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Abstract—With the increasing amount of digital data available
for analysis and simulation, the class of I/O-intensive HPC
workflows is fated to quickly expand, further exacerbating
the performance gap between computing, memory, and storage
technologies. This paper introduces CAPIO (Cross-Application
Programmable I/O), a middleware capable of injecting I/O
streaming capabilities into file-based workflows, improving the
computation-I/O overlap without the need to change the applica-
tion code. The contribution is twofold: 1) at design time, a new
I/O coordination language allows users to annotate workflow data
dependencies with synchronization semantics; 2) at run time, a
user-space middleware automatically and transparently to the
user turns a workflow batch execution into a streaming execution
according to the semantics expressed in the configuration file.
CAPIO has been tested on synthetic benchmarks simulating
typical workflow I/O patterns and two real-world workflows.
Experiments show that CAPIO reduces the execution time by
10% to 66% for data-intensive workflows that use the file system
as a communication medium.

Index Terms—Workflow, In situ model, I/O coordination

I. INTRODUCTION

A workflow describes a sequence of application steps and
their control/data dependencies. Traditionally, in the HPC
context, data dependencies are usually streamlined by storing
data files in the distributed storage system by producer steps
and afterward read out by consumer steps. However, with the
growing gap between processing and storage system speeds
coupled with the ever-increasing amount of data produced in
scientific applications, sharing files between workflow steps
through the central file system is costly [1], [2].

Burst buffers [3] and user-space ad-hoc file systems [4]
have been proposed as solutions to increase the available I/O
bandwidth and reduce the contention on the shared file system
by leveraging fast local storage. However, workflow steps need
to be executed orderly according to the data dependency graph,
and it could be challenging to exploit pipeline parallelism
among them. Nevertheless, in many scientific simulation anal-
ysis workflows, the core simulation steps producing data might
be co-executed with the data analysis steps for almost real-
time evaluation of results [5]. Unless the analysis steps were
developed to support such coupled execution with the simula-
tion steps through explicit synchronizations, the analysis steps

need to wait for all data results to be produced by simulation
phases into the storage before starting their analysis.

In situ workflows [2], [6], [7] were proposed to mitigate
or avoid the cost of relying on the distributed file system
as communication media and enable temporal parallelism
between steps. Multiple steps are executed concurrently; data
dependencies are accomplished by sidestepping the file system
through explicit coordination mechanisms among workflow
steps (e.g., via message-passing or coordinated files access
through suitable APIs) [8]. The ADIOS [9] framework pro-
vides applications with a general I/O API to switch among
multiple file-based or streaming-based transport backends
without paying the cost of rewriting the application code
for each one. However, it is not always desirable, or even
possible (e.g., because of legacy components in the workflow),
to rewrite or patch existing workflow steps to enable in situ
orchestration by using ADIOS API or equivalent frameworks.
For this reason, we propose CAPIO (Cross-Application Pro-
grammable I/O)1, a new open-source middleware capable of
transparently injecting streaming executions of I/O operations
into traditional or in situ workflows to enable temporal par-
allelism among workflow steps and reduce the contention
on the shared file system through memory-to-memory data
transfer. CAPIO seeks to optimize the I/O used to implement
the communications among distinct application modules in
scientific workflows where the file system is used to allocate
files used as communication buffer among steps. It promotes
portability by supporting the POSIX standard and targeting
all workflows whose I/O backend uses POSIX I/O system
calls (SCs). It also shifts I/O coordination in workflows
toward a declarative approach through a new, I/O-tailored
coordination language based on the JSON syntax. Users can
specify input/output file dependencies of steps and annotate
them with synchronization semantics information to enable
(or improve) pipeline execution between steps. In doing that,
CAPIO avoids changing the existing codebase. It intercepts
POSIX SCs of processes composing the different workflow
steps and bents their execution according to the user-provided

1CAPIO: https://github.com/High-Performance-IO/capio
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semantics information. The aim is to transparently overlap the
execution of I/O phases and computation-I/O phases in file-
based workflow steps.

The paper makes the following contributions:
• We propose a set of commit and firing rules defining file

synchronization semantics in consecutive workflow steps.
• We propose a new JSON-based language to coordinate

I/O operations in traditional and in situ workflows.
• We describe the internals of the CAPIO middleware.
• We demonstrate through a set of benchmarks and two

realistic applications the feasibility of the proposed ap-
proach and its performance benefits.

The paper’s outline is as follows: Sec. II presents the
background and related works. Sec. III discusses CAPIO
I/O optimizations. Sec. IV introduces the CAPIO middleware
with the coordination semantics, the JSON-based language,
and the runtime. Sec. V presents the experimental evaluation
conducted. Sec. VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Workflows

Workflow graphs are widely used to model and execute
complex scientific applications on large-scale distributed archi-
tectures. A workflow specification incorporates two different
classes of semantics [10]: the host semantics, which defines
the subprogram in each workflow step, and the coordination
semantics, which defines the interactions between steps. Tools
in charge of exposing coordination semantics to the users
and orchestrating workflow executions are called Workflow
Management Systems (WMSs) [11].

High-level WMSs express coordination semantics using a
host-independent medium. Some WMSs rely on a Domain
Specific Language (DSL), like the Common Workflow Lan-
guage (CWL) [12], whereas others adopt a general-purpose
programming language (e.g., Pegasus [13]) or a GUI (e.g.,
Jupyter Workflow [14]). This approach is very flexible, as it
does not impose constraints on the host application code and
does not require any modification to the business logic (a job
in a workflow is often seen as a black box from the WMS
viewpoint). However, the fact that the host application cannot
communicate with the coordination layer imposes specific
semantics that we define as on-termination, i.e., produced
tokens are propagated to consumer steps only after the produc-
ers have terminated their execution and thus consolidated all
produced data. The on-termination semantics forces loosely-
coupled execution (i.e., batch) of the directly connected steps.

In scientific workflows, tokens carry data, and in most
implementations, such data are files2 [2].

B. Optimize I/O behavior

In HPC facilities, the contention for the I/O bandwidth of
the shared file system is often the main obstacle to scala-
bility [15]. Consider the two steps pipeline workflow in the

2We will use the metonym tokens to indicate files when they are used to
coordinate successive steps in a workflow.

left-hand side of Fig. 1. Step S produces k files, consumed
as input tokens by the second step Q. The files are stored
on a shared file system providing wB and rB write and read
bandwidths that non-linearly depend on the file size. For the
sake of simplicity, suppose that files are equally sized and
bandwidth is constant. If S writes files of size N and Q
reads files of M bytes, then the makespan TT depends on
the compute time TC = TS

C + TQ
C and the total I/O time

TI/O = TS
I/O + TQ

I/O, such that:

max
(
TC , TI/O

)
≤ TT ≤ TC + TI/O (1)

TI/O is the total time spent producing and consuming the
tokens in the workflow model. It can be described as:

TI/O = k ·
(

N

wB
+

M

rB

)
(2)

According to Eq. (2), two classes of techniques aiming to
mitigate the I/O overhead can be identified in the literature.

The first class of techniques aims to maximize wB and
rB and is used in the so-called in situ workflow model
to overcome the inherent bottleneck arising from file-based
communications. Burst buffers [3] and ad hoc file systems [4]
rely on high-end storage technologies (e.g., SSD or NVMe) or
store intermediate results in memory to increase the available
I/O bandwidth [16]. Plus, they transfer data directly among
the HPC nodes, reducing the bandwidth contention on the
shared file system. On the other hand, parallel I/O interfaces
(e.g., OrangeFS/PVFS [17], MPI-IO [18]) aim to better utilize
the available I/O bandwidth by allowing multiple processes to
read/write different portions of a file in parallel. Libraries such
as HDF5 [19] and ADIOS [9] improve I/O by providing the
application programmer with higher-level storage management
APIs implemented on top of different I/O backends. For ex-
ample, ADIOS enables the selection of I/O backends through
an external XML-based configuration file. Some ad-hoc file
systems, such as GekkoFS [20], embraced relaxed POSIX
semantics to enhance performances [21].

The second class of I/O optimizations aims to minimize the
numerator of Eq. (2). The so-called in-transit data processing
model belongs to this second class [6]. For example, compress-
ing and decompressing data on the fly during I/O can reduce N
and M . Also, data format conversion can help when the data
format consumed by Q differs from that produced by S. Note
that in-transit processing can reduce TI/O but also increase
TC . For example, some I/O libraries (e.g., Damaris [22])
dedicate some of the cores of an HPC worker node to perform
asynchronous I/O operations and processing.

Eventually, a different approach for optimizing I/O in data-
intensive workflows involves enhancing the in situ workflow
model with I/O streaming behavior to overlap I/O and com-
putation between consecutive steps. As we will discuss in
Sec. III, the CAPIO middleware aims to do this without
modifying/patching the application code. To our knowledge,
no other tools adopt this approach using a declarative I/O
coordination model.



Fig. 1: Left: A two steps workflow whose tokens are files. Right: Loosely-coupled batch execution of the S and Q steps
vs. their concurrent execution with CAPIO and the “on-close file commit” file synchronization semantics.

III. I/O OPTIMIZATIONS WITH CAPIO

Let us consider the two-step pipeline in Fig. 1 (left). A
possible technique to shorten TI/O is to overlap the I/O phases
of the two stages.

In the ideal case of full overlap, the Eq. (2) can be rewritten
as follows:

TI/O ≈ max
(
TS
I/O, T

Q
I/O

)
= max

(
kN

wB
,
kM

rB

)
(3)

The challenge is introducing such streaming optimizations
without modifying the business code of the workflow steps
involved, which means reinterpreting the semantics of exist-
ing file access primitives rather than substituting them with
semantically richer I/O calls (e.g., ADIOS).

The CAPIO user-space I/O middleware aims to enable
these optimizations through a) concurrent execution rather
than batch execution of workflow steps for which the I/O
operations have to be optimized; b) by enabling a more relaxed
synchronization semantics for tokens propagation than the
standard on-termination one (cf. Sec II-A). Concurrent execu-
tion of workflow steps enables exploiting temporal parallelism
(i.e., pipelining). Relaxing the I/O synchronization semantics
enables anticipating consumer operations on a given file with-
out introducing side effects on program execution. CAPIO
introduces the so-called ‘on-close file commit’ semantics, i.e.,
the consumers of a file f may start reading its content not
before all producers of data in f have closed the file. This
semantics gives the following information: a) the file is ready
to be read (i.e., the corresponding token is fireable) as soon
as the file is closed by all producers; b) the file is completed
(i.e., committed into the file storage) when it is closed by all
producers. Also, it implicitly states that the producers will not
re-open the file.

The on-close file commit semantics is more relaxed than
the standard on-termination semantics, which requires that all
producer steps terminate before the consumer steps may open
the file and start reading its content, i.e., previous points a)
and b) are both associated to the termination of the producer
steps. Additionally, it enables the temporal overlap of distinct
I/O phases between two consecutive steps, i.e., producers and
consumers work on distinct tokens. For example, if Q in our
example can be executed according to the new semantics, its
open (and read) SCs to the file f can be paused until all

close SCs have been completed at S. Therefore, the writing
of data into the file fi+1 by S can be overlapped (or partially
overlapped) with the reading of data from file fi by Q. CAPIO
can transparently enable this behavior by intercepting POSIX
SCs issued by S and Q and forcing them to execute according
to the user-provided file synchronization semantics. Fig. 1
(right-hand side) exemplifies the traditional executions of S
and Q and their execution with CAPIO and the on-close file
commit semantics.

Notice that the makespan gain of the model described by
Eq. (3) over the one described by Eq. (2) is not only the part
related to I/O phases overlap (i.e., data movement). We should
also consider possible computation and I/O overlap typical of
pipeline computations (as exemplified in Fig. 1). The degree of
CAPIO optimizations, and thus the amount of different phases
overlapping, strongly depends on how relaxed the file commit
semantics in the workflow steps could be. A common case is
when a producer writes chunks of data into a file in append-
only mode (i.e., there is no data update), and the consumer
continuously reads and processes such data chunks. The data
movement granularity between producer and consumer steps
is not the entire file as in the on-close file commit semantics
but it could be as small as the data chunk of a single read
SC. Provided the data chunk is not too small (which would
increase the SC handling overhead), this enables pipeline
parallelism between the producer and consumer steps at chunk
granularity. In this notable case, producers and consumers can
overlap even within a single I/O phase (i.e., the file is accessed
concurrently).

Introducing all mentioned optimizations and thus mov-
ing from a traditional file-based loosely-coupled model to a
streaming model without modifying the application code is
challenging because common I/O APIs (e.g., POSIX, MPI-
IO, HDF5 Async API) do not carry enough information on
the whole I/O phase beyond the single operation. Observing
the execution of producers and consumers while it happens
in sequential order (i.e. the default behavior) is not generally
possible to state that a given coordination relaxation will be
correct. For this CAPIO adopts a different approach. The
user must provide extra-functional information to suggest the
correct coordination relaxation to enable transparent stream-
ing. For this reason, the CAPIO middleware provides the
workflow programmers with an I/O coordination language



to annotate the semantics (coordination relaxation) of data
movement between different workflow steps.

IV. CAPIO MIDDLEWARE

The CAPIO middleware is made of two logical tiers. The
higher tier defines a coordination model allowing the user
to express relaxed token synchronization semantics between
producer-consumer workflow steps via an I/O coordination
language (currently in the JSON format) describing when
a file is fireable (i.e., when its content can be accessed)
and when a file is committed (i.e., when it is completed).
The lower tier implements the CAPIO runtime system, which
comprises a set of per-node user-space servers implementing
the distributed data and metadata storage for the files and
directories and the intercept library. This library should be
dynamically linked (through the LD_PRELOAD environment
variable) to the application steps to intercept file system
POSIX SCs executed on a pre-defined CAPIO directory (i.e.,
the CAPIO local mount point).

In the rest of this section we introduce the token syn-
chronization semantics (Sec. IV-A); we describe how these
semantics can be expressed by the user through the JSON
configuration file (Sec. IV-B), and we describe the CAPIO
runtime (Sec. IV-C).

A. Commit and Firing rules

To define the file synchronization semantics between con-
secutive workflow steps, we should consider two temporal
aspects: a) when there are no more updates to the file; b)
when a consumer can safely start reading (portion of) data
written in the file. We refer to the first as the commit rule and
to the second as the firing rule. From the producer-consumer
paradigm perspective, a file can be seen as a data stream. The
firing rule defines when consumer steps may consume stream
data items produced by producers’ steps. It can be immediately
or later based on some events. Instead, the commit rule defines
when a given data stream terminates, i.e., all consumers have
received the so-called end-of-stream message, which tells them
there will not be more data in input for that specific stream.

The commit rule allows us to define two distinct file
commit behaviors: 1) on-termination and 2) on-close. The on-
termination behavior is used in traditional file-based execution
of workflow steps. When a step terminates, all data files
produced are committed to the file system and ready to be read
by all consumer steps. Instead, the on-close behavior enables
the consumer to start reading a file as soon as I/O operations
from all producers on that specific file are completed. Such
I/O operations completion is notified with the close SC by
each producer. In addition to these two primary file commit
behaviors, we can consider a file committed when another
is committed. This is useful when the number of opens and
closes operations for a given file is not known statically, but
we know that the I/O operations are completed if another file is
committed. These additional commit behavior creates a com-
mit rule dependency among files and widens the opportunities

Fig. 2: Workflow example whose files dependencies between
steps are annotated with the CAPIO commit and firing rules.

to exploit temporal parallelism for I/O operations in distinct
workflow steps.

The commit semantics of producer(s) of a fileX can
defined as follows:

• Commit on-Termination (CoT): the fileX is completed
iff all producers have terminated.

• Commit on-Close (CoC): the fileX is completed iff all
producers have definitely closed the file.

• Commit on-File (CoF): the commit semantics of fileX
depends on the semantics of another file (fileY).

The firing rule states when data are ready to be consumed:
if the commit rule holds for a given file, the file is undoubtedly
ready to be consumed, i.e., the commit rule implies the firing
rule of the entire file. We call this base firing rule Firing on-
Commit (FoC). However, portions of the file (i.e., those parts
already written by the producers) could be immediately ready
to be consumed (i.e., fireable), provided the producers do not
update them. We call this behavior Firing no-Update (FnU),
i.e., the file content is ready to be read as soon as data is
written into the file.

Two scenarios are noteworthy. Firstly, when a consumer
step attempts to open a file (present in the CAPIO config file)
that has yet to be created. The CAPIO runtime will pause the
process executing the open SC, i.e., the open will not return
until the file is created. Secondly, when a consumer step tries
to read a portion of a file that has not been already written. The
behavior is more nuanced because the read SC may return
fewer data elements (or even 0) than what was requested. The
consumer process issuing the read will be paused by CAPIO
until one of the following conditions is met: a) the requested
data is entirely produced, and the read SC returns the total
number of bytes requested; b) all producers close the file (in
the case of commit semantics being CoC) or terminate, thus
the read SC will return the current number of bytes read if
any, or 0 to indicate the end of the file (EOF).

B. The CAPIO coordination language

This section describes how the synchronization semantics
introduced in Sec. IV-A can be expressed through a JSON
configuration file. The JSON keywords and their syntax rules
define the CAPIO coordination language of I/O operations in
workflows.

Fig. 2 shows a simple 3-step workflow (named WF) whose
CAPIO configuration file is reported in Fig. 3. The three



 

 

 1  { "name" : "WF", 

 2     "IO_Graph" : [ 

 3      { "name" : "appA", 

 4        "output_stream": [{ 

 5        "group_name": "group0", "files": ["file_A.dat","file_B.dat"] }], 

 6        "streaming": [   

 7    { "name" : "file_A.dat", "committed":"on_close:3", "mode":"no_update"}, 

 8    { "name" : "file_B.dat", "committed":"file_A.dat", "mode":"update"} ] 

 9      }, 

10     { "name" : "appB", 

11       "output_stream" : ["file_C.dat","dir"], 

12 "streaming" : [ 

13     { "name":"file_C.dat", "committed" : "on_termination", "mode":"update"}, 

14     { "name":"dir", "type":"d", "nfiles":100, 

15        "committed": "on_close", "mode":"no_update" } 

16     { "name" : "dir/file_D.dat", "committed":"on_close", "mode":"update"} ] 

17     }, 

18     { "name" : "appC",   "input_stream" : ["group0", "dir", "file_C.dat"] }, 

19    ],  

20    "permanent" : [ "dir/*", "file_C.dat"], 

21    "home_node" : [ { "files": [ "group0", "file_C.dat" ], "node": "appC" } ]  

22  }  

 

Fig. 3: CAPIO configuration file of the workflow in Fig. 2. It
describes the files’ dependencies and semantics annotations.

workflow steps in the figure produce and consume 3 files
(file_A.dat, file_B.dat, and file_C.dat), and one
directory (dir) containing 100 files. Each I/O token (i.e., file
or directory) is annotated to declare its commit and firing rules
(the symbols close to the token name in Fig. 2).

Fig. 3 shows the syntax to declare the workflow steps, their
token dependencies, and semantics annotations for each token.
The keyword IO_Graph denotes a directed graph whose
nodes are workflow steps, and arcs are data dependencies
(i.e., files and directories tokens). Each application step is
identified by a name. It declares the tokens consumed and
those produced using the keywords input_stream and
output_stream, respectively. The user can also define an
alias for a set of files with the keyword group_name. Then,
the group name can be used elsewhere to refer to all files and
directories. The language also supports Bash-style wildcards
(e.g., file *.???, dir/*).

With the keyword streaming, each token (or a group
of tokens) of the output_stream can be annotated with
the commit rule (keyword committed) and with the firing
rule (keyword mode). For example, at line 13 of Fig. 3, the
token file_C.dat produced in output by the step appB has
on_termination (CoT) as commit rule, and the Firing on-
Commit (FoC) as firing rule (expressed with the keyword value
update). FoC models the default batch behavior in traditional
file-based workflows. It means that the file data can be read by
appC only when step appB has terminated. Conversely, the
token dir (the keyword type tells the CAPIO runtime that
the token is a directory) is annotated with the commit rule
on_close (CoC) and the firing rule Firing no-Update (FnU)
set with the value no_update (line 15), which means that
tokens contained in the directory dir can be read as soon as
the data is produced, and, for each token, the data stream ends
when it is closed by all producers. The semantics behavior of
tokens in a directory can be specialized, providing specific

rules for some of the files in the directory. For example, the
file file_D.dat in the directory dir has a different firing
rule (line 16).

If not differently stated, the default directory commit seman-
tics is on_termination. It means the total number of files
in the directory will be known when all producers terminate.
If the number of files is instead known statically, it can be
provided to the CAPIO runtime through the nfiles keyword
(line 14). This way, for our workflow WF, after 100 files are
produced, CAPIO will notify the consumer step that no more
files will be produced in the directory dir, and the standard
C-style ‘readir-loop’ through all files in a directory executed
by the consumer may terminate.

At line 7, the token file_A.dat is annotated with CoC
and FnU. However, if the file is opened and closed multiple
times, CAPIO must consider the file committed only at the
last close. The number 3 associated with the on_close
keyword (line 7), specifies the number of close SCs CAPIO
has to wait for before considering the file committed.

If there is more than one writer for a given file, the
behavior does not change. However, for the CoC semantics, it
is paramount to set the correct number value in the on_close
keyword equal to the number of writers by the number of
close SCs performed by each writer. Similarly, for the
CoT semantics, it is possible to specify how many writers
must terminate before considering the file committed (e.g.,
on_termination:3). If the number value is not provided,
it means that all producers must terminate.

Line 8 in Fig. 3 shows how to specify the CoF semantics for
the file file_B.dat, whose commit rule is associated to the
one of file_A.dat. Specifically, the file B.dat is considered
committed when the file_A.dat is committed. The firing
rule for the file_B.dat is FoC (keyword no_update).

With the keyword permanent (line 20), the user states
which files must be permanently saved into the storage after
the termination of the workflow steps. All files are considered
temporary if the permanent keyword is not defined.

At line 21, the keyword home_nodes allows the user to
specify the node where a set of files with their metadata will
be stored. The default policy (i.e., when the keyword is not
provided) is to store the file data and metadata in the node
where the file will be created. The home-node concept was
inspired by page-based software Distributed Shared-Memory
implementations [23]. The user may explicitly set the reference
node of each single (or group) of a file(s) by choosing as
home-node the node where a given application step is running.
This is done by setting in the config file the name of the
step. For example, line 21 shows that for the files contained
in the group0 and the file file_C.dat the home-node is
the node where the appC application step will be running. In
this case, we assume that appC is a single-process application.
Differently, with the notation appC:N, we state that the home-
node is the node where the appC’s process with logical id
N will be running. In this way, the user can fully define a
static mapping between files and computing nodes. Another
supported policy is the hash one, in which the reference node



Fig. 4: Left: The CAPIO software layers: the JSON-based configuration file embeds I/O data dependencies and files’
annotations describing commit and firing rules; the CAPIO SCs Intercept Library (SC-IL) coupled with the per-node CAPIO
Server enable in-memory files store by intercepting POSIX I/O SCs. They enforce synchronized access to files. Right: CAPIO
deployment on 2 cluster nodes: AppP executes on both nodes; the local node capio_mnt directory is the CAPIO FS entry
point for SC-IL. The distributed FS is used only to store home-node information of the files.

for a file with a given pathname is dynamically selected among
all the compute nodes where the workflow is running whose
logical id results from the hashing of the pathname through
the std::hash function.

Notice that the CAPIO configuration file could be directly
generated by the WMS describing the entire application work-
flow. This is particularly useful for complex workflows. In
particular, the part related to the I/O data dependencies (i.e.,
the IO-Graph) can be entirely generated starting from the
application description. Conversely, the tokens synchronization
semantics requires adding explicit annotations at the work-
flow description language level, such as, for example, the
streamable keyword used in the CWL standard indicating
that the given file is read or written sequentially without
seeking [24].

C. The CAPIO runtime

CAPIO’s runtime is composed of a set of per-node user-
space servers implementing distributed data storage for a given
workflow. It uses the information in the JSON configuration
file provided as an input argument to enforce data streaming
of file content between workflow steps.

The software architecture of CAPIO is sketched in Fig. 4. It
is implemented in C++ and uses MPI only for server-to-server
communications. For each node, the user specifies a CAPIO
local-node mount point through the CAPIO_DIR environment
variable (i.e., capio_mnt). CAPIO captures all I/O SCs exe-
cuted on files and directories inside the capio_mnt directory.
All SCs targeting files outside the CAPIO local mount point
are forwarded to the kernel. CAPIO implementation supports
both multi-process and multi-threaded applications.

The CAPIO Intercept Library (SC-IL) implemented us-
ing the Linux-x86 64 system call intercepting library
syscall_intercept3 is a shared library dynamically

3syscall intercept: https://github.com/pmem/syscall intercept

linked to the steps of the workflow (through the LD_PRELOAD
dynamic linker environment variable) to capture the I/O SCs
executed on files and directories inside the local-node mount
point. SC-IL communicates with the local CAPIO server
through a concurrent circular buffer stored in a POSIX shared-
memory segment. The CAPIO server identifies workflow’s
application steps by their names to match the semantics
information in the configuration file (i.e., the keyword name
in Fig 3). The name is set at the launch time of the workflow
step by using the environment variable CAPIO_APP_NAME.

For example, to launch the appA step with CAPIO on the
cluster node nX the commands are:

nX> capioServer.sh Config.json
nX> LD_PRELOAD=<libcapio_posix.so> \

CAPIO_DIR="/capio_mnt" CAPIO_APP_NAME="appA" \
appAexe <application arguments>

where capioServer.sh runs the CAPIO server in back-
ground passing the configuration file Config.json.

By default, the file data (and metadata) are stored in the
main memory of the node where the file is created (the
default home node file mapping policy). If the consumer step
is deployed in the same producer node, the communications
go through the shared memory buffer mediated by the local
CAPIO server. Instead, if the consumer steps are deployed in
different cluster nodes, the requested data is transferred by
direct memory-to-memory communications between CAPIO
servers using MPI. However, as described in the previous
section, file data placement can be controlled by setting
the home_nodes keyword in the CAPIO configuration file.
In the current implementation, CAPIO supports two per-
file home-node policies: local home-node (i.e., the node that
creates the file – this is the default policy), single remote
home-node using both a static mapping or a dynamic mapping
through pathname hashing. Let us consider the default policy:
the first process that creates a file in the application workflow
elects the node that runs as the file’s home-node. This informa-

https://github.com/pmem/syscall_intercept


1   { "name" : "benchmarks", 
2      "IO_Graph" : [ 
3        {"name" : "S",   "output_stream": [ { "files": ["file*.dat"] } ], 
4         "streaming": [ { "name" : "file*.dat", "committed":"on_close", "mode":"MODE"}] }, 
5        {"name" : "Q",   "input_stream" : ["file*.dat"] }  
6      ]  
7   } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Left: I/O pattern benchmarks tested with CAPIO. Right: The CAPIO configuration file used for all benchmarks.

tion is shared with all other CAPIO servers by writing a record
in a home-node system DB stored in the distributed file system
(see Fig. 4). Such DB, implemented using standard POSIX
files, is updated/accessed by the CAPIO servers using POSIX
file locking to avoid race conditions, and it is cached in the
main memory of each CAPIO server for performance reasons
since file-to-home-node mappings do not change dynamically.
The same implementation schema is followed for the single
remote home-node with pathname hashing. Conversely, for
the policy single remote home-node with static assignment,
the home-node of a file is statically specified in the CAPIO
configuration file. Thus all CAPIO servers statically know the
mapping and do not access the home-node system database
to know the home-node for those files. The policies that elect
the home-node at runtime are more costly, but they are more
flexible and easier to use for the user that does not need to
set an explicit mapping in the config file. For this reason, in
the experimental section, we will study the performance of the
CAPIO runtime configured with the default policy.

Concerning the files’ metadata information, not all metadata
are kept consistent for each data and metadata access such as
the timestamp fields for performance reasons. Instead, the file
size is always kept consistent in the home-node, thus allowing
CAPIO to deal with sparse files, a technique often used to
write different partitions of a single file in parallel.

V. EVALUATION

Here, first we present some tests measuring the overhead
introduced by the CAPIO intercept library, and then we present
the results obtained using the CAPIO middleware on synthetic
benchmarks simulating typical I/O workflow patterns and
on two scientific workflows. The first synthetic benchmark
(MapReduce) emulates standard in-memory MapReduce com-
putations fed by a large input dataset [25]. The second one
(1000 Genomes [26]) is a DAG-based bioinformatics workflow
computing human gnome mutation overlaps.

A. System Configuration

We performed our experiments deploying the CAPIO mid-
dleware on the GALILEO1004 Tier-1 supercomputer hosted
by CINECA supercomputing center5. Each computing node
we used for the experiments has 2 Intel CascadeLake 8260
CPUs, with 24 cores, each running at 2.4 GHz and equipped
with 384GB RAM. The OS is Centos 8.3.2011, and the Linux

4GALILEO100: https://www.hpc.cineca.it/hardware/galileo100
5CINECA: https://www.cineca.it/en

kernel version is 4.18.0-240. The storage system is based on
Lustre open source parallel files system [27]. Each cluster node
is connected through a switched 100 Gb/s Infiniband intercon-
nect. The scratch directory (mounted on the Lustre file system
under /g100_scratch) is connected to the storage with
a 100Gb/s Infiniband interconnect. In our experiments, when
using the file system, we always used the scratch directory to
store the files and directories. The entire workflow is submitted
as a single SLURM job using a Bash script that spawns the
CAPIO servers (via mpirun) on the reserved nodes and then
starts all workflow steps. The CAPIO servers were configured
to use the default local home-node policy (cf. IV-C). We
executed 10 runs for each test and then computed the average
value and standard deviation.

B. The SC’s intercept overhead

The first tests aim to understand how much overhead the
CAPIO SC intercept library introduces. We used the lmbench
benchmarks [28], a series of micro benchmarks measuring
OS and HW system metrics. In particular, we considered the
lat_syscall benchmark measuring the latency of some
simple SCs.

SCs no
intercept

CAPIO
intercept

open 1.35 1.49
read 0.18 0.23
write 0.13 0.18
stat 0.45 0.52
fstat 0.19 0.24

TABLE I: Execution time (in microseconds) of the
lat_syscall test from lmbech benchmark suite considering
some relevant SCs.

We tested two cases: 1) no LD PRELOAD, that means
no SC intercept; and 2) the CAPIO intercept library by
setting LD_PRELOAD=libcapio_posix.so. The results
obtained by averaging 5 repetitions are reported in Table I.
Overall, the overhead introduced by the CAPIO intercept
library is relatively small.

C. Synthetic Benchmarks

The synthetic benchmarks provide relatively simple sce-
narios highlighting the potential impact of CAPIO optimiza-
tions on real use cases. These benchmarks are designed to
mimic three recurrent I/O patterns in workflows: a) one
producer and one consumer steps (1-to-1); b) one producer

https://www.hpc.cineca.it/hardware/galileo100
https://www.cineca.it/en
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Fig. 6: 1-to-1 benchmark test with 10GB dataset and two different sizes for the read/write buffer ws: large (1MB) in the top
plot; small (1KB) in the bottom plot. Left: S and Q executed on 2 cluster nodes. Right: S and Q executed on 1 node.
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Right: Many-to-1 executed with 100 files of 1GB each (top plot), and 10, 000 files of different size on 5 cluster nodes (bottom
plot – log. scale). For all tests, the buffer size is ws = 1MB.

and many consumers steps (1-to-Many); c) many producers
and one consumer steps (Many-to-1). They are sketched in
Fig. 5 (left-hand side) together with their CAPIO config file
used for all tests (right-hand side). The S and Q steps of
the benchmarks are written in C and use standard POSIX
fopen/fclose/fwrite/fread/feof/lseek library calls
for handling I/O. Besides simple checksum checks for verify-
ing the results’ correctness, S and Q steps perform only I/O
operations. We tested the following cases:

1) FS: file-based execution in which producer and con-
sumer steps are executed in sequence using Lustre.

2) CAPIO-CoC-FoC: CAPIO execution with Commit on-
Close and Firing on-Commit semantics for all files (i.e.,
“MODE”=“update” at line 4 in Fig. 5).

3) CAPIO-CoC-FnU): CAPIO execution with Commit on-
Close and Firing no-Update semantics for all files (i.e.,
“MODE”=“no update” at line 4 in Fig. 5).

For CAPIO executions, first, we started the CAPIO servers on

each allocated node, the consumer step(s), and then the pro-
ducer step(s). The reported time is the workflow’s makespan.

1-to-1: In this benchmark, the producer writes N files each of
size M using a buffer size of ws KB, whereas the consumer
reads all N files using the same ws buffer size. Fig. 6 (left-
hand side) shows the results obtained using 2 cluster nodes
and different values of N , M , and ws. Specifically, we have
the following test cases: 100Files-100MB) N = 100, M =
100MB; 10Files-1GB) N = 10, M = 1GB; 1File-10GB)
N = 1, M = 10GB. For the buffer size, we tested two cases
ws = 1MB (top plot) and ws = 1KB (bottom plot). Overall,
CAPIO-based tests exhibit consistently higher performance for
all tests from 44% to 66%. Another advantage is its lower
variance than FS since it does not depend on the file system
utilization, which is typically high in large-scale production
supercomputers with hundreds of users. Small buffer size (i.e.,
ws = 1KB) in I/O operations results in higher execution
times due to the higher number of SCs and libc internal
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Fig. 9: 1000 Genomes use case. Left: workflow steps for one chromosome. Right: Execution time of the C++-based version
obtained with the standard deployment (file system-based – FS) and with CAPIO on 8, 12, and 20 GALILEO100 nodes.

buffer flush operations. However, CAPIO is less sensitive
to this aspect than the file system. Finally, as expected, the
CAPIO-CoC-FnU synchronization semantics performs better
than CAPIO-CoC-FoC when there are a few large files (e.g.,
the test 1File-10GB). The right-hand side of Fig. 6 shows the
results of the same set of tests when both S and Q steps are
deployed on the same cluster node. The CAPIO benefits are
capped by aggressive OS file system caching in this case,
except for the case 1File-10GB where the maximum gain is
about 49% with ws = 1KB. Additionally, the deployment on
the same node might have significant effects depending on the
kind of workflow steps executed. Strict I/O-bound workflow
steps can be effectively co-executed with CAPIO on the
same node because the potentially overwhelmed file system is
completely removed from the I/O path. On the contrary, mixed
I/O-/CPU-bound workloads might exhibit different behaviors
due to the CPU cores and memory bandwidth sharing.

1-to-Many: In this benchmark, we tested two cases shown
in Fig. 7 (left-hand side): 1) the producer writes N = 100
files, each of size M = 1GB and each consumer reads a
disjoint set of files (top plot); 2) the producer writes one file
(N = 1) of M = 100GB and the consumers read disjoint
partitions of the file (bottom plot). The number of consumer
steps tested is 5, 10, and 20. As for the 1-to-1 test, the producer
step is faster because of the local home-node policy; thus,
the execution time is dominated by the consumers’ reads. In
the first test, there is almost no difference between the two
firing rules tested as in the 1-to-1 test for file sizes of 1GB.
Here, the writing time for producing the file with id k is
overlapped with the reading time of the file with id k − 1 by

one of the consumers. Since files are consumed in increasing
order of their ids, there is no appreciable difference in the
execution time when increasing the number of consumer steps
(i.e., nodes). The second test is logically analogous to the first
one (both mimic a scatter communication pattern) but differs
in the implementation since it uses a single large sparse file
written after seeking. Again, CAPIO demonstrates consistent
results with those of the first test. Specifically, the CAPIO-
CoC-FnU synchronization semantics performs better than
CAPIO-CoC-FoC due to higher I/O phase overlap between
producer/consumer steps. The CAPIO improvement in the two
tests ranges from 50% to 65%.

Many-to-1: In this benchmark, we tested two cases shown in
Fig. 7 (right-hand side): 1) the producers write a total number
of 100 files, each of size 1GB (top plot); 2) the producers
write a large number of small files (10, 000); we used three
different file sizes: 10MB, 1MB, and 100KB. In the first test,
the number of producer steps tested is 5, 10, and 20, whereas
in the second case, the total number of workflow steps is fixed
to 6 (i.e., 5 Ss and 1 Q). From the qualitative standpoint,
the first test presents results similar to those in the first test
of the 1-to-Many benchmark even if they emulate different
communication patterns, i.e., scatter vs gather. However, the
absolute execution time is higher for both the FS and CAPIO
cases. In the second test (bottom plot in Fig. 7), the FS is hard-
pressed when there are many files, and the dataset is relatively
large (up to 100GB). CAPIO introduces less overhead in all
cases tested. With 10, 000 files of 10M the speed-up is more
than 8 (∼ 630s for FS vs. ∼ 75s for CAPIO).



D. Use cases

MapReduce: We have implemented a simple workflow in C
that captures the typical I/O pattern found in Map-Reduce
computation in which the intermediate results are stored in
the main memory of the cluster nodes [29]. It consists of
three steps, as sketched in Fig. 8. The sequential ‘Split’ step
gets as input a large file and generates K smaller files. The
parallel ‘MapReduce’ step (composed of several instances of
Mappers and Reducers) reads the K files and produces M
output files. Each Mapper instance reads a partition (of size k)
of the K files and produces a subset (of size m) of the output
files (e.g., suppose 4 Mappers and 3 Reducers, K = 20 and
M = 9, then each Mapper reads k = 5 files and each Reducer
produces m = 3 files). The final step, ‘Merge’ reads all M
files and produces a single output file. The communication
between the first and second steps is a 1-to-Many I/O pattern,
while the communication between the second and third steps,
where files from multiple sources are consolidated into a single
destination, is a Many-to-1 I/O pattern. Fig. 8 (right-hand side)
shows the execution time obtained when running the workflow
using Lustre (FS) and CAPIO configured with Commit on-
Close and Firing no-Update synchronization semantics. The
input dataset is 72GB large. The final output file is about 7GB.
The number of files created by the ‘Split’ and ‘MapReduce’
steps are the parameters k and m, respectively. We tested
values for k and m are reported in the plot. Increasing the
number of files produced reduces their size. The CAPIO
deployment reduces the execution time by 22% to 33%.
1000 Genomes: Fig. 9 (left-hand side) shows the five steps
of the workflow and their dependencies. The ‘individuals’
step can be replicated in multiple independent instances. Each
instance analyzes a partition of the input file and generates a
directory containing 2, 504 temporary small files (1 − 15KB
with 16 instances). The ‘sifting’ step runs in parallel with all
‘individuals’ steps. The ‘individuals merge’ step reads all the
files in the directories produced by all ‘individuals’ and com-
bines them into one single directory with 2, 504 files, where
each file is a merge of all files with the same name produced
by the ‘individuals‘. The last two steps, ‘mutation overlap’
and ‘frequency’, are independent. They read the input dataset
and the data produced by previous steps. We tested CAPIO
with CoC-FnU synchronization semantics to exploit pipeline
parallelism among the steps. For example, ‘mutation overlap’
and ‘frequency’ start reading the input dataset while ‘indi-
viduals merge’ and ‘sifting’ are still running. Additionally,
they start reading files produced by ‘merge individuals’ as
soon as a file is available without waiting for all 2, 504
files to be produced. Such overlap is unattainable with the
traditional workflow execution model (i.e., FS). The 1000
Genomes workflow was originally implemented using Bash
and Python scripts. We re-implemented the entire workflow
using C++ and the Boost library, which reduces the total
execution time by more than 3×. We tested CAPIO with
the fastest version using one single chromosome simulation
(different simulations on different chromosomes generate inde-

pendent workflows that can be executed in parallel). We tested
it with three configuration 8,12, and 20 cluster nodes, thus
4, 8, and 16 ‘individuals’ instances, respectively (see Fig. 9,
right-hand side). With 16 individuals, the files produced are
16× 2, 504 = 40, 064. Overall, CAPIO reduces the execution
time over FS in the range from 10% to 39%.

VI. CONCLUSIONS AND FUTURE WORK

HPC workloads are moving fast from monolithic applica-
tions to workflows with a mix of co-engineered and legacy
components communicating through the portable file-based
interface and using the file system as a communication media.
This paper proposes the CAPIO middleware. It transparently
injects I/O streaming capabilities into file-based workflows.
CAPIO leverages an I/O coordination language (based on
JSON syntax), which allows the user to annotate workflow
data dependencies with synchronization semantics information
to enrich the POSIX-based I/O system calls semantics and en-
able temporal overlap of distinct workflow steps. We presented
the synchronization semantics currently supported by CAPIO
and the corresponding language annotations to be provided
to CAPIO through a JSON configuration file. Using synthetic
benchmarks and two workflow use cases, we validated the
performance benefit of using the CAPIO middleware vs. the
Lustre parallel file system on a production supercomputer. The
results demonstrate the approach’s feasibility and performance
improvements in the range from 10% to 66%. We believe that
CAPIO-alike tools might influence novel workflow orchestra-
tion strategies to improve temporal overlap between steps and
thus reduce the peak I/O file system demand.

As future directions, we plan: a) to extend CAPIO using
different communication backends to target heterogeneous
distributed systems, for example, by leveraging ADIOS in the
CAPIO run-time or by using multi-backend communication
libraries, such as MTCL [30], which abstracts both MPI and
TCP; b) to integrate CAPIO with existing WMS (e.g., Stream-
Flow [31]) to enhance I/O coordination among workflow steps
and simplify the CAPIO deployment; c) to test CAPIO on
application workflows using high-level I/O interfaces, such as
MPI-I/O. Finally, we intend to test CAPIO on dedicated in-
house clusters using different parallel file systems (e.g., Lustre,
GPFS, BeeGFS).
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