

Improving the Cycle Life of Solid-State Batteries by Addition of Oxide Nanoparticles to a Complex Hydride Solid Electrolyte

[Laura](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+de+Kort"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) de Kort, Peter [Ngene,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+Ngene"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Marcello](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marcello+Baricco"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Baricco, Petra de [Jongh,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Petra+de+Jongh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-5-0) and [Valerio](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Valerio+Gulino"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Gulino[*](#page-5-0)

Cite This: *J. Phys. Chem. C* 2023, 127, [3988−3995](https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.2c08902&ref=pdf) **Read [Online](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?ref=pdf)**

ABSTRACT: We report that the addition of silica nanoparticles to the iodide-substituted LiBH₄ (h -Li(BH₄)_{0.8}(I)_{0.2}) improves the ion conductivity and, remarkably, the cycle life of the all-solid state batteries. The h -Li $(BH_4)_{0.8}(I)_{0.2}$ -SiO₂ was synthesized by mechanochemical treatment and possesses a Li⁺ conductivity of 9.3×10^{-5} S cm[−]¹ at RT. It has an electrochemical stability window of about 2.5 V vs Li⁺/Li and an improved stability against Li-metal, compared to $h\text{-Li(BH₄)_{0.8}(I)_{0.2}$, owing to the addition of oxide nanoparticles, which we ascribed to a greater mechanical stability of the solid-state electrolyte. The all-solid state battery Lilh-Li $(BH_4)_{0.8}(I)_{0.2}$ -SiO₂|TiS₂ demonstrated a good long-term cyclability, i.e., over 200 cycles at C/ 20 and even including a C-rate of C/5, demonstrating that the addition of oxide nanoparticles improves the cycling stability of the electrolyte.

ACCESS [Metrics](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?goto=articleMetrics&ref=pdf) & More ARTICLE Article [Recommendations](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?goto=recommendations&?ref=pdf) supporting [Information](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?goto=supporting-info&ref=pdf) Enhanced Li-ion conductivity Vanoparticles addition \mathcal{S}_3 **Increased mechanical strength**

1. INTRODUCTION

Much research effort is devoted to improving the safety of Liion batteries, by introducing electrolytes that are thermally stable and not prone to decomposition, thereby limiting the flammability.^{[1](#page-5-0)} Solid-state electrolytes are intrinsically less flammable than organic liquid electrolytes. Complex hydrides have shown interesting properties as solid electrolyte, such as a low gravimetric density, a good electrochemical stability and compatibility with Li metal anode (forming stable inter-face).^{2−[5](#page-5-0)} Lithium borohydride (LiBH₄), a low density (0.666 g/cm $^3)$ material, has been extensively studied as an electrolyte. Its room temperature (RT) polymorph has an orthorhombic unit cell (*o*-LiBH4), space group (s.g.) *Pnma*, and low ionic conductivity (σ) ; around 10^{-8} S cm⁻¹), while the high temperature polymorph, stable above 110 °C, has a hexagonal unit cell (*h*-LiBH₄), s.g. *P[6](#page-5-0)₃mc*,⁶ and shows high σ (∼10⁻³ S cm⁻¹ at 120 $\mathrm{^{\circ}C}$).

The RT Li-ion conductivity in $LiBH₄$ can be enhanced using different approaches: (a) Halide substitution, replacing $\overline{BH_4}$ with I [−], Br[−], and Cl[−], stabilizes *h*-LiBH4 forming solid solutions (among them the most conductive composition is $h\text{-Li(BH₄)}_{0.8}^{0}(1)_{0.2}^{0}(1)$ $h\text{-Li(BH₄)}_{0.8}^{0}(1)_{0.2}^{0}(1)$ $h\text{-Li(BH₄)}_{0.8}^{0}(1)_{0.2}^{0}(1)$;^{8−[11](#page-6-0)} (b) Partially decompose the *o*-LiBH₄,^{[12](#page-6-0)} also by mixing it with LiBF₄^{[13](#page-6-0)} (c) Addition of nanosized oxides to form composites, 3 synthesized by nanoconfinement in suitable scaffolds^{[14](#page-6-0)} or by mechanochem-ical treatment.^{[15](#page-6-0)} In the latter, the enhanced Li-ion conductivity relies on the formation of a highly conductive interface layer with the oxide and can be described by a core−shell model.^{14,16–[18](#page-6-0)} Even though the LiBH₄–oxide interaction is not really understood, it is known that Li-conductivity is

optimized when $LiBH₄$ completely fills the oxide pores (adding a LiBH4 volume that corresponds to the oxide total pore volume), $15,19$ and the thickness of the interfacial layer has been estimated to be about 2 nm. 20 20 20 Recently, the two approaches have been combined, nanoconfining h -Li(BH₄)_{1−*x*}(I)_{*x*} solid solutions in different scaffolds. $21,22$

Studies on LiBH₄−oxide composites have mostly focused on improving the conductivity, while little effort has been spent on other important properties, such as mechanical properties, battery assembly, cycle life, and overall battery performance. Here, the synthesis of h -Li $(BH_4)_{0.8}(I)_{0.2}$ -SiO₂, with a volume of the h -Li $(BH_4)_{0.8}(I)_{0.2}$ corresponding to that of the pore volume of the oxide nanopowder (i.e., 100% of the oxide pore filled), by mechanochemical treatment, its characterization and its implementation in an all-solid-state battery (SSB) is discussed. We further demonstrate that this material is compatible with a lithium metal anode, and that the addition of $SiO₂$ enhanced the Li-ion conductivity of the solid electrolyte and greatly enhanced the cyclability, demonstrated with a battery cell using a TiS₂ cathode and Li anode.

Received: December 20, 2022 Revised: February 8, 2023 Published: February 16, 2023

Figure 1. (a) Rietveld refinement of the *h*-Li(BH₄)_{0.8}(I)_{0.2}-SiO₂ (SSE) pattern (Rwp 7.03%). The inset shows the structure of the SSE obtained after Rietveld refinement (the relative occupancy of the anions is not shown). (b) ATR spectra of the SSE, *h*-Li(BH₄)_{0.8}(I)_{0.2}, and pure LiBH₄. Arrows indicate the absorption bands at about 1170 and 960 cm[−]¹ . (c) Conductivity of the SSE and pure LiBH4 and (d) of the SSE and *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ obtained during the second heating temperature-dependent EIS cycles.

2. EXPERIMENTAL METHODS

The $h\text{-Li(BH₄)_{0.8}(I)_{0.2}$ -SiO₂ electrolyte was synthesized according to the procedure and with the composition reported in the Supporting [Information](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) (Table S1), and we will refer to it as solid-state electrolyte (SSE). The $h\text{-Li(BH₄)_{0.8}(I)_{0.2}$ hexagonal solid solution was stabilized at RT by a combination of mechanochemical treatment and annealing, mixing LiBH4 (purity > 95% from Sigma-Aldrich) and LiI (purity > 99% from Sigma-Aldrich).^{[11](#page-6-0)} The SiO₂ nanoparticles (Aerosil 300, Evonik) was incorporated to form a nanocomposite electrolyte by mechanochemical treatment,[15](#page-6-0) using a volume of *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ equal to the pore volume of the SiO₂ (i.e., space between the nanoparticles), obtained by N_2 physisorption. The composite was characterized by powder X-ray diffraction (XRD) at RT using a Panalytical X-pert Pro MPD (Cu K*^α*¹ = 1.54059 Å, K*^α*² = 1.54446 Å) in Debye-Scherer geometry, N_2 adsorption at 77 K in a TriStar Plus II gasvolumetric apparatus (Micromeritics, Norcross, GA, U.S.A.), and by infrared spectroscopy in Attenuated Total Reflection (ATR) with a Bruker Alpha-P spectrometer, equipped with a diamond crystal (see Supporting [Information](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) for experimental details).

The conductivity was measured using electrochemical impedance spectroscopy (EIS) on samples obtained by compacting the powder into pellets (diameter 13 mm, thickness 1−2 mm, 150 MPa) using an axial hydraulic press. The total conductivity measured was assigned totally to Li-ion $\text{conduction.}^{4,15}$ $\text{conduction.}^{4,15}$ $\text{conduction.}^{4,15}$ $\text{conduction.}^{4,15}$ $\text{conduction.}^{4,15}$ For other electrochemical characterizations, the pellets were obtained by placing about 60 mg of sample powder in PEEK (polyether ether ketone) cylinder (10 mm diameter) and by cold pressing (250 MPa) in between two stainless steel pistons. To measure cyclic voltammetry (CV), the samples were mixed with carbon black (Ketjenblack EC600JD, Akzo Nobel Chemicals) in a weight ratio of 95:5 using an agate mortar. 23 23 23 A pellet was obtained by pressing 8 mg of C-SSE mixture on a prepelletized 60 mg of SSE, which was subsequently attached to a Li disk as the counter and reference electrode. For battery-cell assembly, the SSE and $TiS₂$ (99.9%, Sigma-Aldrich) powders were mixed in a 60:40 weight ratio in an agate pestle for 5 min, and the mixture was used as the composite positive electrode (cathode). A total of 8.9 mg of cathode mixture (3.5 mg of TiS_2) was pressed on top of a pellet prepared using 60 mg of SSE. A freshly polished Li disk as the anode material was pressed with the pellet. These batteries were left for 2 h at 60 °C and then cycled using a

Figure 2. Cyclic voltammetry of Lilh-Li(BH₄)_{0.8}(I)_{0.2}|*h*-Li(BH₄)_{0.8}(I)_{0.2}-C|stainless steel (a) and Li|SSE|SSE-C|stainless steel (b) cells, measured at 60 °C from 1.0 to 5.0 V vs Li⁺/Li, with a scan rate of 100 μ V s⁻¹. An enlarged view is shown in (b). The electrochemical stability was assessed on the basis of the decomposition occurring at the first edge potential (E_{onset}) , i.e., the potential where a faradic current is detectable.³⁶

PARSTAT MC/PMC-1000 at C/20 (12 mA/g), C/10, C/5, $C/2$, and C .

3. RESULTS AND DISCUSSION

[Figure](#page-1-0) 1a shows the X-ray diffraction pattern of the *h*- $Li(BH₄)_{0.8}(I)_{0.2}-SiO₂$ (solid-state electrolyte, i.e., SSE), in which the only crystalline phase observed is $h\text{-Li(BH₄)_{0.8}(I)_{0.2}$ (see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S1 for comparison with the pattern of the *h*- $Li(BH₄)_{0.8}(I)_{0.2}$. The crystalline structure of the SSE in Rietveld refinement ([Figure](#page-1-0) 1a) was defined using the starting structure of the hexagonal polymorph of h -LiBH₄ (P63*mc*),² in which, however, I [−] ions occupy 20% of the boron positions (i.e., 2b Wyckoff site, $x = 0.3333$, $y = 0.6667$, $z = 0.553$). The structure resulting from the Rietveld refinement is shown in the inset in [Figure](#page-1-0) 1a, where a small increase of the I [−] *z* coordinate, i.e., *x* = 0.3333, *y* = 0.6667, and *z* = 0.602, and a larger cell volume $(57.1 \; \text{\AA}^3)$ than the RT extrapolated volume of *h*-LiBH₄ (53.3 Å³), see [Table](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S2) was detected. Expansion of the lattice is expected as the radius of I[−] is larger than that of BH_4^- (I⁻ = 2.20 Å, BH_4^- = 2.03 Å).^{[25](#page-6-0)}

The SSE was further analyzed with infrared spectroscopy in Attenuated Total Reflection mode [\(Figure](#page-1-0) 1b). The *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ spectrum shows new bands, compared to the *o*-LiBH₄ spectra, at ∼1170 cm⁻¹ and 960 cm⁻¹, in agreement with results reported by Rude et al. 26 . The absorption bands related to B−H stretching (2400−2000 cm[−]¹ region) of the *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ and SSE are similar, but they differ from that of *o*-LiBH₄, which reflects a different symmetry of the $B_{\frac{1}{2}}$ anions due to the stabilization of the hexagonal phase.^{[26,27](#page-6-0)} Furthermore, the presence of the $SiO₂$ is evident from the intense and broad absorption band in the SSE spectrum in the

region 1300–750 cm^{-1} . Finally, the N₂ absorption performed on the SSE sample showed a surface area ($25 \text{ m}^2/\text{g}_{SSE}$) and pore volume $(0.1 \text{ cm}^3/\text{g}_{\rm SSE})$, which decreased by an order of magnitude compared to the SiO₂ (i.e., 294 m²/g, 2.30 cm³/g, respectively, see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S2 and [Table](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S3), confirming that the mechanochemical treatment allows to form a dense nanocomposite.

[Figure](#page-1-0) 1c shows the conductivity versus inverse temperature of the SSE, including, for a comparison, results obtained for pure $LiBH₄$. [Figure](#page-1-0) 1d shows the conductivity comparison between $h\text{-Li(BH}_4)_{0.8}(I)_{0.2}$ with and without SiO₂ added. With SiO₂, the conductivity at 40 °C is 9.3×10^{-5} S cm⁻¹, similar to the value reported for $LiBH₄-LiI-SBA-15$ prepared by nanoconfinement $(1.3 \times 10^{-4} \text{ S cm}^{-1})$.^{[21](#page-6-0)} The RT conductivity is about 4 orders of magnitude higher than for pure $LiBH₄$, and it is slightly higher than that of the $h\text{-Li(BH}_4)_{0.8}(I)_{0.2}$ at the same temperature (see [Figure](#page-1-0) 1d). The activation energy (E_A) for SSE sample, obtained from a linear fit $(R^2 > 0.999)$ of the $ln(\sigma T)$ versus $1/T$ data shown in [Figure](#page-1-0) 1d, was 0.51 ± 0.01 eV. The *E*^A obtained for SSE is similar to that of the pure *h*- $Li(BH_4)_{0.8}(I)_{0.2}$ (i.e., 0.55 \pm 0.02 eV), but much lower than the E_A of *o*-LiBH₄ (i.e., 0.75 \pm 0.07 eV).²⁸ A sudden change in the conductivity above 110 °C due to the polymorphic transition was observed for pure $LiBH₄$ but, as expected, not for the hexagonal solid solution.

Similar to LiBH₄-oxide composites,^{[15](#page-6-0)} the enhancement of the conductivity due to the silica incorporation can be explained using a core−shell model (see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S3 for a graphical view), in which two different fractions are present: (a) the region between the $h\text{-Li(BH}_4)_{0.8}(I)_{0.2}$ and the oxide, which forms a highly conductive layer; (b) the bulk region, maintaining the conductivity of the hexagonal *h*-Li-

Figure 3. Cycling profiles of the symmetrical Lilh-Li(BH₄)_{0.8}(I)_{0.2}|Li (blue) and LilSSE|Li (red) cells at 60 °C with a constant current density of 0.031 mA/ $\rm cm^2$ applied for 30 min, in the initial 20 cycles, and for 1 h for the following cycles..

 $(BH_4)_{0.8}(I)_{0.2}$ phase.^{[14](#page-6-0),[15,18](#page-6-0)} Taking into consideration an interfacial $SSE-SiO₂$ layer thickness of 2 nm,^{[15,20](#page-6-0)} the calculation of the theoretical thickness ([Table](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S1), based on our previous studies[,15](#page-6-0),[19](#page-6-0) confirms that there is some bulk *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ that is far from the interface layer, yet able to form a well-connected pathway for the Li-ion conduction. This is based on the assumption that the interface layer thickness of the LiBH₄ $-SiO_2$ and *h*-Li $(BH_4)_{0.8}(I)_{0.2}$ -SiO₂ are equal, because the calorimetric procedure to probe the phase transition temperature, as used by Suwarno et al., 20 20 20 cannot be used in this case, as the transition has already been suppressed by the I⁻ substitution. These results demonstrate that the combination of the two different approaches to increase the Li-ion conductivity is a powerful synthesis route for solid-state electrolytes with ionic conductivities suitable for application in all-solid-state batteries. $21,29$ $21,29$

To establish whether the mechanical treatment with silica has an influence on the electrochemical stability window, cyclic voltammetry was performed on both the SSE and *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ at 60 °C [\(Figure](#page-2-0) 2).

A small anodic peak (E_{onset}), at about 2.5 and 2.6 V, was detected for the h -Li $(BH_4)_{0.8}(I)_{0.2}$ and SSE, respectively, assigned to the partial decomposition of the of $BH_4^{-1.1,23}$ $BH_4^{-1.1,23}$ $BH_4^{-1.1,23}$ At higher potentials (above 3.0 V), a major oxidative event is observed for both samples, that is assigned to the extraction of the I^- ion from the crystal structure above 3.0 V.^{[31,32](#page-6-0)}

The oxidation stability of a mixture, is determined by the stability of the least stable anion, which sets the practical stability limit of the whole binary compound. 33 The electrochemical stability window of the SSE can therefore be defined as about 2.5 V, determined by the decomposition potential of the BH₄⁻. The electrochemical stability window of pure LiBH₄ is around 2.2 V versus $Li^{+}/Li^{11,23}$ $Li^{+}/Li^{11,23}$ $Li^{+}/Li^{11,23}$ and similar results was obtained for LiBH₄-MgO nanocomposites (2.2 V vs Li⁺/ Li).^{[19](#page-6-0)} These findings confirm that the mechanical treatment enhances the ionic conductivity without altering the oxidative stability of the electrolyte.

The compatibility of $h\text{-Li}(\text{BH}_4)_{0.8}(I)_{0.2}$ and SSE with Li metal anodes was explored by assembling symmetric Li metal cells. Figure 3 depicts the evolution of the cell voltage profile over time, at a constant current of 0.031 mA/cm^2 at intervals of 30 min (for the first 20 steps, 6 *μ*Ah/cm2) and 1 h (for following steps, 0.031 mAh/cm²). The cell containing only the $h\text{-Li(BH₄)_{0.8}(I)_{0.2}$ without silica nanoparticles, showed an increasing polarization upon cycling. The overpotential reached 58 mV (47% higher than the initial value of 40 mV, i.e., from an initial total resistance of 1643 Ω to a final of 2383 Ω) before the cell shorted after 185 h (7.5 days), suggesting a limited stability against lithium metal. The higher initial voltage, compared to the results obtained for the SSE, can be due to (a) slightly lower ionic conductivity; (b) occurrence of parasitic reactions; (c) poor interfacial contact. Differently, the earlier short circuit (after 185 and 300 h for h -Li $(BH_4)_{0.8}(I)_{0.2}$) and SSE, respectively) might be due to a lower mechanical strength compared to the SSE, i.e., limited ability to stop dendritic growth. In contrast, for the cell containing the SSE, lithium plating and stripping is fully reversibly, with a low potential, that reaches 21 mV as maximum value (5% higher than the initial polarization of 20 mV). Importantly, the overall voltage remains constant for almost 300 h (12.5 days),

Figure 4. (a) Schematic illustration of the assembled all-solid-state battery (SSB). (b) Coulombic efficiency (charge capacity over discharge capacity). (c) Voltage profiles of LilSSElTiS₂ solid-state battery during cycling at 60 °C, selected voltage profiles are presented. (d) Discharge/ charge specific capacity (left) and discharge capacity retention ratio (right) as a function of the cycle number for a rate of C/20 (12 mA/g), C/10, $C/5$, $C/2$, and C. The capacity of the battery is expressed in mAh per g of TiS₂.

indicating that the electrolyte is stable in contact with lithium. The value of 21 mV is in line with the EIS spectra ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S4) collected on the as-assembled cell, resulting in a contact/ interface resistance, after having subtracted the electrolyte contribution, equal to 165 Ω cm², that can be caused by the absence of a controlled cell stack pressure.^{2,[34,35](#page-6-0)} These results suggest that the addition of silica nanoparticles increase the stability of the electrolyte for lithium stripping and plating.

The different behaviors shown by the symmetric cells ([Figure](#page-3-0) 3) could tentatively be explained by an improved mechanical strength of the SSE, compared to the *h*- $Li(BH₄)_{0.8}(I)_{0.2}$ $Li(BH₄)_{0.8}(I)_{0.2}$ $Li(BH₄)_{0.8}(I)_{0.2}$, induced by the addition of $SiO₂²$. The theoretical bulk modulus of LiBH₄ is 10−20 GPa.^{[36](#page-6-0)} Such a low bulk modulus compared to other solid-state electrolytes 37 is advantageous for mechanical processing. 38 At the same time, to prevent Li dendrite growth, the shear modulus should be at least twice that of the lithium metal, $39,40$ but that of LiBH₄ is only slightly larger than that of Li (i.e., 5.12 GPa for $LiBH₄$ vs 4.02 GPa for Li metal). 36 The addition of harder materials, e.g., SiO₂ with an shear modulus of 30–40 GPa,^{[41,42](#page-6-0)} could increase the SSE rigidity preventing the formation of Li dendrites.

Similar behavior has been observed for polymer-based solid electrolytes, in which the mechanical properties were improved by the presence of oxide particles.^{43,[44](#page-6-0)} Recently, it was demonstrated that addition of Si nanoparticles can inhibit the formation of Li dendrites at the interface of Li anode.⁴⁵ However, a detailed study of the mechanical strength and the effect of pressure is outside the scope of the present work.

Given its high ionic conductivity and excellent stability in plating/stripping lithium, an all-solid-state Li/TiS_2 battery was assembled (Figure 4a). Figure 4c shows the charge−discharge voltage profiles for cycling at 60 °C between 1.5 and 2.6 V at C/20. C-rate-capability tests $(C/10, C/5, C/2, C, 10$ cycles

each) were performed. The SSB exhibits a reversible charge capacity of 181 mAh/g and discharge capacity of 185 mAh/g in the second cycle, that corresponds to about 76 and 77%, respectively, of the theoretical capacity of TiS_2 (239 mAh/ g).^{[46](#page-6-0)−[48](#page-7-0)} Optimization of the cathode mixture and preparation could enable higher initial capacity.^{[49](#page-7-0)} The battery was successfully cycled for more than 220 times, i.e., to our knowledge, the longest cyclability reached by an SSB using a LiBH4-based electrolyte, showing a discharge capacity retention of 68% after 50 cycles, and 34% after 220 cycles (Figure 4d). Moreover, the Coulombic efficiency remained between 99% and 100% during the first 70 cycles, i.e., also at the C-rate of C/10 and C/5, as well as from the 90th to 220th cycle (Figure 4b). During the C-rate capability test, while the Coulombic efficiency remained stable, the capacity slightly decreased with increasing C-rate, until C/5. Nevertheless, this is the highest C-rate achieved by an SSB assembled using a $LiBH₄$ -based SSE (see [Table](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S4 for the comparison). Subsequent increase in C-rate (from C/2 to C) deeply affect the cell performances, with a drastic reduction of the specific capacity, likely due to an insufficient Li-ion conductivity of the SSE.

A significant difference was observed between the discharge capacity of the first and the second cycle (106 and 185 mAh/ g). This is related to reactions at the $TiS_2/LiBH_4$ -basedelectrolyte interface to possibly form $Li_2B_{12}H_{12}$ and other compounds.^{[50](#page-7-0)} Such decomposition is likely kinetically limited above a critical thickness of $Li_2B_{12}H_{12}$, resulting in a stable solid electrode interface layer.^{[19,](#page-6-0)[50](#page-7-0)} Similar behavior has been reported for Li-TiS₂ SSBs by Unemoto et al.^{[50](#page-7-0)} for a LiBH₄ electrolyte at 120 °C, for a LiBH₄-MgO electrolyte at 60 °C¹⁹ and also in Li-S SSB based on $LiBH₄-SiO₂$ electrolytes.^{[51](#page-7-0)}

The cell impedance was monitored after each charge/ discharge cycle [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S5). [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S5a shows the Nyquist plot after the cell was assembled (before charge/discharge cycles) and after every 10 charge−discharge cycles. [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf) S5b shows that the contact resistance of the fresh cell is <1 Ω (similar to that obtained by Kim et al.^{[52](#page-7-0)}). After this initial low resistance value, the contact resistance increases, explaining also the capacity fading. The capacity fading can be caused by two contributions: (a) the formation of the $Li_2B_{12}H_{12}$ -based SEI layer and (b) the loss of contact at the electrodes interfaces.¹⁹

The satisfactory cycling performance of the cell suggests that the studied SSE can be adopted as a solid electrolyte for SSB. A key point that should not be overlooked is that a much higher charge/discharge cycles have been performed by the cell assembled in this work, compared to those where $LiBH₄$ -base electrolytes and Li metal as anode were used (see table in ref [53\)](#page-7-0), proving that the addition of $SiO₂$ nanoparticles improves also the cycling properties. While we have obtained exceptional cycling behavior in the studied system, the battery performance could (likely) be further improved by optimizing the contact between the electrolyte and the electrodes, as well as employing other cathodes materials.

4. CONCLUSIONS

In this work, the effect of nanocomposite formation via ball milling on the electrochemical properties of halogenated LiBH₄ (h -Li(BH₄)_{0.8}(I)_{0.2}) has been investigated. The h - $Li(BH_4)_{0.8}(I)_{0.2}$ -SiO₂ demonstrated a higher conductivity than pristine $LiBH₄$ and the pure solid solution. The electrochemical stability window of the nanocomposite is similar to that of the solid solution but the stability against Li-metal is drastically improved by the presence of the oxide nanoparticles. We ascribed this to the fact that the addition of the rigid $SiO₂$ nanoparticles which has a high shear modulus, strengthens the SSE, likely mitigating the dendrite propagation. Importantly, we have assembled an all-solid state battery cell $(Lilh\text{-Li}(BH_4)_{0.8}(I)_{0.2}\text{-SiO}_2|TiS_2)$ that shows a long-term cyclability, i.e., over 200 cycles, demonstrating that the addition of oxide nanoparticles significantly improves the stability of the solid electrolytes. We believe that further optimization of the cathode composition and preparation could improve the battery performance, opening potential for applications for instance in stationary storage.

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902.](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?goto=supporting-info)

Description of the synthesis and composition details. N_2 physisorption isotherms, Li-ion conductivity, XRD pattern, and Rietveld refinement parameters of the *h*- $Li(BH_4)_{0.8}(I)_{0.2}$ and $h\text{-}Li(BH_4)_{0.8}(I)_{0.2}$ -SiO₂. Nyquist plot of the fresh assembled symmetric cell and battery cell and as a function of the battery cycles [\(PDF](https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c08902/suppl_file/jp2c08902_si_001.pdf))

■ **AUTHOR INFORMATION**

Corresponding Authors

Valerio Gulino − *Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands; Department of Chemistry and NIS - INSTM, University of Turin, 10125 Torino, Italy;*

[orcid.org/0000-0002-5808-7802;](https://orcid.org/0000-0002-5808-7802) Phone: +39 3804624454; Email: v.gulino@uu.nl

Petra de Jongh − *Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands*; Phone: +31 30 2531747; Email: p.r.dejongh@uu.nl

Authors

- Laura de Kort − *Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands*
- Peter Ngene − *Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG* Utrecht, The Netherlands; ● [orcid.org/0000-0003-](https://orcid.org/0000-0003-3691-0623) [3691-0623](https://orcid.org/0000-0003-3691-0623)
- Marcello Baricco − *Department of Chemistry and NIS - INSTM, University of Turin, 10125 Torino, Italy;* orcid.org/0000-0002-2856-9894

Complete contact information is available at: [https://pubs.acs.org/10.1021/acs.jpcc.2c08902](https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08902?ref=pdf)

Author Contributions

V.G. and P.d.J. designed the research. V.G. carried out the syntheses, measurements, data analyses, and wrote the manuscript. L.K. assisted in the electrochemical measurements and helped in the writing process. P.N., M.B., and P.d.J. participated in discussions of the results, supervised the research, and commented on the manuscript.

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

Financial support from The Netherlands Organization for Scientific Research (NWO-ECHO and NOW-RELEASE) is gratefully acknowledged. The authors kindly acknowledge Jan Willem de Rijk and Marcel Van Asselen for technical support in the laboratory

■ **REFERENCES**

(1) Goodenough, J. B.; Kim, Y. Challenges for [Rechargeable](https://doi.org/10.1021/cm901452z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Li [Batteries](https://doi.org/10.1021/cm901452z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) †. *Chem. Mater.* 2010, *22* (3), 587−603.

(2) Brighi, M.; Murgia, F.; Č erny, ́ R. [Mechanical](https://doi.org/10.1002/admi.202101254) Behavior and Dendrite Resistance of [Closo-Hydroborate](https://doi.org/10.1002/admi.202101254) Solid Electrolyte. *Adv. Mater. Interfaces* 2022, *9* (3), 2101254.

(3) de Kort, L. M.; Gulino, V.; de Jongh, P. E.; Ngene, P. [Ionic](https://doi.org/10.1016/j.jallcom.2021.163474) Conductivity in Complex Metal Hydride-Based [Nanocomposite](https://doi.org/10.1016/j.jallcom.2021.163474) Materials: The Impact of [Nanostructuring](https://doi.org/10.1016/j.jallcom.2021.163474) and Nanocomposite [Formation.](https://doi.org/10.1016/j.jallcom.2021.163474) *J. Alloys Compd.* 2022, *901*, 163474.

(4) Cuevas, F.; Amdisen, M. B.; Baricco, M.; Buckley, C. E.; Cho, Y. W.; de Jongh, P.; de Kort, L. M.; Grinderslev, J. B.; Gulino, V.; Hauback, B. C.; et al. Metallic and Complex [Hydride-Based](https://doi.org/10.1088/2516-1083/ac665b) [Electrochemical](https://doi.org/10.1088/2516-1083/ac665b) Storage of Energy. *Prog. Energy* 2022, *4* (3), 032001. (5) Dematteis, E. M.; Amdisen, M. B.; Autrey, T.; Barale, J.; Bowden, M. E.; Buckley, C. E.; Cho, Y. W.; Deledda, S.; Dornheim, M.; de Jongh, P.; et al. [Hydrogen](https://doi.org/10.1088/2516-1083/ac7499) Storage in Complex Hydrides: Past [Activities](https://doi.org/10.1088/2516-1083/ac7499) and New Trends. *Prog. Energy* 2022, *4* (3), 032009.

(8) Sveinbjörnsson, D.; Myrdal, J. S. G.; Blanchard, D.; Bentzen, J. J.; Hirata, T.; Mogensen, M. B.; Norby, P.; Orimo, S.; Vegge, T. [Effect](https://doi.org/10.1021/jp310050g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of

⁽⁶⁾ El Kharbachi, A.; Pinatel, E.; Nuta, I.; Baricco, M. [A](https://doi.org/10.1016/j.calphad.2012.08.005) [Thermodynamic](https://doi.org/10.1016/j.calphad.2012.08.005) Assessment of LiBH4. *Calphad* 2012, *39*, 80−90.

⁽⁷⁾ Matsuo, M.; Nakamori, Y.; Orimo, S.; Maekawa, H.; Takamura, H. Lithium Superionic Conduction in Lithium [Borohydride](https://doi.org/10.1063/1.2817934) [Accompanied](https://doi.org/10.1063/1.2817934) by Structural Transition. *Appl. Phys. Lett.* 2007, *91* (22), 224103.

Heat Treatment on the Lithium Ion [Conduction](https://doi.org/10.1021/jp310050g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of the $LiBH₄-LiI$ Solid [Solution.](https://doi.org/10.1021/jp310050g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. C* 2013, *117* (7), 3249−3257.

(9) Maekawa, H.; Matsuo, M.; Takamura, H.; Ando, M.; Noda, Y.; Karahashi, T.; Orimo, S.-i. [Halide-Stabilized](https://doi.org/10.1021/ja807392k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) LiBH4, a Room-[Temperature](https://doi.org/10.1021/ja807392k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Lithium Fast-Ion Conductor. *J. Am. Chem. Soc.* 2009, *131* (3), 894−895.

(10) Gulino, V.; Dematteis, E. M.; Corno, M.; Palumbo, M.; Baricco, M. Theoretical and [Experimental](https://doi.org/10.1021/acsaem.1c01455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Studies of LiBH₄-LiBr Phase [Diagram.](https://doi.org/10.1021/acsaem.1c01455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Appl. Energy Mater.* 2021, *4* (7), 7327−7337.

(11) Gulino, V.; Brighi, M.; Dematteis, E. M.; Murgia, F.; Nervi, C.; Černý, R.; Baricco, M. Phase Stability and Fast Ion [Conductivity](https://doi.org/10.1021/acs.chemmater.9b01035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in the Hexagonal [LiBH4-LiBr-LiCl](https://doi.org/10.1021/acs.chemmater.9b01035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Solid Solution. *Chem. Mater.* 2019, *31* (14), 5133−5144.

(12) Zhu, M.; Pang, Y.; Lu, F.; Shi, X.; Yang, J.; Zheng, S. In [Situ](https://doi.org/10.1021/acsami.9b01326?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Formed Li-B-H Complex with High Li-Ion [Conductivity](https://doi.org/10.1021/acsami.9b01326?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) as a Potential Solid [Electrolyte](https://doi.org/10.1021/acsami.9b01326?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Li Batteries. *ACS Appl. Mater. Interfaces* 2019, *11* (15), 14136−14141.

(13) de Kort, L. M.; Gulino, V.; Blanchard, D.; Ngene, P. [Effects](https://doi.org/10.3390/molecules27072187) of LiBF4 Addition on the Lithium-Ion [Conductivity](https://doi.org/10.3390/molecules27072187) of LiBH4. *Molecules* 2022, *27* (7), 2187.

(14) Blanchard, D.; Nale, A.; Sveinbjörnsson, D.; Eggenhuisen, T. M.; Verkuijlen, M. H. W.; Suwarno; Vegge, T.; Kentgens, A. P. M.; de Jongh, P. E. [Nanoconfined](https://doi.org/10.1002/adfm.201402538) LiBH₄ as a Fast Lithium Ion Conductor. *Adv. Funct. Mater.* 2015, *25* (2), 184−192.

(15) Gulino, V.; Barberis, L.; Ngene, P.; Baricco, M.; de Jongh, P. E. Enhancing Li-Ion [Conductivity](https://doi.org/10.1021/acsaem.9b02268?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in LiBH₄-Based Solid Electrolytes by Adding Various [Nanosized](https://doi.org/10.1021/acsaem.9b02268?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Oxides. *ACS Appl. Energy Mater.* 2020, *3* (5), 4941−4948.

(16) Lambregts, S. F. H.; van Eck, E. R. H.; Suwarno; Ngene, P.; de Jongh, P. E.; Kentgens, A. P. M. Phase Behavior and Ion [Dynamics](https://doi.org/10.1021/acs.jpcc.9b06477?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of [Nanoconfined](https://doi.org/10.1021/acs.jpcc.9b06477?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) LiBH4 in Silica. *J. Phys. Chem. C* 2019, *123* (42), 25559−25569.

(17) Zettl, R.; Hogrefe, K.; Gadermaier, B.; Hanzu, I.; Ngene, P.; de Jongh, P. E.; Wilkening, H. M. R. [Conductor-Insulator](https://doi.org/10.1021/acs.jpcc.1c03789?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Interfaces in Solid [Electrolytes:](https://doi.org/10.1021/acs.jpcc.1c03789?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) A Design Strategy to Enhance Li-Ion Dynamics in [Nanoconfined](https://doi.org/10.1021/acs.jpcc.1c03789?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) LiBH4/Al2O3. *J. Phys. Chem. C* 2021, *125* (27), 15052−15060.

(18) Zettl, R.; Gombotz, M.; Clarkson, D.; Greenbaum, S. G.; Ngene, P.; de Jongh, P. E.; Wilkening, H. M. R. Li-Ion [Diffusion](https://doi.org/10.1021/acsami.0c10361?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Nanoconfined $LiBH_4$ -LiI/ Al_2O_3 : From 2D Bulk Transport to 3D [Long-Range](https://doi.org/10.1021/acsami.0c10361?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Interfacial Dynamics. *ACS Appl. Mater. Interfaces* 2020, *12* (34), 38570−38583.

(19) Gulino, V.; Brighi, M.; Murgia, F.; Ngene, P.; de Jongh, P.; Černý, R.; Baricco, M. [Room-Temperature](https://doi.org/10.1021/acsaem.0c02525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Solid-State Lithium-Ion Battery Using a [LiBH4-MgO](https://doi.org/10.1021/acsaem.0c02525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Composite Electrolyte. *ACS Appl. Energy Mater.* 2021, *4* (2), 1228−1236.

(20) Suwarno; Ngene, P.; Nale, A.; Eggenhuisen, T. M.; Oschatz, M.; Embs, J. P.; Remhof, A.; De Jongh, P. E. [Confinement](https://doi.org/10.1021/acs.jpcc.6b13094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Effects for Lithium [Borohydride:](https://doi.org/10.1021/acs.jpcc.6b13094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Comparing Silica and Carbon Scaffolds. *J. Phys. Chem. C* 2017, *121* (8), 4197−4205.

(21) Zettl, R.; de Kort, L.; Gombotz, M.; Wilkening, H. M. R.; de Jongh, P. E.; Ngene, P. Combined Effects of Anion [Substitution](https://doi.org/10.1021/acs.jpcc.9b10607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and [Nanoconfinement](https://doi.org/10.1021/acs.jpcc.9b10607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) on the Ionic Conductivity of Li-Based Complex [Hydrides.](https://doi.org/10.1021/acs.jpcc.9b10607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Phys. Chem. C* 2020, *124* (5), 2806−2816.

(22) Lu, F.; Pang, Y.; Zhu, M.; Han, F.; Yang, J.; Fang, F.; Sun, D.; Zheng, S.; Wang, C. A [High-Performance](https://doi.org/10.1002/adfm.201809219) Li-B-H Electrolyte for All-[Solid-State](https://doi.org/10.1002/adfm.201809219) Li Batteries. *Adv. Funct. Mater.* 2019, *29* (15), 1809219.

(23) Asakura, R.; Duchêne, L.; Kühnel, R.-S.; Remhof, A.; Hagemann, H.; Battaglia, C. [Electrochemical](https://doi.org/10.1021/acsaem.9b01487?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Oxidative Stability of [Hydroborate-Based](https://doi.org/10.1021/acsaem.9b01487?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Solid-State Electrolytes. *ACS Appl. Energy Mater.* 2019, *2* (9), 6924−6930.

(24) Soulie, J.; Renaudin, G.; Černý, R.; Yvon, K. [Lithium](https://doi.org/10.1016/S0925-8388(02)00521-2) Boro-Hydride LiBH4 I. Crystal [Structure.](https://doi.org/10.1016/S0925-8388(02)00521-2) *J. Alloys Compd.* 2002, *346*, 200− 205.

(25) Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; Černý, R.; Ravnsbæk, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T. R. Metal [Borohydrides](https://doi.org/10.1039/C6CS00705H) and Derivatives - Synthesis, Structure and [Properties.](https://doi.org/10.1039/C6CS00705H) *Chem. Soc. Rev.* 2017, *46* (5), 1565−1634.

(26) Rude, L. H.; Zavorotynska, O.; Arnbjerg, L. M.; Ravnsbæk, D. B.; Malmkjær, R. A.; Grove, H.; Hauback, B. C.; Baricco, M.; Filinchuk, Y.; Besenbacher, F.; Jensen, T. R. Bromide [Substitution](https://doi.org/10.1016/j.ijhydene.2011.08.087) in Lithium [Borohydride,](https://doi.org/10.1016/j.ijhydene.2011.08.087) LiBH4-LiBr. *Int. J. Hydrogen Energy* 2011, *36* (24), 15664−15672.

(27) Rude, L. H.; Groppo, E.; Arnbjerg, L. M.; Ravnsbæk, D. B.; Malmkjær, R. A.; Filinchuk, Y.; Baricco, M.; Besenbacher, F.; Jensen, T. R. Iodide Substitution in Lithium [Borohydride,](https://doi.org/10.1016/j.jallcom.2011.05.031) LiBH4-LiI. *J. Alloys Compd.* 2011, *509* (33), 8299−8305.

(28) Gulino, V.; Wolczyk, A.; Golov, A. A.; Eremin, R. A.; Palumbo, M.; Nervi, C.; Blatov, V. A.; Proserpio, D. M.; Baricco, M. [Combined](https://doi.org/10.1039/D0QI00577K) DFT and [Geometrical-Topological](https://doi.org/10.1039/D0QI00577K) Analysis of Li-Ion Conductivity in Complex [Hydrides.](https://doi.org/10.1039/D0QI00577K) *Inorg. Chem. Front.* 2020, *7* (17), 3115−3125.

(29) de Kort, L. M.; Harmel, J.; de Jongh, P. E.; Ngene, P. [The](https://doi.org/10.1039/D0TA07600G) Effect of [Nanoscaffold](https://doi.org/10.1039/D0TA07600G) Porosity and Surface Chemistry on the Li-Ion Conductivity of [LiBH4-LiNH2/Metal](https://doi.org/10.1039/D0TA07600G) Oxide Nanocomposites. *J. Mater. Chem. A* 2020, *8* (39), 20687−20697.

(30) Espinoza, E. M.; Clark, J. A.; Soliman, J.; Derr, J. B.; Morales, M.; Vullev, V. I. Practical Aspects of Cyclic [Voltammetry:](https://doi.org/10.1149/2.0241905jes) How to Estimate Reduction Potentials When [Irreversibility](https://doi.org/10.1149/2.0241905jes) Prevails. *J. Electrochem. Soc.* 2019, *166* (5), H3175−H3187.

(31) Armstrong, R. D.; Landles, K. [Electrochemical](https://doi.org/10.1007/BF00610986) Behaviour of Lithium Iodide [Monohydrate.](https://doi.org/10.1007/BF00610986) *J. Appl. Electrochem.* 1981, *11* (2), 247−251.

(32) Sveinbjörnsson, D.; Christiansen, A. S.; Viskinde, R.; Norby, P.; Vegge, T. The $LiBH_4$ -LiI Solid Solution as an [Electrolyte](https://doi.org/10.1149/2.1061409jes) in an All-[Solid-State](https://doi.org/10.1149/2.1061409jes) Battery. *J. Electrochem. Soc.* 2014, *161* (9), A1432−A1439.

(33) Brighi, M.; Murgia, F.; Č erny, ́ R. [Closo-Hydroborate](https://doi.org/10.1016/j.xcrp.2020.100217) Sodium Salts as an Emerging Class of [Room-Temperature](https://doi.org/10.1016/j.xcrp.2020.100217) Solid Electrolytes. *Cell Reports Phys. Sci.* 2020, *1*, 100217.

(34) Sakamoto, J. More [Pressure](https://doi.org/10.1038/s41560-019-0478-z) Needed. *Nat. Energy* 2019, *4* (10), 827−828.

(35) Wang, M. J.; Choudhury, R.; Sakamoto, J. [Characterizing](https://doi.org/10.1016/j.joule.2019.06.017) the [Li-Solid-Electrolyte](https://doi.org/10.1016/j.joule.2019.06.017) Interface Dynamics as a Function of Stack [Pressure](https://doi.org/10.1016/j.joule.2019.06.017) and Current Density. *Joule* 2019, *3* (9), 2165−2178.

(36) Lu, Z.; Ciucci, F. Metal [Borohydrides](https://doi.org/10.1021/acs.chemmater.7b03284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A [First-Principles](https://doi.org/10.1021/acs.chemmater.7b03284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Study. *Chem. Mater.* 2017, *29* (21), 9308−9319.

(37) Deng, Z.; Wang, Z.; Chu, I.-H.; Luo, J.; Ong, S. P. [Elastic](https://doi.org/10.1149/2.0061602jes) Properties of Alkali Superionic Conductor [Electrolytes](https://doi.org/10.1149/2.0061602jes) from First Principles [Calculations.](https://doi.org/10.1149/2.0061602jes) *J. Electrochem. Soc.* 2016, *163* (2), A67−A74.

(38) Duchêne, L.; Remhof, A.; Hagemann, H.; Battaglia, C. [Status](https://doi.org/10.1016/j.ensm.2019.08.032) and Prospects of Hydroborate Electrolytes for [All-Solid-State](https://doi.org/10.1016/j.ensm.2019.08.032) [Batteries.](https://doi.org/10.1016/j.ensm.2019.08.032) *Energy Storage Mater.* 2020, *25* (May), 782.

(39) Monroe, C.; Newman, J. The Impact of Elastic [Deformation](https://doi.org/10.1149/1.1850854) on Deposition Kinetics at [Lithium/Polymer](https://doi.org/10.1149/1.1850854) Interfaces. *J. Electrochem. Soc.* 2005, *152* (2), A396.

(40) Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. [Elastic](https://doi.org/10.1021/acs.chemmater.5b03854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of the Solid Electrolyte $Li₇La₃Zr₂O₁₂$ (LLZO). *Chem. Mater.* 2016, *28* (1), 197−206.

(41) Pabst, W.; Gregorová, E. Elastic Properties of Silica Polymorphs-a Review. *Ceram. - Silikaty* 2013, *57* (3), 167−184.

(42) An, L.; Zhang, D.; Zhang, L.; Feng, G. Effect of [Nanoparticle](https://doi.org/10.1039/C9NR01082C) Size on the Mechanical Properties of [Nanoparticle](https://doi.org/10.1039/C9NR01082C) Assemblies. *Nanoscale* 2019, *11* (19), 9563−9573.

(43) Xue, Z.; He, D.; Xie, X. [Poly\(Ethylene](https://doi.org/10.1039/C5TA03471J) Oxide)-Based Electrolytes for [Lithium-Ion](https://doi.org/10.1039/C5TA03471J) Batteries. *J. Mater. Chem. A* 2015, *3* (38), 19218−19253.

(44) Shang, S. W.; Williams, J. W.; Söderholm, K.-J. M. [Work](https://doi.org/10.1007/BF00361512) of Adhesion Influence on the [Rheological](https://doi.org/10.1007/BF00361512) Properties of Silica Filled Polymer [Composites.](https://doi.org/10.1007/BF00361512) *J. Mater. Sci.* 1995, *30* (17), 4323−4334.

(45) Tao, J.; Wang, D.; Yang, Y.; Li, J.; Huang, Z.; Mathur, S.; Hong, Z.; Lin, Y. Swallowing Lithium Dendrites in [All-Solid-State](https://doi.org/10.1002/advs.202103786) Battery by Lithiation with Silicon [Nanoparticles.](https://doi.org/10.1002/advs.202103786) *Adv. Sci.* 2022, *9* (4), 2103786. (46) Dahn, J.; Haering, R. R. Lithium [Intercalation](https://doi.org/10.1016/0025-5408(79)90002-3) in TiS2. *Mater. Res. Bull.* 1979, *14* (10), 1259−1262.

(47) Dahn, J. R.; McKinnon, W. R.; Haering, R. R.; Buyers, W. J. L.; Powell, B. M. Structure [Determination](https://doi.org/10.1139/p80-033) of Li x TiS 2 by Neutron [Diffraction.](https://doi.org/10.1139/p80-033) *Can. J. Phys.* 1980, *58* (2), 207−213.

(48) Dahn, J. R.; Haering, R. R. [Anomalous](https://doi.org/10.1016/0038-1098(81)90750-X) Bragg Peak Widths in [LixTiS2.](https://doi.org/10.1016/0038-1098(81)90750-X) *Solid State Commun.* 1981, *40* (3), 245−248.

(49) Duchêne, L.; Kim, D. H.; Song, Y. B.; Jun, S.; Moury, R.; Remhof, A.; Hagemann, H.; Jung, Y. S.; Battaglia, C. [Crystallization](https://doi.org/10.1016/j.ensm.2019.11.027) of [Closo-Borate](https://doi.org/10.1016/j.ensm.2019.11.027) Electrolytes from Solution Enabling Infiltration into Slurry-Casted Porous Electrodes for [All-Solid-State](https://doi.org/10.1016/j.ensm.2019.11.027) Batteries. *Energy Storage Mater.* 2020, *26*, 543−549.

(50) Unemoto, A.; Ikeshoji, T.; Yasaku, S.; Matsuo, M.; Stavila, V.; Udovic, T. J.; Orimo, S. I. Stable Interface [Formation](https://doi.org/10.1021/acs.chemmater.5b02110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) between T_iS_2 and LiBH₄ in Bulk-Type [All-Solid-State](https://doi.org/10.1021/acs.chemmater.5b02110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Lithium Batteries. *Chem. Mater.* 2015, *27* (15), 5407−5416.

(51) Das, S.; Ngene, P.; Norby, P.; Vegge, T.; de Jongh, P. E.; Blanchard, D. All-Solid-State [Lithium-Sulfur](https://doi.org/10.1149/2.0771609jes) Battery Based on a [Nanoconfined](https://doi.org/10.1149/2.0771609jes) LiBH4 Electrolyte. *J. Electrochem. Soc.* 2016, *163* (9), A2029−A2034.

(52) Kim, S.; Oguchi, H.; Toyama, N.; Sato, T.; Takagi, S.; Otomo, T.; Arunkumar, D.; Kuwata, N.; Kawamura, J.; Orimo, S. A [Complex](https://doi.org/10.1038/s41467-019-09061-9) Hydride Lithium Superionic Conductor for [High-Energy-Density](https://doi.org/10.1038/s41467-019-09061-9) All-[Solid-State](https://doi.org/10.1038/s41467-019-09061-9) Lithium Metal Batteries. *Nat. Commun.* 2019, *10* (1), 1081.

(53) Latroche, M.; Blanchard, D.; Cuevas, F.; El Kharbachi, A.; Hauback, B. C.; Jensen, T. R.; de Jongh, P. E.; Kim, S.; Nazer, N. S.; Ngene, P.; et al. Full-Cell [Hydride-Based](https://doi.org/10.1016/j.ijhydene.2018.12.200) Solid-State Li Batteries for Energy [Storage.](https://doi.org/10.1016/j.ijhydene.2018.12.200) *Int. J. Hydrogen Energy* 2019, *44* (15), 7875−7887.

Recommended by ACS

[Preparation](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [and](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Improvement](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [of](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Electrochemical](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Performance](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [of](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [LiNi](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[0](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[5](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[Mn](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[1](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[5](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[O](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[4](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Cathode](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Materials](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [In](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Situ](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Coated](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [with](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [AlPO](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[4](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04080?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**

Xiaolong Bi, Jianan Liu, et al. JANUARY 26, 2023 ENERGY & FUELS READ

[Reaction](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Current](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Heterogeneity](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [at](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [the](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Interface](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [between](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [a](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Lithium](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Electrode](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [and](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Polymer](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[/](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[Ceramic](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Composite](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Electrolytes](http://pubs.acs.org/doi/10.1021/acsaem.2c03059?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**

Pallab Barai, Venkat Srinivasan, et al. FFBRUARY 13, 2023 ACS APPLIED ENERGY MATERIALS

[High](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[-](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[Voltage](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Layered](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [NaNi](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[0](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[5](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[Co](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[0](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[1](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[Ti](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[0](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[3](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[Sb](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[0](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[.](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[1](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[O](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[2](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Cathode](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [for](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Sodium](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[-](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[Ion](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Batteries](http://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04096?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**

Sudheer Kumar Gogula, Annigere S. Prakash, et al. FEBRUARY 20, 2023

ENERGY & FUELS **READ**

[Molten](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Sodium](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Penetration](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [in](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [NaSICON](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [Electrolytes](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [at](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [0](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)[.](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[1](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [A](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) [cm](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[–](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**[2](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902)**

Ryan Hill, Yang-Tse Cheng, et al. FEBRUARY 13, 2023 ACS APPLIED ENERGY MATERIALS **[READ](http://pubs.acs.org/doi/10.1021/acsaem.2c03944?utm_campaign=RRCC_jpccck&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678511781&referrer_DOI=10.1021%2Facs.jpcc.2c08902) LARGE SERVICES**

[Get More Suggestions >](https://preferences.acs.org/ai_alert?follow=1)