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ABSTRACT

Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result
depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric
accuracy as they are not affected by atmospheric scintillation.
Aims. Using ESA’s CHEOPS space telescope, we observed a stellar occultation by the transneptunian object (50000) Quaoar. We compare the
obtained chord with previous occultations by this object and determine its astrometry with sub-milliarcsecond precision. Also, we determine upper
limits to the presence of a global methane atmosphere on the occulting body.
Methods. We predicted and observed a stellar occultation by Quaoar using the CHEOPS space telescope. We measured the occultation light
curve from this dataset and determined the dis- and reappearance of the star behind the occulting body. Furthermore, a ground-based telescope in
Australia was used to constrain Quaoar’s limb. Combined with results from previous works, these measurements allowed us to obtain a precise
position of Quaoar at the occultation time.
Results. We present the results obtained from the first stellar occultation by a transneptunian object (TNO) using a space telescope orbiting Earth;
it was the occultation by Quaoar observed on 2020 June 11. We used the CHEOPS light curve to obtain a surface pressure upper limit of 85 nbar
for the detection of a global methane atmosphere. Also, combining this observation with a ground-based observation, we fitted Quaoar’s limb to
determine its astrometric position with an uncertainty below 1.0 mas.
Conclusions. This observation is the first of its kind, and it shall be considered as a proof of concept of stellar occultation observations of
transneptunian objects with space telescopes orbiting Earth. Moreover, it shows significant prospects for the James Webb Space Telescope.

Key words. Methods: observational – Techniques: photometry – Occultations – Minor planets, asteroids: individual: Quaoar

1. Introduction

Stellar occultations happen when a body passes in front of a star
as viewed by an observer. The detection of these events allow the
determination of 2D apparent sizes and shapes with kilometre
uncertainties (Sicardy et al. 2011). Also, with these events, we
can probe the vicinity of the occulting object in search for ma-
terial, such as rings (Braga-Ribas et al. 2014; Ortiz et al. 2017),
and even detect, characterise, or determine limits to atmospheres
(Marques Oliveira et al. 2022; Meza et al. 2019; Arimatsu et al.
2019; Ortiz et al. 2012). From an astrometric point of view, these
events can provide highly accurate positions of the occulting

? This article uses data from CHEOPS programme CH_PR100021.

object, with uncertainties of the order of a few milliarcseconds
(mas, Rommel et al. 2020).

This Letter details the analysis of the stellar occultation by
the large transneptunian object (TNO; 50000) Quaoar on 2020
June 11. Quaoar belongs to the dynamical class of Cubewanos.
It has a semi-major axis of 43.51 au, an orbital eccentricity of
0.035, and an inclination of 7.98 degrees. Quaoar was discov-
ered in 2002 by Brown & Trujillo (2004). These authors esti-
mated Quaoar’s diameter to be about 1260 ± 190 km based on
Hubble Space Telescope (HST) images. From previous stellar
occultations, Braga-Ribas et al. (2013) obtained an area equiva-
lent diameter of 1110 ± 5.0 km under the assumption that Quaoar
is a Maclaurin spheroid. Also, thermal models based on Herschel
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data obtained an area equivalent diameter of 1074 ± 38 km (For-
nasier et al. 2013).

In 2007, a small moon orbiting Quaoar was discovered
(Brown & Suer 2007), and was later named Weywot. This satel-
lite orbits Quaoar with a semi-major axis of 1.45 × 104 km and
a period of 12.047 days. From its orbital motion, the mass of
Quaoar was estimated as 1.65 × 1021 kg (Fraser & Brown 2010;
Fraser et al. 2013; Vachier et al. 2012).

The occultation reported in the present Letter was observ-
able from Australia and was detected by ESA’s CHaracterising
ExOPlanet Satellite (CHEOPS, Benz et al. 2020) space tele-
scope1. CHEOPS is a mission dedicated to studying exoplanets
using the transit technique. This satellite was launched in De-
cember 2019, and is in a Sun-synchronous orbit, about 700 km
above Earth. It has a 32 cm diameter Ritchey-Chrétien telescope
(f/8) with a single, frame-transfer, back-illuminated CCD detec-
tor in its focal plane. Its focal plane is defocussed to deliver a
large point spread function (PSF), where 90% of the stellar flux
spreads within a radial aperture of 16 pixels. The CCD detector
has 1024 × 1024 pixels and a pixel pitch of 13 µm. There is no
filter in the optical path, resulting in a bandpass between 0.33 and
1.10 microns. This system was designed to deliver photometric
measurements with high accuracy.

For the first time, we predicted and detected a stellar occul-
tation by a TNO as observed by a space telescope orbiting Earth.
This achievement was made possible thanks to the collabora-
tive effort of the European Research Council (ERC) Lucky Star
project2 and the ESA CHEOPS mission. Through this observa-
tion we are able to probe the object’s vicinity, avoiding interfer-
ence from Earth’s atmosphere, detect a limit of a methane atmo-
sphere around Quaoar, and determine the astrometric position of
this large TNO with an uncertainty at the sub-mas level (less than
5 km at Quaoar’s distance).

Section 2 contains details about the prediction and observa-
tion of the occultation event. In Section 3, we describe the analy-
sis of the images, determination of the light curve, and fitting the
immersion (disappearance) and emersion (reappearance) times.
Section 4 details the geometric reconstruction of the event and a
determination of Quaoar’s astrometric position. Finally, our dis-
cussion and final remarks can be found in Section 5.

2. Prediction and observation

The event presented here was predicted in the framework of the
ERC Lucky Star project. It uses the star’s position available in
the Gaia catalogue (Gaia Collaboration et al. 2016b,a, 2018).
Quaoar’s ephemeris was pinned down to the 5 mas accuracy
level (∼150 km at Quaoar’s distance), using the Numerical In-
tegration of the Motion of an Asteroid (nima, Desmars et al.
2015) integrator fed by observations in the Minor Planet Center3

(MPC) database and astrometrical positions derived from previ-
ous stellar occultations (Braga-Ribas et al. 2019, 2013).

Table 1 contains some general information about the June
2020 occultation, such as the Gaia Source ID of the occulted
star, its G magnitude, and its position at the occultation epoch
considering the robust propagation as suggested by Butkevich &
Lindegren (2014), also considering the correct proper motion as
discussed by Cantat-Gaudin & Brandt (2021). In this table we

1 Webpage: http://www.esa.int/Science_Exploration/
Space_Science/Cheops
2 Webpage: https://lesia.obspm.fr/lucky-star/index.php
3 Webpage: https://www.minorplanetcenter.net/iau/mpc.
html

also added information about the occulting object, such as its
positions in the occultation instant and visual magnitude.

Table 1. Information about the occultation by Quaoar on 2020 June 11.

Parameter Value
GAIA EDR3 Source 4146202445050212352
Star’s Mag G 12.667 ± 0.003
Star’s RA 18 15 03.055795 ± 0.09 mas
Star’s Dec -15 15 04.94607 ± 0.06 mas
Star’s diameter 0.03 mas / 0.97 km
Occ. date and time 2020-06-11 16:27:25.5 UTC
Quaoar’s RA(a) 18 15 03.0717 ± 7 mas
Quaoar’s Dec(a) -15 15 04.941 ± 3 mas
Quaoar’s distance(a) 41.840957 au
Quaoar’s Mag V ∼18.9
Shadow’s velocity -23.98 km/s

a The used Quaoar ephemeris was the nima_v14 available
at the ERC Lucky Star Webpage.

Figure 1 shows the prediction map for the occultation event.
The red line on the right side of the map shows the position
of CHEOPS from 16:22 to 16:33 UTC, and the green segment
shows when and where CHEOPS observed the occultation (pos-
itive chord). The red dot represents the position of the ground-
based observer J. Broughton, in Mount Carbine, Australia (144◦
52′ 29.4′′ E, 16◦ 27′ 58.7′′ S), who observed the star under a
clear sky with a 25-cm telescope, but did not see the expected
occultation, thus it is a negative chord.

The restituted CHEOPS ephemeris that was used contains
its state vectors (X, Y , Z, Ẋ, Ẏ , and Ż) relative to the geocentre,
with axes in the ICRS, between 2020 June 11 06:51 UTC and
2020 June 12 23:56 UTC. The observation was done between
15:47:55.069 and 16:46:05.024 UTC with an exposure time of
3.0 seconds and a mean cycle of 3.024 seconds. It resulted in
1148 frames where the target star and the TNO were measured
in the same aperture. CHEOPS ephemeris and the observed data
are available in its archive4.

3. Light curve analysis and times

CHEOPS was designed for exoplanet transit events, and the typ-
ical time resolution is 30 – 60s, and a 200-pixel diameter sub-
image was downloaded for the photometry. However, to avoid
saturation for brighter stars, shorter exposure times can be cho-
sen, and the images were stacked on board before being down-
loaded. In addition, smaller images – called imagettes – with
a size of only 50 pixels in diameter, are provided for each ex-
posure. Because of the (deliberately) de-focussed image, this is
just enough to allow for photometry to enable high time reso-
lution photometry. In the present case, the time resolution is 3s,
and the reduction steps are the following: bias subtraction, flat-
fielding, non-linearity correction, pointing jitter calculation, and
photometry.

First, the bias was determined from the overscan data pro-
vided with each sub-image. The bias is stable, and no uncertainty
was introduced by interpolation to the 14 times more frequent
imagettes. Then, we applied flat-fielding, which depends on the

4 Webpage: https://cheops-archive.astro.unige.ch/
archive_browser/
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Fig. 1. Prediction map of the Quaoar event on 2020 June 11, the black arrow on the lower left corner shows the direction of the shadow’s
movement. The blue lines stand for the shadow limits, and the black dots are the centre of the shadow, separated by one minute, with the biggest
one representing the geocentric closest approach time. The red dot on the map represents the position of the ground-based observer who participated
in this campaign. The red line on the right side of the map shows the projected position of CHEOPS from 16:22 to 16:33 UTC, two consecutive red
dots are separated by one minute in time, and the red arrow emphasises the direction of motion. The green line shows when and where CHEOPS
obtained the positive chord.

wavelength due to CHEOPS’s broad spectral response. There-
fore, the applied flat field was weighted to match the spectral
energy distribution of the star (in the present case, the effective
temperature was 5040 K).

The needed non-linearity correction is a minor correction
based on pre-launch measurements (Deline 2019; Deline et al.
2020; Futyan et al. 2020). For the background subtraction, we
need to consider that the imagettes are too small to determine
the background (basically the zodiacal light, but also the PSF
wings of field stars). For this reason, sub-images were used for
background calculation, and the background for each imagette
was interpolated. The pointing jitter was evaluated by tracking
the position of one of the three bright peaks in the PSF. The jitter
amplitude was typically less than ± 0.5 pixels.

Finally, the photometry was done considering that the Field
of View (FoV) around the target star is crowded. So, to minimise
the contamination from field stars, we used an aperture mim-
icking the PSF of the star rather than using a standard circular
aperture. The total number of pixels in this mask was 852.

Observations made on ground by J. Broughton’s were anal-
ysed using the Platform for Reduction of Astronomical Images
Automatically (PRAIA, Assafin et al. 2011). The occulted star
was measured with a circular aperture and nearby stars were used
as photometric calibrators to correct for sky fluctuations.

After normalising the light curve, we obtained the immer-
sion and emersion times using Stellar Occultation Reduction and

Analysis (sora, Gomes-Júnior et al. 2022)5. This software fits
an occultation model that considers a sharp-edge box model con-
volved with Fresnel diffraction, the stellar diameter (projected
at the body’s distance), CCD bandwidth, and finite integration
time. The light curves and the fitted models are available in CDS.

Figure 2 contains the normalised light curves and the fit-
ted models. The obtained immersion and emersion times were
16:27:08.199 ± 0.020 and 16:27:43.556 ± 0.020, resulting in
a chord duration of 35.357 ± 0.040 seconds. The minimum χ2

per degree of freedom obtained was 0.945. CHEOPS light curve
standard deviation outside the event was 0.76%. Usually, only
space telescopes can acquire such high photometric precision.
Broughton’s negative observation was separated into two blocks.
The first was obtained between 16:29:36.64 and 16:32:02.08
UTC, and the second between 16:32:16.77 and 16:33:02.05
UTC, both with exposures of 0.16 seconds. Broughton’s light
curve has a standard deviation of 14.74%. A fairer comparison
can be made if we stack Broughton’s light curve to have a sim-
ilar exposure time as CHEOPS’ light curve (e.g. 3 seconds); for
that, we stacked 19 data points (19 × 0.16 s = 3.04 s) and
achieved a standard deviation of 4.2%.

The photometric accuracy obtained with CHEOPS for the
occultation presented here makes this light curve an interesting
case study in searching for an atmosphere around Quaoar. We
determined an upper limit of a pure methane (CH4) atmosphere
using the ray-tracing method (Dias-Oliveira et al. 2015), the ob-

5 Webpage: https://sora.readthedocs.io/
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Fig. 2. Normalised light curves on 2020 June 11 during the Quaoar’s
stellar occultation relative to the closest approach (CA) time for each
observer. The upper panel contains the CHEOPS light curve (black dots)
and the fitted model (red line), and the middle panel contains CHEOPS
residuals, in the sense of the observed flux minus the model. The bottom
panel contains Broughton’s negative light curve, where the grey line
stands for the single images, and the black line stands for the stack of
19 images, resulting in a better signal-to-noise ratio.

tained upper limit was 85 nbar. This large value is caused by the
large exposure time (3 seconds) and the fact that all the disap-
pearance and reappearance information happen during a single
data point. Simulations where the star disappearance happens
in the limit between two data points shows that we would have
a detection limit of about 3 nbar in that scenario. The detailed
analysis can be found in Appendix A.

4. Geometric reconstruction of the event

The instants of disappearance and reappearance of the star be-
hind the occulting body are the moments where the line-of-sight
observer star matches the projected limb of the body. Therefore,
the relative position between star and body at these moments
gives the bi-dimensional position ( f , g) of the limb relative to
the body’s centre in a plane perpendicular to the line of sight, the
tangent plane. This projection was made with the sora package,
and it results in a chord’s size of 871.61 ± 0.99 km.

The obtained chord is compatible with the area equivalent di-
ameter obtained by stellar occultations (1110 km, Braga-Ribas
et al. 2013) and with the diameter derived from thermal data

(1074 km, Fornasier et al. 2013). Each chord extremity is a point
at which we can fit the apparent shape of the occulting object.
As only one chord was recorded, we fitted the centre of the fig-
ure ( f0, g0), allowing the shape to vary within the Maclaurin
spheroid solution proposed by Braga-Ribas et al. (2013), with
an equatorial radius of 581+12

−8 km, apparent oblateness varying
between 0 and 0.114, and a pole position angle between 0 and
180 degrees. This fit was done using sora, with a method that
is fully described in Gomes-Júnior et al. (2022). The negative
chord was used to eliminate solutions that would result in a pos-
itive detection of the occultation by J. Broughton.

Figure 3 shows the best-fitted ellipses and their respective 1σ
region as representatives of Quaoar’s limb. Two solutions can be
obtained, one with the centre north of the chord (at f0 = −252
km and g0 = −716 km, in red), and the second with the cen-
tre to the south (at f0 = −48 km and g0 = +81 km, in black).
As can be seen in Table 1, the nima software obtained an uncer-
tainty of ∼212 km in RA and ∼90 km in December for Quaoar
ephemeris. Moreover, it is unlikely that the north solution is the
correct one as it is not consistent with the knowledge we have
about Quaoar’s orbit. Finally, we can shift the reference frame
to the geocentre and determine Quaoar’s astrometric geocentric
position on 2020 June 11 at 16:27:25.500 UTC as

RA = 18h 15′ 03′′.0715863 ± 0.864 mas,
DEC = −15◦ 15′ 04′′.937760 ± 0.729 mas.

This position can be used to improve Quaoar’s ephemeris, which
in turn helps us to predict future, accurate stellar occultations for
this object.

As this was a single chord event, no further constraint on
Quaoar’s shape was obtained. However, the resulting pole posi-
tion angle for Quaoar was restrained to values between 14.2 ±
39.8 degrees due to J. Broughton’s negative chord. This orien-
tation is in agreement with Weywot’s orbital pole position for
the occultation date of −5.2 degrees, using the pole orientation
published by Vachier et al. (2012).

5. Discussion

Stellar occultations are transient events that allow us to obtain
physical parameters of the bodies in our Solar System. Net-
works of ground-based telescopes have been used to observe
such events and derive many relevant results. Stellar occultations
have also been observed by spacecrafts, such as the Cassini mis-
sion (Li et al. 2014). However, these were mostly in loco ob-
servations with events involving the objects the spacecrafts were
visiting.

From space telescopes orbiting Earth, HST observed a stel-
lar occultation by Saturn and its rings in 1991, as shown in Elliot
et al. (1993). Furthermore, analysing HST Fine Guidance Sen-
sors, two serendipitous occultations by small Oort cloud objects
were reported by Schlichting et al. (2009) and Schlichting et al.
(2012).

For the first time, we report on the detection of a stellar oc-
cultation by a minor body as the primary target of the obser-
vation of a space telescope orbiting Earth. We obtained a non-
diametrical chord of 871.61 ± 0.99 km for the TNO Quaoar,
consistent with its previously published size. As a result, we de-
tected limits of a global methane atmosphere around Quaoar. Fi-
nally, we obtained an astrometric position with an uncertainty
better than 1 mas.

Article number, page 4 of 9
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Fig. 3. Best fitted limb to the CHEOPS chord (in blue) and ellipses
within their respective 1-σ region. Two solutions can be obtained, one
with the centre north of the chord (in red), and another to the south (in
black). The black line stands for the preferred resulted central position
of Quaoar ( f0, g0) considering the centre to the south of the chord. The
red line is the unlikely northern solution. The solution in black is the
preferred solution as it agrees more with the expected orbit of Quaoar
based on the nima ephemeris and its uncertainty (yellow dashed region).
The green dashed line corresponds to the negative observation used to
eliminate some of the solutions that cross it (light grey ellipses).

It is important to highlight that more ground-based stations
could observe this occultation. Combining space- and ground-
based observation can provide more constraints for the limb fit-
ting and improve the result. Also, ground-based observations
will detect chords that are usually parallel to each other, while
the orientation of a space telescope will differ, which can be use-
ful in the limb fitting as shown in Figure 3. Finally, functions
in the sora package can be used to prepare automatic predic-
tion pipelines based on the ephemeris of the space telescope and
occulting objects, as presented in Appendix B.

The space observation of the Quaoar occultation presented in
this paper is the first of its kind, and it serves as a proof of con-
cept for future campaigns. Space telescopes and CubeSat tele-
scopes can be used in conjunction with ground-based stations
to detect stellar occultations. Space telescopes are not affected
by weather and they extend the range of the Earth where an oc-
cultation can be observed. They can also help overcome the cir-
cumstances where the shadow would mostly cross the ocean and
limited ground-based observations can be made, thus increasing
the number of events observed. It is important to highlight that
CHEOPS’s diameter is modest, but it allows for a photometric
accuracy equivalent to what ground-based telescopes with much
larger apertures would obtain.

Moreover, as discussed by Santos-Sanz et al. (2016), the
prospect for the James Webb Space Telescope (JWST6) is im-
pressive. JWST’s large primary mirror (6.5 metres in diameter)
with a temporal sampling of 20 frames per second will allow for
the precise characterisation of material around the small bod-
ies in our Solar System using stellar occultations, which would
include detecting faint rings and thin atmospheres within the oc-
culting bodies.
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Appendix A: Quaoar’s atmospheric limit based on
CHEOPS data

Using CHEOPS data for the 11 June 2020 occultation, we de-
termined an upper limit of Quaoar’s atmosphere. The model as-
sumed was a pure methane (CH4) atmosphere with a tempera-
ture gradient at the surface of (dT/dz)surface = 5.7 K km−1,
and an isothermal upper branch at 102 K which is reached in
about 10 km, see Figure A.1. The tested model is consistent
with the ones used in Braga-Ribas et al. (2013) and Arimatsu
et al. (2019). Quaoar was considered to be a sphere with a radius
of 555 km; any departure from that should be negligible at this
level of estimation.

Fig. A.1. Assumed temperature profile in Kelvin over radial distance in
kilometres of a pure methane (CH4) atmosphere.

A ray-tracing method (See Dias-Oliveira et al. (2015) and
references therein) was used to compute synthetic light curves
convoluted with the instrumental response (exposure time of 3
seconds). We varied the surface pressure (Psur f ace, in nbar) and
the closest approach (CA, in kilometres) between the star’s and
Quaoar’s central position, and we performed Chi-squared (χ2)
statistical tests to check the detection limit of a potential methane
atmosphere.

Fig. A.2. Chi-squared per degree of freedom (χ2
pd f ) map vs. surface

pressure and CA distance. The inner dashed (resp. outer solid) green
level curve is the 1σ (resp. 3σ) domain.

This analysis resulted in a surface pressure between 15 and
85 nbars for the 1σ confidence level, and values between 0 and
95 nbars for 3σ. So no significant value was obtained and only
the 85 nbar as an upper limit should be considered. Nonetheless,
this limit is larger than the upper limits determined by Braga-
Ribas et al. (2013) of 20 nbar, and by Arimatsu et al. (2019) of 6
nbar. This is caused by the large exposure time (3 seconds, about
75 km in radial distance in the sky plane) and the fact that all
the disappearance and reappearance information occurred within
one exposure, so the various models (with different pressure) are
all contained in that exposure. That makes the discrimination be-
tween pressures ineffective.

As a test, we simulated data where the star disappearance
and reappearance happens just at the limit between two expo-
sures (the best case). This simulation resulted in an upper limit
of only 3 nbar, assuming the same model. Is important to high-
light that a smaller spatial resolution (e.g. smaller temporal res-
olution, smaller event velocity, or grazing occultations) would
imply an even better result due to the photometric accuracy.

Appendix B: Prediction of stellar occultations for
CHEOPS

With the success achieved in observing the stellar occultation by
Quaoar, we predicted events to be observed by CHEOPS in the
next months. We were granted time to observe five stellar occul-
tations by objects in the outer Solar System. That was done in
the context of the third Announcement of Opportunity. The oc-
cultation prediction maps are shown in Figure B.1-B.5. The path
of CHEOPS on space is given as the circle around Earth. Given
the uncertainty as to the exact position of CHEOPS at the occul-
tation epoch, the predictions were made by computing the prob-
ability of CHEOPS to observe the event, considering its orbit is
kept in a polar orbit with a movement just above the terminator
of the Earth, and fixing its orbital velocity. Ground-based cam-
paigns are being organised, and observations are planned to be
made from Earth to complement CHEOPS’ observation.

Fig. B.1. Prediction map of a stellar occultation by Triton on 2022 Oc-
tober 06. The path of CHEOPS is shown as the circle just above the
Earth, with an arrow indicating its sense of motion.
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Fig. B.2. Similar to Figure B.1, but for the occultation by Quaoar on
2023 May 10.

Fig. B.3. Similar to Figure B.1, but for the occultation by Quaoar on
2023 May 26.

Fig. B.4. Similar to Figure B.1, but for the occultation by 2002 MS4 on
2023 July 03.

Fig. B.5. Similar to Figure B.1, but for the occultation by Quaoar on
2023 September 10.
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