table 1a has six attributes:A = {adult,
old}; R = {big, small}; E = {high, uni}; O = {emp, self}; S = {M, F}; and
T = {car, train, other}., It is aggregated with count function applied
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(a) Dataset consists of 6 attributes (Age, Region, Education, Occupa-
tion, Sex, Transportation)

A R E O S T
1 adult big high emp M car
2 adult big high emp F train
3 adult small high emp F other
4 adult small high self F car
5 old big uni emp F train
6 old small uni self M other
7 old small uni self M train
8 old small high self M train
(b) CT with 2 attributes)AT

+ )RE [E]
(big, high) 2
(big, uni) 1

(small, high) 3
(small, uni) 2

(c) Marginal table for Re-
gion

+ )R [E]
(big, ⇤) 3
(small,⇤) 5

Table 1: Example of a dataset, CT, and the marginals

Meaning Notation
Attribute name �8
single value of �8 E8 9
attribute set (8
contingency table on (8 )(8
contingency table entry point )A ,2
contingency table cell value )A ,2 [E]

Table 2: Summary of notations

to subsets of their values. Table 1b shows a CT over a set of two
attributes. Table 1c shows a marginalization.

3.2 Di�erential Privacy
The current de facto standard of privacy protection is di�erential
Privacy [8, 9]. It is interpreted as a statistical property that com-
pares the output of a query on the database when the individual is
included in the database with the alternative without the individual.
To protect the individual’s privacy, noise is added either on the
data or in the query mechanism (M) that answers requests on the
data. The privacy guarantee of the randomization mechanism is
quanti�ed by the parameter of the privacy budget n that controls
how di�erent are the probabilities that the query returns the same
output in the two databases, di�ering for a single individual.

De�nition 3.2. (Di�erential Privacy [9]) A randomization mech-
anism M is n� di�erentially private if for any two neighbouring
databases ⇡1 2 N |- | and ⇡2 2 N |- | that di�er for a single entry,
and any subset R of the output ofM,

% [M(⇡1) 2 R]
% [M(⇡2) 2 R]  expn (1)

where the probability is taken over the randomness ofM. In our
case, the mechanism (or query) M(⇡) is represented with a collec-
tion of CTs )(8 returned by the randomized response protocol on
⇡ , with (8 one of the subsets of attributes in - .

3.2.1 Utility Goal of Our Randomization Method. The utility of our
randomization protocol stems from the possibility of reconstructing
k-way CTs whose values are close to the true ones )(8 . Given a
reconstructed noisy k-way CT) 0(8 , we consider three error measures
to evaluate the performance of the proposed randomization method
(the lower the better).

In our �rst experiment, we calculate the j2 independence testing
between the true and the noisy CT.

The second is the ✓2 distance between ) 0(8 and )(8 , in which the
CTs are viewed as vectors of 2: elements. In the context of the
randomization method, the error distance can be regarded as a
random variable due to its dependency on the noise introduced
by the method itself. Expected Squared Error (ESE) is the expected
value of the square of the error distance, an aggregation of squared
errors across individual cells. ESE is frequently employed to assess
the utility of a given method.

The third method is the Jensen-Shannon divergence between
) 0(8 and )(8 , both normalized by dividing each cell value with the
sum of the cells (so that the probability mass is 1). It is natural
to apply Kullback-Leibler divergence between ) 0(8 and )(8 , since
⇡ ! ()(8 | |) 0(8 ) measures the information lost when ) 0(8 is used to
approximate )(8 . However, ⇡ ! ()(8 | |) 0(8 ) can be unde�ned when
)(8 [E8 ] = 0 or)(8 [E8 ] < 0 for some E8 . Thus, we use Jensen-Shannon
divergence [19], which is a symmetrized and smoothed version,
given as:

⇡ � ( ()(8 | |) 0(8 ) =
1
2
⇡ ! ()(8 | |&) +

1
2
() 0(8 | |&) (2)

where & =
)(8 +) 0(8

2 and ⇡ ! ()(8 | |) 0(8 ) =
Õ
8 9 ;>6

✓
)(8 [E ]
) 0(8

[E ]

◆
)(8 [E]

4 RANDOMIZED RESPONSE BLOCK
AGGREGATION

This section presents the proposedmethodRandomizedResponse
Block Aggregation (RRBA).

Before querying the end-users, the aggregator generates disjoint
subsets (8 of : attributes taken from the original set of 3 attributes
to form a certain number of size-: CTs called views V. The sub-
sets V form separate views on the sample population. The union
of the subsets in views should be as large as possible. The aggre-
gator arbitrarily selects a combination of views from the possible
ones for querying the single client whose attribute values could
be randomized in his/her response. This arbitrary selection that
changes for each client provides an extra layer of protection in the
randomization protocol. These views privately publish a synop-
sis of the entire dataset. Successively, the server reconstructs any
higher-order marginals from these views. To show how to assign
attributes into views, we show a running example with the number
of attributes 3 = 6 and attributes: {�,', ⇢,$, (,) }. With : = 2, we
have three combinations of 2 distinct attributes per view. This is
the list of the alternative views for each individual.
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+1 = {�', ⇢$, () },+2 = {�⇢,'(,$) },+3 = {�) ,'⇢,$(},
+4 = {�$,') , ⇢(},+5 = {�(,'$, ⇢) }

We have a total of �ve views (+1,+2, · · · ,+5) to cover all the possible
combinations of attributes. Now suppose we have 3 = 5 then,

+1 = {�', ⇢$},+2 = {'⇢,$(},+3 = {�⇢,'(},
+4 = {�$, ⇢(},+5 = {�(,'$}

For the �rst view +1, we left out the attribute ( , for the second
one �, and so on. Just a single one because it could not be paired
with another one without allowing repetition of one attribute in
the same view. If the �rst alternative is selected, the view is formed
by the two combinations of attributes {�'} and {⇢$}. Both com-
binations are considered for the same individual. The attributes
in any combination are randomized together, thus keeping intact
possible statistical dependencies between them.

This step is necessary because the randomization protocol must
not generate multiple times randomized values of the same attribute
from the same individual. Indeed, if an eavesdropper observed the
multiple outcomes of the same attribute, even if combined with
others, it would observe with higher probability the true values,
thus distinguishing them from the randomized ones. An alternative
solution would be to maintain the value generated for each attribute
in the internal memory of the clients’ devices. However, this solu-
tion is not always possible for all devices and would require a large
memory size for data sets with many attributes. Observe that any
pair of attributes is assigned in at least one view. Since independent
noise is added through these views, marginalizing two di�erent
CTs from these views to obtain the same marginals would likely
give di�erent results. To make consistent the marginalisations gen-
erated from these views, we perform the constraint optimization
technique discussed in Section 4.3.

We have two di�erent versions of our protocol. In the �rst ver-
sion, the aggregator selects arbitrary combinations from a view
+8 2 V. The aggregator sends this combination as a question, such
as: "What is your age and which region do you belong to". Clients’
responses are collected in the randomizedmechanism to ensure that
either randomly selected responses or true responses are collected
by the aggregator. In the second version, we divide the clients into
groups called blocks ⌫. We then perform randomized data aggrega-
tion in parallel within the blocks. Once all responses are collected,
the aggregator moves to the next block. Before the next block is
processed, the probability distribution used to generate random
responses is updated to be closer to the true one. This is done by
updating the probability distribution with the responses collected
in the previous block.

4.1 Fundamentals of the Randomized Response
Block Aggregation Method

Given a set of views V, the aggregator arbitrarily selects a view
+8 2 V comprised of multiple combinations of attributes. On all
these combinations of attributes, the responses are collected from
the client in the n�LDP setting. The aggregator initializes for each
combination of attributes in+8 the joint distribution by a CT whose
cell values are initialized with the uniform distribution, i.e., 1

|)A ,2 | .

Figure 2: Overview of communication between data aggrega-
tor and mobile clients to generate noisy CT on views +8

Algorithm 1: Randomized response on single client
Input: Set of attributes - , probability (�rst coin is head) ?
Output: Noisy table ) 0A ,2

1 Function Aggregator(-):
2 make views + = +1,+2, · · · ,+3 ;
3 randomly generate the views and check that the

combinations of attributes are not repeated in the
views ;

4 generate uniform distribution in )⇠8 of all views;
5 while exists a client that has not yet communicated do
6 select arbitrary view +8 2 V ;
7 o ⇠;84=C (TA ,2 , query(A , 2)) ; /* Call client

procedure */
8 reconstruct ) 0A ,2 from > and )A ,2 using equation 4 ;
9 update: )A ,2  ) 0A ,2

10 end
11 Function Client()A ,2 ,@D4A~ (A , 2)):
12 Sample a Bernoulli variable B ;
13 if B = "Head" then
14 Respond true value E 2 )A ,2
15 end
16 else
17 Respond a fake value using equation 3, with a

random probability @ drawn between [0, 1] ;
18 end

Upon receiving a question from the aggregator on each set of at-
tributes in a view+8 , the client responds according to the outcomes
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of the random variables, drawn with the prede�ned probabilities ?
and @. Probability ? is tunable to adjust the privacy and utility of
the responses. Probability @ is randomly drawn between 0 and 1: it
represents the value of the cumulative joint probability function
of the attributes values. It makes each combination of categorical
attribute values represented in the multivariate CT correspond to
a continuous probability value that these categorical values are
observed. Monte Carlo sampling exploits it to draw �rst the prob-
ability value and then returns the corresponding combination of
attribute categorical values.

The random variable ? is implemented by drawing a random
value, between 0 and 1, uniformly distributed. This random variable
controls if the user communicates the true values of the combina-
tion of queried attributes. If the random value is above ? , ”fake”
values are communicated to the aggregator, according to the second
random variable @, drawn between [0, 1]. The outcome of this latter
random variable corresponds to one of the cells (denoted by E) in
the CT by their probability. In turn, each cell corresponds to some
combinations of the categories of the attributes. The variable @ for
emitting a ”fake” value is a type of Monte Carlo sampling from the
given discrete joint distribution )A ,2 , such that:

’
9

)A ,2 [E 9 ] = 1

and 0  @  1 then

Figure 3: The intervals of the cumulative probability distribu-
tion function that make each probability interval correspond
to a cell ; of the CT )⇠8

;�1’
9=1

)A ,2 [E 9 ]  @ <
;’
9=1

)A ,2 [E 9 ] (3)

This "fake" response is emitted in such a way as to disclose a
"controlled" amount of information about the client’s true attribute
values. Hence, limiting the aggregator’s ability to learn with con�-
dence the true values of the client, Monte Carlo sampling improves
the utility of our protocol by emitting combinations of values based
on their probability as stored in the CT.

Once the aggregator receives a response from the client, it re-
constructs a noisy CT ) 0A ,2 using the CT )A ,2 used for the previous
client. For the reconstruction it applies equation 4:

) 0A ,2 [E] =
⇣>;
=
�)A ,2 [E] · (1 � ?)

⌘
· 1
?

(4)

where >; is the observed number of clients who communicated
those attributes values represented by E and = is the total number
of clients. The above equation is justi�ed by the fact that >; is the
number of observed responses corresponding to the same cell ;
in CT )A ,2 [E] and the responses come from the execution of the
randomization protocol: they are outcomes of the true probability
distribution with probability ? (the �rst coin gives "Head") and are
random outcomes controlled by the probability distribution in )A ,2
(the �rst coin is "Tail" with probability (1 � ?)).

The aggregator updates its table )A ,2 = ) 0A ,2 and sends this up-
dated table )A ,2 to the next client D8+1 for the next randomized
response. The next client now uses the updated probabilities)A ,2 in
the Monte Carlo sampling.

Observe that the aggregator has no access to the client’s true
values. Thus, the proposed mechanism ensures local di�erential
privacy. Algorithm 1 outlines the complete working of our protocol,
including both client-side and aggregator procedures.

4.1.1 The improved version of the protocol. The second improved
version of the randomized response data aggregation works sim-
ilarly to the �rst version, except now, the clients are divided into
groups called blocks ⌫. The aggregator now executes the collection
of responses from each client in parallel within the blocks. The
aggregator aggregates the responses from the blocks and updates
the CT using equation 4, where now= is the block size. When all the
responses are collected, the aggregator publishes the noisy CT )A ,2
to the server. The overview of our proposed randomized responses
protocol and the communication between the aggregator and its
end-users is shown in Figure 2. It shows that multiple combinations
of attributes {(8 } contained within a view +8 are sent to clients
together with the corresponding noisy CTs )(8 for the execution
of the randomized protocol. The server receives the responses and
aggregates them. The block size = is de�ned by the data aggrega-
tor/curator. With the algorithm of Section 5 and the experiments
in Section 7.1, we demonstrate the selection of the optimal block
size, which leads to the convergence of the estimated probabilities
in the CTs to the true probabilities.

4.2 Di�erential Privacy of Randomized
Response Block Aggregation

The proposed mechanism aims to minimize the risk of disclosure
to ensure a strong privacy guarantee while satisfying the strict
concept of n�LDP. It promises strong privacy despite the amount of
background knowledge of an adversary. Hence, with a substantial
amount of auxiliary information, an adversary could not con�dently
identify the true responses from the clients. Since a single report
from the client contributes to the count measure of a single cell E in
)( = )A ,2 , the privacy level n is independent of the number of cells
in )A ,2 . Hence, we need to prove the satisfaction of n�di�erential
privacy for only a single CT cell.

T������ 4.1. The proposed randomized response protocol satis�es
n� di�erential privacy, with: n � ;=

⇣
1

1�?
⌘
where ? is the probability

that the �rst coin gives "Head".

P����. Let us consider two CTs) 1
A ,2 2 and) 2

A ,2 2, realizations of
the CT)( on the attribute subset ( , that come respectively from two
databases ⇡1 and ⇡2 that di�er for a single record. Let )A ,2 be the
reported combination of attribute values returned by the proposed
randomization protocol from the record D8 that di�ers in the two
databases. It corresponds to the cell of the CT )A ,2 [E]. According
to the de�nition of di�erential privacy [9] we need to consider
when the proposed randomization protocol works as a randomized
mechanism and transforms the input databases ⇡1 and ⇡2 into
the same CT )( , regardless of having in input the database ⇡1 or
⇡2. Let us assume that @ is the probability that a combination of
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attribute categorical values corresponding to the cell)A ,2 [E] occurs
in the database. According to the proposed randomized protocol,
these attribute values are reported if the �rst coin draws "Head"
and if they are the true values: this occurs with probability ?@. In
addition, the �rst coin could give instead "Tail", but the emitted
values are drawn as a consequence of the second random event:
this overall event occurs with probability (1 � ?)@. On the other
database, with a di�erent record D08 , the only possibility that the
randomized protocol returns the same value as above is that the
�rst coin gives "Tail" and the second random event returns those
values corresponding to cell)A ,2 [E], and this occurs with probability
(1 � ?)@. Mathematically, we obtain:

% [M(⇡1) = )( ]
% [M(⇡2) = )( ]

 expn

% [M(D8 ) = )A ,2 ]
% [M(D08 ) = )A ,2 ]

 expn

?@ + (1 � ?)@
(1 � ?)@  expn

) n � ;=

✓
1

1 � ?

◆
(5)

From the opposite side, when ⇡1 does not contain D8 but ⇡2 does,
we obtain n � ;= (1 � ?) that is always satis�ed with 0 � ? � 1. ⇤

The equation 5 shows the relationship between the parameter
n (the privacy budget that controls the privacy amount) and the
parameter ? of the randomized response protocol (the fraction of
times clients respond trustfully). Notice that it does not depend on
@, the probability of the emitted value; thus, it is valid regardless of
the response.

Decreasing ? makes n arbitrarily low, the desired situation since
it allows the randomized protocol to make stronger privacy preser-
vation. As a drawback, with low ? the convergence of the recon-
struction of the true probability distribution from the observed
responses becomes slower, as we will see from the experimental
results. On the opposite side, as ? grows, it increases the risk that
true values are emitted too frequently, and n cannot be reduced to
small values. The relationship between n and ? is shown in Figure 4.

Figure 4: Graph of the relationship between the protocol
parameter ? of the �rst coin "Head" and the privacy budget n

We drive the values of ? using the Equation 6:

4n � 1
1 � ? ) n � ln( 1

1 � ? ) ) ?  1 � 4�n (6)

and identify at what value of ? we see convergence in the observed
values from the randomization protocol, using a given block size. In
the experiments of Section 7.2 we discussed the e�ect of di�erent
values of ? on the convergence at di�erent block sizes.

4.3 Consistency between Noisy Tables
Given a set of noisy views, the server wishes to release marginals of
some attributes with a privacy guarantee. Since independent noise
is added in each attribute combination within a view, aggregating
marginals from the di�erent views will create inconsistencies in
the marginals of the common attributes.

Suppose we have )( , where ( 0 ✓ ( ✓ - are subsets of the
attributes. We use the symbol T( 0 ( [E ] to denote the marginal over
( 0 calculated from )( by aggregating the corresponding entries.

Consistency between views. We consider the marginal CTs T1(
and T2( with a common attribute � coming from two noisy views
� 2 +8 and � 2 +9 . The two marginal CTs T1( and T2( are consistent
if and only if the marginal table over the common attributes in
+8 \ +9 reconstructed from view +8 is the same as reconstructed
from view +9 .

Given a set of views inV and a set of attributes ( , we can compute
:-way marginals T( . When at least one view +8 2 V includes all
the attributes in ( , i.e ( ✓ +8 , we can reconstruct T( by summing
over the corresponding entries of )( in )+8 , that is using T( +8 .
However, when we have multiple views +8 such that ( ✓ +8 , we
need to perform a linear optimization technique to return consistent
marginals from all the views +8 that cover all the attributes in
( . When ( \ +8 contains 9 attributes, then )(8 provides exactly
29 constraints on the cells for )( . We can extract all these linear
constraints from all the views to generate an under-speci�ed system
of equations.

One can utilize the ✓1�norm optimization technique discussed
in [2] to reconstruct the marginals in )( . This technique does not
create a unique solution, and linear programming has no preference
among di�erent solutions. So we employ another constraint opti-
mization technique ✓2�norm (least square solution). We will follow
the quadratic programming approach similar to the work in [20]
to solve the under-speci�ed system of equations as a minimizing
problem:

min
E

’
E2)(

T( [E]2

s.t.,
E2T(

T( [E] > 0

+8 2V E0 2(\+8
)( [E] = T( [E 0]

It has been shown that this is a quadratic optimization problem,
and we solved it with convex optimization approaches [6].

5 CONVERGENCE AND BLOCK SIZE
ESTIMATION

We show that the probabilities generated from )A ,2 converge to
the true probabilities after we used the protocol aggregating the
observations sent from the individuals in a certain number of blocks
of size =. The value )A ,2 [E]⌫: allows to compute the probability of
a cell of the CT)A ,2 created by running the randomized protocol on
the users of block ⌫: , where we use the superscript ⌫: to denote
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the block number. The estimated probability at round : sending
outcomes from block ⌫: is done with )A ,2 [E]⌫: . The estimation
of the probabilities, done by the protocol, converges to the true
probabilities by oscillating around the true value within a tolerance
interval related to the error in observing a Bernoulli variable. The
tolerance interval is given by the width of the con�dence interval
of the Bernoulli variable, with the success probability equal to the
true but unknown value E , and the interval width is estimated as
follows.

If the approximation of the Bernoulli distribution with the Nor-
mal distribution holds (i.e., if E > 5, with E = )A ,2 [E] and E/= the
probability estimation), we can use a symmetrical interval, where
the con�dence interval size can be estimated by 2I1�U/2f with

f =
q

(E/= · (1�E/=) )
= the standard deviation of the Bernoulli distri-

bution. Otherwise, maximum likelihood con�dence intervals must
be used with the log odds. We set the U con�dence level equal to
the standard values, e.g., 0.05 or 0.01. This latter means that the esti-
mated probability value will remain within the con�dence interval
with a probability equal to 1 � U .

The convergence algorithm proceeds as follows:

(1) Initialization with : = 0: )A ,2 [E]⌫0 = 1
|)A ,2 |

(2) At iteration : = : + 1: run the RRBA protocol and estimate
)A ,2 [E]⌫: from equation 4

(3) Repeat: step 2 until convergence, i.e.��)A ,2 [E]⌫: �)A ,2 [E]⌫:�1 �� < X⇤, for some X⇤ > 0
(4) Return:

)A ,2 [E] = )A ,2 [E ]⌫: +)A ,2 [E ]⌫:�1
2

which is the average between the two consecutive observed
values in consecutive blocks.

where X⇤ is the size of the con�dence interval.

6 TESTING FOR ASSOCIATION
One of the �rst questions posed while dealing with categorical at-
tributes is whether they are independent. The test of independence
j2 [1] is one of the most common statistical tests with categorical
attributes that mainly compares the observed frequencies of the
combined attribute values with the estimated frequencies, assuming
the attribute are independent. This latter estimation is obtained by
theMaximum Likelihood Estimation, denoted by b<8, 9 for cell
(8, 9) in the CT)A ,2 . To perform a similar test of independence for a
noisy version of the table, we need to determine an estimation forb< where we do not have access to the true cell counts in the CT.
Suppose we only have access to the noisy cell values in )A ,2 , where
noise is added in each cell independently, for instance, using our
randomization protocol. To �nd the best estimates for b< given the
noisy cells we perform a two-step MLE calculation similar to the
work of [15, 16].

In a two-step MLE procedure, we �rst �nd the most likely CTb)A ,2 given the noisy table )A ,2 , and in the second step, we calculate
MLE given a table of counts b)A ,2 . For the �rst step, we need to
minimize

���)A ,2 � b)A ,2
��� subject to

Õ
9 b)A ,2 [E] = = and b)A ,2 [E] > 0.

Note that if we add independent noise in each cell of a table )A ,2 ,
the above optimization problem gives multiple solutions. The ✓1
norm in our objective function in Equation 7 is not strongly convex,

Datasets Records Attributes Categories
Survey 500 6 14
Alarm 10,000 37 103
Child 10,000 20 60
Table 3: Summary of the selected datasets

which means it has an optimal solution but may not be unique and
sensitive to an initial guess. To overcome this problem, we add a
strongly convex function in the objective function:

minimizeb)A ,2
W
���)A ,2 � b)A ,2

���
1
+ (1 � W)

���)A ,2 � b)A ,2
���2
2

subject to
’
8 9

b)A ,2 [E] = =,

b)A ,2 [E] > 0.

(7)

where W is a mixing parameter in the range [0, 1]. The above ob-
jective function is in the form of elastic net regularize [27] function
proposed by [16]. The solution of this objective function converges
to the solution provided by the ✓1 norm when W is su�ciently large.
For the test of independence, in the two-stepMLE calculation, if
any cell value in b)A ,2 [E] < 5, we follow the commonly chosen rule
of thumb to Accept �0.

7 EXPERIMENTS
For experimental reproducibility, we use three publicly available
datasets (for Bayesian networks) 1: Survey [22], Alarm [5], and
Child [23]. They vary in the number of instances and attributes as
described in the overview of Table 3. All attributes are discrete.

7.1 Monte Carlo simulation: Convergence of the
randomization protocol

To perform a test of convergence of the second version of the pro-
posed randomized response protocol, we test with any of the values
of the attributes whose probability of occurrence is in

�
0.0285, 0.072,

0.116, 0.224, 0.356, 0.446, 0.524, and 0.732
 
and let vary the block

size B = {18, 50, 150, and 250}. We perform 40 trials on 200 blocks
on each probability value and block size. We average the number
of tuples emitted when the condition holds

��)A ,2 [E]⌫: �)A2 [E]⌫:�1 ��
< X⇤, and remains valid throughout the blocks.

7.2 Convergence Results
We perform the test of convergence in the datasets (Survey, Alarm,
and Child). We plot the results of the experiments in Figure 5,
where the x-axis represents the block size, and the y-axis shows the
number of tuples emitted when the convergence is reached. The
behavior of convergence of the proposed randomized method is
similar in all three datasets. A smaller block size makes it easier to
achieve early convergence at both low and high probability values.
Hence, it is su�cient to have a block size equal to the dimension of
the CT.

1Available at https://www.bnlearn.com/bnrepository/
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(a) Survey dataset
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(b) Alarm dataset
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(c) Child dataset

Figure 5: Convergence in probabilities % (�8 = E8 9 ) = {0.072, 0.116, 0.224, 0.356, 0.446, 0.524, 0.732} and block size B = {18, 50, 150, 250}
on Survey, Alarm and Child

We perform similar experiments on convergence with di�erent
values of ? (the probability the �rst coin is "Head"). Due to the com-
putational limitations, we focused on a few probability values to an-
alyze convergence on the varying value of ? . The selected probabil-
ities of the true attribute values % (E8 9 ) = {0.072, 0.116, 0.356, 0.446},
block size B = {18, 50, 150, 250} and the probability of the �rst coin
"Head" ? = {0.009, 0.048, 0.095, 0.139, 0.221}.

At ? = {0.009, 0.0480, 0.095} none of the processes of reconstruc-
tion of the probabilities converges at given block size B . Instead,
at ? = 0.1390, the reconstruction process of the higher probability
values % (E8 9 ) (set at 0.356 and 0.446) converges with higher block
sizes, i.e., 150 and 250. At ? = 0.221, the reconstruction process of
all the probability values converges with the higher block sizes, as
shown in the graph of Figure 6. In the graph, there is no conver-
gence for all the probability values when the block size is 18 and 50.
If we increase the block size, the reconstruction processes converge
for all the probabilities % (E8 9 ). A similar behavior is observed at
? = 0.295. The results of Figure 6 show that if we have a smaller
value of ? we must select a larger block size so that the reconstruc-
tion process of the probabilities converges; if we select a higher
value of ? we see the convergence at smaller block sizes, as shown
in Figure 5.

7.3 Monte Carlo Simulation: Test of
Independence

We want to test if the addition of noise destroys independence
(null hypothesis rejected). We generate a :�way noisy CT )A ,2
using the proposed randomization technique. We calculated the
estimations b<8, 9 of the cells using the two-step MLE procedure.
Using these estimates, we sample ; > 1/U many CTs (where U is the
signi�cance level, 0.05). We then add noise to these sampled tables
using the randomized response protocol. Using the same two-step
MLE calculation, we obtain ; di�erent bj2 values from these sampled
noisy tables. We rank these statistics by choosing d(; + 1) (1 � U)e
as threshold boU . If bj2 > boU we Reject �0 else, we Accept �0. If at
any point the two-step MLE calculation outputs any cell count < 5
then we Accept �0.

7.3.1 Significance Results. We show how the tests of Independence
perform on real-world data when �0 is both rejected or accepted.
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Figure 6: Convergence in probabilities % (E8 9 ) =
{0.072, 0.116, 0.224, 0.356, 0.446, 0.524, 0.732} and block size
B = {18, 50, 150, 250} at probability ? (�rst coin is Head) =
{0.009, 0.048, 0.095, 0.139, 0.221}

We set U = 0.05 (signi�cance level), W = 0.01 as the parameter in
the two-step MLE, and the privacy budget n = 0.25 in all our tests.

We perform the independence testing on 2�way, 3�way, and
4�way CTs with binary attributes. Note that the independence tests
can also be performed on arbitrary A ⇥ 2 noisy CTs generated by
the proposed method. Notice that as soon as the number of values
increases, the proposed protocol is more robust than the others and
succeeds in the tests a higher number of times.

In the above experiments with Laplace distribution, since it does
not provide critical values, we used the true values of the attributes
as the values for the comparison with noisy data (they are known
in advance). If this was not possible, one could also �nd the critical
values of simulated data using R package "CompQuadForm".

Table 4 compares the performance of the proposed method with
state-of-the-art competitors (Laplace noise and MCIndep [13]) us-
ing a confusion matrix. We perform 100 trials for �0 rejected and
100 trials for �0 accepted with CTs generated parametrically. The
accuracy of the proposedmethod is excellent (96.5%, 94%, and 93.5%)
in all :�way CTs. These results are better than both Laplace and
MCIndep methods. Further, our block randomization protocol is
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Table 4: Comparison of independence tests on :�way CTs (: = 2, 3, and 4) with Laplace noise, MCIndep (Monte Carlo indepen-
dence testing), RRBA on 100 trials with U = 0.05, ? = 0.5, n = 0.25

2-way 3-way 4-way
Reject �0 Accept �0 Reject �0 Accept �0 Reject �0 Accept �0

Laplace noise Reject �0 68 32 55 45 50 50
Accept �0 35 65 41 59 41 59
Accuracy 66.5% 57% 54.5%

MCIndep [13] Reject �0 94 6 94 6 92 8
Accept �0 5 95 7 93 9 91
Accuracy 94.5% 93.5% 91.5%

RRBR Reject �0 96 4 94 6 93 7
Accept �0 3 97 6 94 6 94
Accuracy 96.5% 94% 93.5%

Table 5: Comparison of ✓2 and Jensen-Shannon distance be-
tween noisy and original CTs (Survey and Alarm); noise is
added using randomization protocol and Laplace noise with
parameters ? = 0.4, n = 0.35, = = 8000, and Block size ⌫ = 250

✓2 distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 68.27 123.89 140.10 90.36
Laplace 59.58 307.588 715.05 117.42

Jensen-Shannon distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 0.0104 0.0142 0.0577 0.0073
Laplace 0.0142 0.1025 0.1434 0.0153

robust even in sparse data, where contingency cells often have very
low or zero count values. On the contrary, Laplace and MCIndep
do not produce valid results in these extreme situations, which can
be a killer application.

7.4 Performance using ✓2 norm and
Jensen-Shannon distance

We evaluate the performance of the proposed randomization proto-
col using ✓2 norm. For evaluation purposes, we use the noisy 2, 3, 4-
way CTs that are compared with the ground truth. The Laplace
noise is drawn from !0? (0,1) with zero mean and a scale that
depends on the privacy budget 1 = 2 |)A ,2 |

n . We performed 100 trials
on Survey and Alarm datasets and reported the average perfor-
mance in Table 5 and Table 6. Figure 7 shows the distribution of
the performance metrics.

From Table 5 and Table 6, the proposed randomization protocol
has the lowest average ✓2 distance on Survey and Child datasets. The
proposed protocol has the lowest average distance on higher dimen-
sional tables when the noise variance is large n = 0.35 and ? = 0.4.
When n = 0.5 and ? = 0.5 our protocol wins on all CTs. These tables

Table 6: Comparison of ✓2 and Jensen-Shannon distance be-
tween noisy and original CTs (Survey and Alarm); noise is
added using the randomization protocol and Laplace noise
with parameters: ? = 0.5, n = 0.5, = = 8000, and Block size
⌫ = 250.

✓2 distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 71.81 100.70 111.26 59.58 102.22 111.15
Laplace 109.60 154.02 372.63 61.69 162.62 427.98

Jensen-Shannon distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 0.0107 0.0129 0.0304 0.0074 0.0156 0.0380
Laplace 0.0142 0.0582 0.1417 0.0118 0.0633 0.1580

also conclude that our proposed randomization model compared
with Laplace noise has a lower distance on the Jensen-Shannon dis-
tance scale (a lower scale means the noisy distribution is similar to
the ground truth). The results from the experiments (performance
metric using independence test, ✓2 distance, and Jensen-Shannon
divergences) show that the proposed randomization method wins
over Laplace noise. The proposed privacy protocol maximizes utility
in the released CTs while ensuring n-di�erential privacy.

8 CONCLUSION
In this work, we systematically explore the problem of collecting
and analyzing data from smart devices under n�local di�erential
privacy, in which the aggregator/server is honest-but-curious, has
access to randomized responses from users, and reconstructs statis-
tical models based on perturbed data. The server computes accurate
statistics from the released joint distributions.With the experiments,
we showed that our protocol achieves high utility in reconstructing
the probabilities of attribute values, committing a low error bound.
In future work, we will use the hash function to store CTs to reduce
computation and communication overheads.
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(a) ✓2 distance on Survey dataset using n = 0.35,? = 0.4

(b) Jensen-Shannon distance on Survey dataset using n = 0.35,? = 0.4

(c) ✓2 distance on Survey dataset using n = 0.5,? = 0.5

(d) Jensen-Shannon distance on Survey dataset using n = 0.5,? = 0.5

(e) ✓2 distance on Alarm dataset using n = 0.5,? = 0.5

(f) Jensen-Shannon distance on Alarm dataset using n = 0.5,? = 0.5

Figure 7: Randomization and Laplace noise performance
histograms on the noisy 2�way table (left), 3�way (middle),
4�way (right) with ✓2 and Jensen-Shannon distance. The aver-
age performance is in Table 5 and Table 6. Block size ⌫ = 250,
records = = 8000
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